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Abstract

Ontology development and maintenance are complex
tasks, so automatic tools are essential for a successful
integration between the modeller’s intention and the for-
mal semantics in an ontology. In this paper we present
a methodology for ontology evolution specifically de-
signed for being used in ontology design tools. It ex-
ploits the ontology graphical representation, which is
closer to the modeller’s intention, and selected user
queries, that reflect the formal semantics of the ontol-
ogy, both generated within the context of a given user
experience in a tool. In addition, a set of modular ex-
tension rules is supplied to capture ontology elements
by abstracting the user from the whole model without
losing consistency. The main benefit of this approach is
to offer a trade-off between the inherent rigidity to the
logic systems and the intuitive characteristics of the on-
tological modelling.

1 Introduction
Ontology development and maintenance are complex tasks.
Domain experts capture the knowledge in the universe of
discourse but they have a limited understanding of the se-
mantics of ontology representation languages. Moreover, a
good comprehension of the implicit knowledge in a middle-
size ontology formalisation is difficult even for IT experts.
Thus, automatic tools are essential for a successful integra-
tion between the modeller’s intention and the formal seman-
tics in an ontology.

Two of the most important features for any ontology de-
velopment tool are support for graphical representation, and
a consistent integration with a back-end reasoner for help-
ing in the management of implicit knowledge. The first one
is a primary source for abstraction, and provides an intuitive
navigation of the ontology. Usually the graphical notation
of a tool is based on EER (Gogolla 1994), UML (Booch,
Rumbaugh, and Jacobson 2005), or ORM (Halpin and Mor-
gan 2008), and therefore promotes usability of the tool and
interoperability of the generated ontology. The second one
helps in exploring, composing, and checking the ontology
by making explicit to the user the overall semantic of the

ontology. It is generally done by first translating the graph-
ical ontology into a some formal representation, and later
handling it to an external reasoner that can be then queried
about ontology properties.

In this paper we present Query-driven Ontology Devel-
opment (QDOD), a methodology for ontology evolution
specifically designed for being used in tools supporting these
two features. QDOD takes advantage of the ontology graph-
ical representation, which is closer to the modeller’s inten-
tion, and of selected user queries, that reflect the formal se-
mantics of the ontology, both generated within the context
of a given user experience. The benefit of this approach is
to offer a trade-off between the inherent rigidity to the logic
systems and the intuitive characteristics of the ontological
modelling. The objective is to decrease the complexity of
the evolution process and the cognitive load for the user by
reducing the number of possible ontology extensions.

QDOD approach starts by identifying possible new graph-
ical elements from users queries. It continues suggesting fur-
ther evolutions of the ontology by employing a built-in set
of extension rules and complete logical reasoning to anal-
yse the properties of the proposals. Finally, the user decides
to accept or reject these suggestions. Information extracted
from queries provided by users is key for understanding
their needs and a way for managing the complexity dur-
ing modelling. The data from these queries can result in an
evolution of the model due to changes in expert perceptions
about the domain.

QDOD focuses on graphical evolution of an ontology
schema (intentional knowledge, TBox) by increasing the
ontology alphabet, adding possible missing concepts, roles
and axioms to the ontology. Concepts and roles can be ex-
tracted from user queries to extend the ontology. Axioms
such as subsumption, equivalence and disjointness can be
inferred by the back-end reasoner or by the extension rules.

In order to show that the QDOD aligns to the above princi-
ples of ontology design tools, we also introduce a theoretical
framework for consistent mappings between graphical rep-
resentation of ontologies The framework states that graphi-
cal representation of ontologies should be preserved through
automatic transformations, giving to their explicit elements
a more important rational status than to the implicit ones.
We claim this framework is a requisite for any tool-based
ontology transformation process, like QDOD .



The paper is structured as follows. Section 2 describes
motivations of the work. Section 3 introduces a theoretical
framework that any methodology to be integrated to a tool
should follow and shows how QDOD satisfies this frame-
work. Section 4 presents the QDOD methodology, a descrip-
tion of the rules it uses and the algorithm to generate ontol-
ogy extensions. A case of study is described in section 5.
The approach is compared with some related works in sec-
tion 6, and section 7 contains final conclusions and future
works.

2 Motivation
The main motivation of the work is to close the gap between
domain experts, its understanding about ontologies, and the
modelling tools to satisfy the ontology reusability challenge.
The usage-based evolution is a partial solution for this prob-
lem but it also requires of graphical tools together with infer-
ence services for facilitating the ontology maintenance and
reuse.

Despite most popular tools provide support of both
graphical representation and reasoning services, they are
not graphical-centric tools and evolution is not endorsed.
Protégé (Knublauch et al. 2004) and NeOn (Hasse et al.
2008) provide graphical support but only Protégé offers a
partial integration with automatic reasoning. The evolution
support is mainly manual because changes should be com-
mitted by users. In NeOn toolkit, reasoning is enabled and
evolution is supported by a non-graphical plug-in Evolva
(Zablith 2009). ICOM (Fillottrani, Franconi, and Tessaris
2012) and OntoUML tool (Guizzardi and Wagner 2012) do
provide a comprehensive graphical interface. However, the
OntoUML reasoning support, which is based in Alloy (Jack-
son 2002), is not integrated to its graphical language. These
features are available in ICOM which uses ALCQI (Tobies
2001) as its base logic, but its ontology evolution support
is limited. The integration of graphical languages and rea-
soning is still incipient as it requires development environ-
ments with these capabilities. These systems are needed to
give support to the evolution process as well as cover all the
ontology engineering tasks.

Our proposal is based on a back-end reasoning system
that provides the methodology to the complete set of exten-
sional and intentional elements in the ontology, and a set of
rules which guide the extension mechanism. Users will see
the ontology graphically completed and evolved with all the
deductions, and expressed in the graphical language itself.
This rules-based approach can be considered as complemen-
tary to the ontology design patterns (Gangemi and Presutti
2009) since both provide a way to reduce the complexity of
designing and understanding ontologies. Furthermore, our
alternative offers flexibility and a fine-grained level where
the focus is on a subset of graphical elements to analyse
and thus introduce new ones, in contrast to design patterns
which are not orientated towards ontology evolution. Sim-
ilar to the Gangemi’s approach, the rules allow to describe
views where the evolution suggestions are consistent.

Finally, our motivation also arises from other field as
the Software Engineering and, in particular, the Test-Driven
Development (TDD) (Beck 2002). TDD is a programming

technique for building software that guides the development
by writing failing tests and refactoring. The TDD philoso-
phy is extrapolated into ontology engineering. However, un-
like TDD, QDOD also generates automatic suggestions that
users can accept or reject to continue refactoring.

3 Theoretical Model
In order to integrate reasoning to graphical environments,
we present a theoretical model that is to be independent of
any Description Logic (DL) (Baader et al. 2003) and graph-
ical methodology. The main advantage of this model is to
coordinate the relationship between the ontology graphical
representation and its formal description generated by the
tool. Indeed, it has been conceived as cross-methodological
approach which arises from the need to define baselines and
thus enable the development of other methodologies based
on this framework.
Definition 1 (Graphical Elements). x is a graphical element
if x is a concept, an association, a role, an is-a relationship
or an axiom with graphical representation.

C1 C2

C3 C4

A
1

1..1

r1 r2

⌘

Figure 1: Ontology including the graphical elements detailed in
the example 1.

Example 1. The ontology in Fig. 1 contains the following
graphical elements. C1, C2, C3 and C4 are classes, A1 an
association, and r1, r2 are roles with cardinality 1..1 and
0..N , respectively. In addition, the model includes an IsA
link between C1 and C3, and an equivalence axiom between
C3 and C4.

The use of graphical elements for modelling purposes is
desirable for users but may lead to formal consequences that
could not be easily recognised by designers in complex mod-
els. For example, the inconsistency of the model or some of
its elements. Hence, the integration of reasoning in tools is
needed in order to identify these properties and notify the
user about them. This is achieved by representing the se-
mantics of each graphical element and the whole graphical
ontology in terms of DL, and then by rendering the reason-
ing results in graphical notation. This process is formalised
in the following definitions.
Definition 2 (Element Graphical-Logic Mapping). Let �
be a set of graphical elements and let x 2 �. An element
graphical-logic mapping is a function  from � to a decid-
able DL fragment, where  (x) is the logical representation
of x in the target DL.
Example 2. Let us consider ALCQI as a target logic, a
possible mapping  for the graphical elements of the exam-
ple 1 is shown in Table 1.



Classes and associations (or n-ary relations in EER) are
graphical elements that will be represented as concepts in
DL, and roles will be represented as roles in DL.

x  (x) x  (x)

C1 C1 A
1

A1

C1

C3

C3 v C1 C3 C4⌘ C3 ⌘ C4

x  (x)

C1 A
1

1..1

r1

C1 v ( 1 r

�
1 .A1)

C1 v 9r�1 .A1 A1 v 9r1.C1

C1 A1 min v C1 u (� 1 r

�
1 .A1)

C1 A1 max v C1 u ( 1 r

�
1 .A1)

C2A
1

r2

A1 v 9r2.C2

C2 A1 min v C2 u (� 1 r

�
2 .A1)

C2 A1 max v C2 u ( 1 r

�
2 .A1)

Table 1:  function for the ontology depicted in Fig. 1.

Definition 3 (General Graphical-Logic Mapping). Let� be
a set of graphical elements and let  an element graphical-
logic mapping. A general graphical-logic mapping is a
function ⇥ from � to a decidable DL fragment, where
⇥(�) =

S
x2�

 (x) in the target logic.

Definition 4 (Graphical Ontology). Let� be a set of graph-
ical elements and let  be an element graphical-logic map-
ping.⌦ is a graphical ontology generated from� if and only
if ⇥(�) is an ontology in the target logic.

We assume that there exists only one graphical ontology
that can be generated from a set of graphical elements.
Example 3. Considering the example 1 and supposing
ALCQI as target logic, the ontology ⇥(�) where classes
and associations are translated to DL concepts, is defined
as follows.

C1 v ( 1 r�1 .A1)
C1 v 9r�1 .A1

A1 v 9r1.C1

A1 v 9r2.C2

C3 v C1

C3 ⌘ C4

C1 A1 min v C1 u (� 1 r�1 .A1)
C1 A1 max v C1 u ( 1 r�1 .A1)
C2 A1 min v C2 u (� 1 r�2 .A1)
C2 A1 max v C2 u ( 1 r�2 .A1)

Definition 5 (Consistent Graphical Ontology). Let � be a
set of graphical elements and let be an element graphical-
logic mapping. ⌦ is a consistent graphical ontology gener-
ated from � if and only if ⇥(�) admits a model in which
at least one element has a non-empty extension in the target
logic.

In addition, we will introduce another desirable property
of ontologies and thus also of graphical ones to complete the
proposed formalisation.
Definition 6 (Consistent Graphical Element). Let� be a set
of graphical elements and let be graphical-logic mapping,

and let ⌦ be a graphical ontology with a mapping⇥(�). An
element x 2 � is a consistent graphical element if and only
if ⇥(�) admits a model in which the  (x) has a non-empty
extension.

Any methodology integrated in a graphical tool should
ensure this mapping in every step of the process. Other-
wise, possible mismatches between the ontology graphical
and formal representations may occur.

4 Methodology
Query-driven Ontology Development (QDOD) is a method-
ology that generates from a consistent ontology ⌦ induced
by a design tool from a set of graphical elements �, a pos-
sible extension ⌦0 that preserves the elements in �. The
ontology ⌦ is supposed not to be complete, so evolution is
required. The user has been previously inquired through the
tool about properties of ⌦, some of these queries may have
led to add new elements in it.

QDOD process starts by taking one user query Q at a
time and by extracting from it its graphical elements, so to
start the evolution. The algorithm analyses the answerabil-
ity of Q and it gets the first reachable graphical elements
when Q is answerable. A query is answerable if and only
if its graphical elements are already included in ⌦. In con-
trast, the methodology will suggest the query elements to be
added to the ontology when Q is not answerable, and will
also generate reachable elements. A reachable element is a
graphical element in ⌦ that is involved in the query Q or in
user-accepted suggestions made by the tool.

SELECT ?WinterGame ?WinterSport
WHERE
{?WinterGame ol:contains ?hasWinterSport .
?hasWinterSport ol:from ?WinterSport .

}

Figure 2: SPARQL query for Olympics ontology.

Let us suppose the query Q, which is shown in Fig. 2, for
the Olympics ontology, which will be explained in section
5. We identify WinterGame, contains, hasWinterSport,
from and WinterSport as graphical elements. Thus, if the
triple hasWinterSport, from and WinterSport does not
belong to ⌦ then QDOD will suggest adding them to the
ontology as concepts and roles, respectively, and the mod-
eller will be required to accept or reject this suggestion. This
behaviour is similar for other elements in Q. In this case, the
reasoner will be invoked in checking consistency and inquir-
ing about graphical elements in ⌦.

The process continues looking for more evolution sugges-
tions that can be generated by means of two ways. The first
one is by inquiring to the back-end reasoner to check im-
plicit axioms in ⌦. Implicit axioms are those non-explicit
deductions inferred by querying a reasoning system. The
second one is by testing extension rules on reachable ele-
ments in order to generate new suggestions until the list of
reachable elements becomes empty.

The general form of an extension rule R is the following:



{RA1, RA2, ..., RA
n

} V {CR1, CR2, ..., CR
m

}
such that RA

i

and CR
j

are TBox formulae from DL of the
underlying reasoner, 1  i  n and 1  j  m.

In order to apply a rule, we must check if its antecedent is
satisfied in the logical representation of the graphical ontol-
ogy ⌦, denoted by ⇥(�), and if its consequences are con-
sistent with this representation. Thus, a back-end reasoner
should be inquired about the satisfiability of the following
properties of ⌦, {RA1, RA2, ..., RA

n

}, and about consis-
tency of every resulting ontology after applying the rule con-
sequent. Each RC

i

represents a different possible ontology
extension and it is the user who is required to select which
RC

i

, 1  i  m will be applied, if any. Therefore, the back-
end reasoner would be inquired to verify if ⇥(�) [ RC

i

is
consistent for any i, 1  i  m.

These rules analyse all the relationships of the elements
and offer locality to recommend extensions by identifying
recurrent design patterns. In each case, the user is required
to accept or reject extensions. The rejected ones will not be
proposed again during the algorithm execution.

Every suggestion in the model needs to be checked for
consistency so that each graphical element and the complete
⌦ are mapped to the target description logic. The leverage of
automatic reasoning is enabled by a semantic definition of
each element of the models and their user queries. This lo-
gical support is required to define when extension rules can
be applied, display the implications of the suggestions de-
rived from these rules, and assert the new intentional knowl-
edge in the underlying knowledge base.

The output of this methodology is a consistent graphical
ontology ⌦0 evolved from user queries, a set of extension
rules and reasoning support. The pseudo-code of the QDOD
algorithm is shown in Algorithm 1.

Next, we formally define the notion of graphical extension
and show the complexity analysis of the QDOD algorithm.
Definition 7 (Graphical Extension). Let ⌦ be a consistent
graphical ontology generated from a set of graphical ele-
ments �. A graphical extension of ⌦ w.r.t. a set of queries
Q1, ..., Qn

is an ontology ⌦0 generated from a set of graph-
ical elements �0 such that:
1. � ✓ �0,
2. ⌦0 is consistent,
3. 8x 2 �0, x is consistent,
4. Q

i

is answerable in ⌦0, for all 1  i  n.
Theorem 1. The QDOD algorithm for graphical ontology
evolution terminates, and it runs in O(l⇥ (m+ f(n)), for a
maximum number of suggestions m generated from l reach-
able graphical elements, n graphical elements of the knowl-
edge base, and f(n) is the time of a query to a decidable
back-end reasoner.
Proof. Let ⌦ be a consistent ontology generated from the
set of graphical elements � and let Q be a query with the
associated set of graphical elements�

Q

.

1. (line 1) ⌦ is generated from a finite set of graphical ele-
ments �,
2. (line 5) The query Q is composed by a finite set of ele-
ments in �

Q

,

Algorithm 1 Query-driven Ontology Development
1: input: an user query Q and a consistent ontology⌦ represented by a finite graph-

ical elements set�.
2: output: an evolved ontology ⌦0 with a finite graphical elements set�0

3: re ;
4: ⌦0  ⌦

5: extract concepts and roles and associations from Q

6: if Q is answerable then
7: add to re all the reachable elements from Q

8: else
9: inquire back-reasoner for suggesting elements of Q which do not belong to⌦
10: if suggestions are accepted then
11: commit suggestions to ⌦0

12: add to re all the reachable elements from Q

13: end if
14: end if
15: inquire back-end reasoner for implicit axioms in ⌦
16: if implicit axioms exist then
17: suggest implicit axioms to be added to ⌦
18: for all accepted evolution suggestion do
19: commit suggestions to ⌦0

20: add to re all the reachable elements involved in the evolution
21: end for
22: end if
23: while (re <> ;) do
24: select a concept or an association e from re

25: remove e from re

26: for all extension rule R on e do
27: inquire back-end reasoner about the R antecedent and consequent
28: if R antecedent is satisfied and R consequent is consistent in ⌦ then
29: suggest R consequent as possible consistent evolutions
30: end if
31: end for
32: for all accepted evolution suggestion do
33: commit suggestions to ⌦0

34: add to re all the reachable elements related to e

35: end for
36: if any suggestion has been accepted then
37: inquire back-end reasoner for implicit axioms in ⌦
38: if implicit axioms exist then
39: suggest implicit axioms to be added to ⌦
40: for all accepted evolution suggestion do
41: commit suggestions to ⌦0

42: add to re all the reachable elements involved in the evolution
43: end for
44: for all rejected evolution suggestion do
45: suggestion is not generated anymore
46: end for
47: end if
48: end if
49: end while

return ⌦0

3. (line 9) The suggestions generated from Q are finite since
the query Q is finite,
4. (line 15-16) Back-end reasoner is decidable by hypothe-
sis. Moreover, the amount of queries to the reasoner and the
suggestion generated are finite because � is finite,
5. (line 7, 12, 20, 34 and 42) The list of the reachable ele-
ments re is finite due to it only includes elements from �

Q

or �,
6. (line 23-49) The while block does not add new concepts



nor associations. Only roles or cardinalities are added to ⌦
when a rule is applicable. The while terminates since the
list of the reachable elements re becomes empty after apply-
ing each possible extension rules and their evolution sugges-
tions. Moreover, the checking for implicit axioms terminates
as indicated in item (4) and rejected suggestions are not gen-
erated anymore in order to avoid repetitions.

Hence, for any consistent ⌦, query Q and sequence of
extension rule application, the QDOD algorithm terminates.

Now we demonstrate the complexity of the QDOD
algorithm. Consider us a graphical ontology ⌦ generated
from a set of graphical elements � as input.

1. (line 5-14) The complexity for the if is O(m1) where
m1 are the suggestions generated from the query Q,
2. (line 15-21) The time of a query to the back-end reasoner
is f(n), for a decidable reasoner and n graphical elements,
3. (line 23-49) The complexity of the while is:

3.1. (line 24-35) O(m2) where m2 are the suggestions
generated from applying rules,

3.2. (line 36-48) f(n) + m3 for checking of implicit ax-
ioms, and m3 suggestions.

Hence, if we consider l reachable graphical elements, the
QDOD algorithm upper bound is:

O(m1 + f(n) + l ⇥ (m2 + f(n) +m3)) =
O(l ⇥ (m2 + f(n) +m3))

and if consider the total amount of suggestions m =

max(m2,m3), O(l ⇥m+ f(n))

Supposing the reasoner solves efficiently the queries, and
since the number and the size of rules is bounded in gen-
eral then we can say QDOD can be safely added to any de-
sign tool. Also, we show that QDOD follows the theoretical
model presented in section 3.
Theorem 2. Every extension generated from a consistent
user query Q by applying an extension rule is a graphical
extension.

Proof. Let ⌦ be a consistent graphical ontology generated
from the set of graphical elements � and from the mapping
⇥(�). Let Q1, ..., Qn�1 be a set of answerable queries in
⌦ and Q

n

a new user query with �
Qn graphical elements.

We will demonstrate that this extension is also a graphical
extension by considering the query Q

n

and the definition 7.
The ontology ⌦0 is obtained from ⌦ and Q

n

by applying an
extension rule R.

1. � ✓ �

0 due to no graphical element is removed from �

when a rule is applied, for any rule R,
2. ⌦0 generated from �

0 and ⇥(�0) is consistent by exten-
sion rules applicability,
3. From (2), ⌦0 is consistent. Then, ⇥(�0) is also consistent
(by def. 5) iff is consistent ⇥(�0) =

S
x2�0

 (x) (by def. 3)

iff  (x) is consistent iff x is consistent (by def. 6),
4. Q1, ..., Qn�1 are answerable queries in ⌦. If �

Qn ✓ �

0

then by definition Q
n

is also answerable. By contrast, if

�

Qn 6✓ �0, then the missing elements of Q
n

are added to ⌦
in order to start the evolution. Thus �

Qn becomes a subset
or equal to �0. Therefore, Q

n

turns out to be answerable.
Hence, every extension generated by applying an exten-

sion rule is a graphical extension.

Extension Rules
We present some examples of the extension rules in order to
understand their role in the QDOD methodology. We next
show some of them, but the list is not exhaustive. The rule
family is available in (GILIA 2015).

The following rule proposes an IsA relationship between
entities.

v-rule: {A2 v A1, A1 v 9r1.C1, A2 v 9r1.C2} V
{C2 v C1, C2 ⌘ C1}

C1

C2

A
1

r1

A
2

r1

C1

C2

A
1

r1

A
2

r1

⌘

Figure 3: Graphical representation of v-rule.

The v-rule, which is graphically rendered as shown in
Fig. 3, can be legitimised by analysing the involved classes
and their relationships. By definition, if A2 v A1 and
A1 v 9r1.C1 then A2 v 9r1.C1. Moreover, if any ex-
plicit inequality exists in the ontology then we can sup-
pose both roles r1 in A1 v 9r1.C1 and A2 v 9r1.C2

represent the same role and they are identically defined.
From these arguments, we could propose the rule conse-
quent {C2 v C1,C2 ⌘ C1} as possible extensions. Neither
of these consequences is entailed by the ontology but they
are considered anyway since their intuitive characteristics as
expressed in the motivation of the present work.

For example, let us suppose the following partial and tex-
tual ontology ⌦:

hasWinterSport v hasSport
hasSport v 9from.OlympicSport

hasWinterSport v 9from.WinterSport

If we match these ontology elements to the v-
rule, we can obtain a consistent ontology ⌦

0, which
defines a new type for the OlympicSport ele-
ment by means of WinterSport v OlympicSport,
or a ⌦

00 where WinterSport ⌘ OlympicSport.
For this purpose, QDOD algorithm should inquire
about properties hasWinterSport v hasSport,
hasSport v 9from.OlympicSport and hasWinterSport v
9from.WinterSport, and about consistency of resulting
ontology after applying WinterSport v OlympicSport and
WinterSport ⌘ OlympicSport. In fact, both suggestions of
the example are consistent so that any of them could be a
possible extension.

Other examples are the c-rule and r-rule which recom-
mend cardinality and roles suggestions, respectively. Below



M2

M1

OlympicGame

SummerGame

WinterGame

OlympicSport

WinterSport

SummerSport

Event

SocietalEvent

SportEvent CompetitiveActivity

<SocietalEventType>

<EventType>

hasActivity

contains from

hasSport

1..n contains from

hasWinterSport

contains from

hasSummerSport

contains from

{total, exclusive}

Figure 4: Dashed line indicates the query elements suggestion.

they are only presented due to space limitation, but their ex-
planation can be found in (GILIA 2015).
c-rule: {A1 v 9r1.C1, C2 v C1, A2 v A1, A2 v 9r1.C2,
C1 v 9r�1 .A1} V {C2 v 9r�1 .A2}
r-rule: {C2 v C1, A1 v 9r1.C1, A2 v 9r2.C2, A2 v A1}
V {r2 v r1}

One of the advantage of these rules is that can be included,
modified and removed without affecting the host method-
ology. This approach allows to discover knowledge which
could not be inferred from a logical point of view, but it
could be suggested to users as a modelling option weaker
than the logic one.

5 Case of Study
We will illustrate the QDOD methodology with an Olympics
ontology graphical representation, which is partially in-
tegrated to an Event ontology. Let us consider the non-
answerable SPARQL query Q shown in section 4, which in-
quires about every winter game and their associated sports.
Fig. 4 shows the ontology after committing the suggestions
(drawn in dashed line) extracted from Q.

The methodology considers Q and it evaluates if it is an-
swerable. As Q is not answerable (Algorithm 1:line 9) since
the role from between the hasWinterSport association and
the WinterSport class are missing in the graphical ontol-
ogy, it is suggested and added to the ontology after the user
accepts it. The classes WinterGame and WinterSport and
the association hasWinterSport involved in the query are
added to the list of reachable elements (re).

The algorithm invokes the back-end reasoner for deducing
implicit axioms (Algorithm 1:line 15). The system shows
hasSummerSport v ¬hasWinterSport as an evolution
suggestion. In our case, the user rejects it because it is not
his intended model.

Next, it gets the first reachable element WinterGame
and applies it to the extension rules (Algorithm
1:line 26). The c-rule suggests WinterGame v
9contains�.hasWinterSport, which it is accepted by
the user and WinterGame is again added to re. As no
consequence appears after this extension (Algorithm 1:line
37), a new element hasWinterSport is selected from re.
The v-rule suggests WinterSport v OlympicSport and
WinterSport ⌘ OlympicSport. If the user considers that
any of the suggestions is an evolution, then selects one
of them. In the example, the user selects WinterSport v
OlympicSport (Fig. 5). The system adds OlympicSport
to re and inquires reasoner about possible implications of
the evolved model. As no other new evolution suggestion
appears after checking the rules on the remaining reachable
elements, the algorithm terminates.

Even though the model is partially integrated to another
one, QDOD allows to work on graphical evolution by isolat-
ing the subset of ontological elements identified by the user
according to the intended model. QDOD offers two abstrac-
tion levels for modellers. The first one is provided by means
of user queries to place emphasis on one of the integrated
models and the involved concepts. The second one is sup-
plied by extension rules which focus on elements previously
identified and their relationships and contexts. Furthermore,
QDOD keeps consistency in the whole model, which is sup-
ported by the back-end reasoning system, after evolving.

6 Related Work
While the frameworks described by Zablith et .al in (Zablith
et al. 2014) try to cover all the evolution process, we are in-
terested in approaches that detect needs of evolution from
user behaviours because they represent a genuine and au-
thentic real source of evolutions. The literature presents ap-
proaches involving application usage (Alani, Harris, and
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Figure 5: Evolved ontology with last subsumption suggestion in dashed line.

O’Neil 2006), ontology change log (Javed, Abgaz, and Pahl
2011), user feedback (Luczak-Rösch 2009), log of queries,
search history (Bloehdorn et al. 2006) and context and do-
main information (Guelfi, Pruski, and Reynaud 2011). Nev-
ertheless, evolution in these approaches is detected after the
ontology has been designed. Although we do not cover the
complete ontology evolution process, our work proposes to
start filling this gap by supporting graphical evolution from
user queries in a predictive way, at modelling time.

Similar to our approach, Guizzardi in (Guizzardi, das
Graças, and Guizzardi 2011) proposes to use rules in
pattern-based design. However, the automatic reasoning is
missing and users queries are not considered in evolution.
Baader et al. in (Baader et al. 2007) discusses a similar ap-
proach which considers to complete a DL knowledge base
by using expert information and the DL base itself by means
of the technique of formal concept analysis. Neither graphi-
cal support nor end-user queries is involved in this work. The
query-driven extensions are also partially tried by Cuenca
Grau et al. in (Grau et al. 2013) although in a more conser-
vative context and without involving reasoning or graphical
integration.

With respect to graphical tools, ICOM (Fillottrani, Fran-
coni, and Tessaris 2012) and OntoUML (Guizzardi and
Wagner 2012) are graphical-based tools but the evolution
support is limited, while only ICOM integrates both graphi-
cal languages and automatic reasoning. Protégé (Knublauch
et al. 2004) and TopBraid Composer (TopQuadrant 2011)
do allow this integration but inferences are only restricted
to is-a hierarchies. Their evolution support is partial: ontol-
ogy differences (Protégé) and versioning and collaboration
(TopBraid Composer). NeOn toolkit (Hasse et al. 2008),
Kaon2 (Motik and Studer 2005) and SWOOP (Kalyanput
et al. 2005) provide access to reasoners but they are not
graphical-based tools. In evolution respect, NeOn incorpo-

rates a framework to support it from external sources. Kaon2
and SWOOP simply offer operations as redo and undo
(Kaon2) or imports and versioning (SWOOP). Other tools
as GrOWL (Krivov, Williams, and Villa 2007), OWLGrEd
(Cerans et al. 2012), Graphol (Console et al. ), “model out-
line” framework (do Amaral 2010) and VOWL (Lohmann,
Negru, and Bold 2014) are also graphical tools. They define
a graphical syntax and semantics to provide users with a vi-
sual representation of their models avoiding any complex
textual syntax. The reasoning support is not provided in any
of these tools as ICOM does and the ontology evolution is
not properly supported.

These related works show that evolution from a graphical
point of view is missing. As far as we know, our approach
is the only one that proposes to integrate both graphical and
reasoning support in an evolution methodology.

7 Conclusions and Future Works
This work introduces the QDOD methodology, an approach
for ontology evolution based on queries and integrated
within a graphical design tool. Its main advantage is to pro-
vide a trade-off between the logical rigidity from formal
representations and the intuitive characteristics inherent to
the ontology modelling. The methodology works by propos-
ing ontology extensions based both on previous user queries
and a set of modular extension rules. We have developed
an algorithm to calculate evolutions and we have demon-
strated complexity and computability properties. Moreover,
we have defined a theoretical framework that supports this
methodology and that is independent from QDOD. As far as
we know, our approach is the first that integrates both graph-
ical and reasoning support in an ontology evolution method-
ology.

As future works, we propose to implement the integra-
tion of QDOD methodology into an existing tool and evalu-



ate our proposal. This evaluation will be done by means of
two techniques such as a behaviour-based one, which will
allow us to register the number of suggestions accepted by
user, and an opinion-based one, which will enable us to elicit
users opinions about the use of the methodology (Gediga
and Hamborg 2001).

We plan to provide support to user-defined rules and we
are also working on extension rules involving instances so
that we could provide evolution at extensional level (ABox)
and possibly use it to enhance the intentional knowledge.
Furthermore, new methodologies to complement QDOD
could be developed by following the proposed theoretical
framework.
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