
On the Influence of Incoherence in Inconsistency-tolerant Semantics for Datalog±

C. A. Deagustini and M. V. Martinez and M. A. Falappa and G. R. Simari
AI R&D Lab., Dep. of Computer Science and Engineering,

Universidad Nacional del Sur, Bahı́a Blanca, Argentina
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET),
Avenida Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina

Abstract

The concept of incoherence naturally arises in onto-
logical settings, specially when integrating knowledge.
In this work we study a notion of incoherence for
Datalog± ontologies based on the definition of satis-
fiability of a set of existential rules regarding the set
of integrity constraints in a Datalog± ontology. We
show how classical inconsistency-tolerant semantics for
query answering behaves when dealing with atoms that
are relevant to unsatisfiable sets of existential rules,
which may hamper the quality of answers—even under
inconsistency-tolerant semantics, which is expected as
they were not designed to confront such issues. Finally,
we propose a notion of incoherency-tolerant semantics
for query answering in Datalog±, and present a particu-
lar one based on the transformation of classic Datalog±

ontologies into defeasible Datalog± ones, which use ar-
gumentation as its reasoning machinery.

Introduction and Motivation
The problem of inconsistency in ontologies has been widely
acknowledged in both the Semantic Web and Database The-
ory communities, and several methods have been developed
to deal with it, e.g., (Arenas, Bertossi, and Chomicki 1999;
Lembo et al. 2010; Lukasiewicz, Martinez, and Simari 2012;
Black, Hunter, and Pan 2009; Bienvenu 2012; Martinez et al.
2014). The most widely accepted semantics for querying in-
consistent databases is that of consistent answers (Arenas,
Bertossi, and Chomicki 1999) (or AR semantics in (Lembo
et al. 2010) for ontological languages), which yields the set
of atoms that can be derived despite all possible ways of
repairing the inconsistency. In this semantics often an as-
sumption is made that the set of ontological knowledge Σ
expresses the semantics of the data and as such there is no
internal conflict on the set of constraints, which is not sub-
ject to changes over time. This means first, that the set of
constraints is always satisfiable, in the sense that their ap-
plication do not inevitably yield a consistency problem; sec-
ond, as a result of the previous observation, it must be the
case that the conflicts come from the data contained in the
database instance and that is the part of the ontology that
must be modified in order to restore consistency.

Copyright c© 2015, for this paper by its authors. Copying permitted
for private and academic purposes.

Although to consider the constraints as always satisfiable
is a reasonable assumption to make, specially in the case of
a single ontology, in this work we will focus on a more gen-
eral setting and consider that both data and constraints can
change through time and become conflicting. In this more
general scenario, as knowledge evolves (and so the ontology
that represents it) not only data related issues can appear,
but also constraint related ones. The problem of conflicts
among constraints is known in the Description Logics com-
munity as incoherence (Flouris et al. 2006; Qi and Hunter
2007). As they were not developed to consider this kind of
issue, several of the well-known inconsistency-tolerant se-
mantics for query answering fail at computing good qual-
ity answers in the presence of incoherence. In this paper
we focus on a particular family of of ontological languages,
namely Datalog± (Calı̀, Gottlob, and Lukasiewicz 2012a).
We show how incoherence can arise in Datalog± ontologies,
and how the reasoning technique based on the use of defea-
sible elements in Datalog± and an argumentative semantics
introduced by Martinez et al. (2014) can tolerate such issues,
thus resulting in a reasoning machinery suitable of dealing
with both incoherent and inconsistent knowledge.

This work integrates three different building blocks: first,
we introduce the notion of incoherence for Datalog± ontolo-
gies, relating it to the problem of satisfiability of concepts
for Description Logics; second, we show how such notion
affects most of well-known inconsistency-tolerant semantics
which, since they were not designed to confront such issues,
can go up to the point of not returning any useful answer;
finally, we propose a definition for incoherency-tolerant se-
mantics, introducing an alternative semantics based on an
argumentative reasoning process over the transformation
of Datalog± ontologies to their correspondent defeasible
Datalog± ontologies. We show how this semantics behaves
in a satisfactory way in the presence of incoherence, as
the process can return as answers atoms that trigger inco-
herency, which we show that cannot be done by classical
inconsistency-tolerant semantics.

Preliminaries
First, we briefly recall some basics on Datalog± (Calı̀, Got-
tlob, and Lukasiewicz 2012a). We assume (i) an infinite uni-
verse of (data) constants ∆ (which constitute the “normal”
domain of a database), (ii) an infinite set of (labeled) nulls

∆N (used as “fresh” Skolem terms, which are placeholders
for unknown values, and can thus be seen as variables), and
(iii) an infinite set of variables V (used in queries, dependen-
cies, and constraints). Different constants represent different
values (unique name assumption), while different nulls may
represent the same value. We assume a lexicographic order
on ∆∪∆N , with every symbol in ∆N following all symbols
in ∆. We denote by X sequences of variables X1, . . . , Xk

with k≥ 0. We assume a relational schemaR, which is a fi-
nite set of predicate symbols (or simply predicates). A term t
is a constant, null, or variable. An atomic formula (or atom)
a has the form P (t1, ..., tn), where P is an n-ary predicate,
and t1, ..., tn are terms. A database (instance) D for a re-
lational schema R is a (possibly infinite) set of atoms with
predicates fromR and arguments from ∆.

Given a relational schema R, a tuple-gener-
ating dependency (TGD) σ is a first-order formula
∀X∀Y Φ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and
Ψ(X,Z) are conjunctions of atoms over R (without
nulls), called the body and the head of σ, respectively.
Satisfaction of TGDs are defined via homomorphisms,
which are mappings µ : ∆∪∆N ∪V → ∆∪∆N ∪V
such that (i) c∈∆ implies µ(c) = c, (ii) c∈∆N

implies µ(c)∈∆∪∆N , and (iii) µ is naturally extended to
atoms, sets of atoms, and conjunctions of atoms. Consider a
databaseD for a relational schemaR, and a TGD σ onR of
the form Υ(X,Y) → ∃ZΨ(X, Z). Then, σ is applicable
to D if there exists a homomorphism h that maps the atoms
of Υ(X,Y) to atoms of D. Let σ be applicable to D, and
h′ be a homomorphism that extends h as follows: for each
Xi ∈ X, h′(Xi) = h(Xi); for each Zj ∈ Z, h′(Zj) = zj ,
where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does not
occur in D, and zj lexicographically follows all other nulls
already introduced. The application of σ on D adds to D
the atom h′(Ψ(X,Z)) if it is not already in D. After the
application we say that σ is satisfied by D. The Chase for a
database D and a set of TGDs Σ

T
, denoted chase(D,Σ

T
),

is the exhaustive application of the TGDs (Calı̀, Gottlob,
and Lukasiewicz 2012b) in a breadth-first (level-saturating)
fashion, which leads to a (possibly infinite) chase for D
and Σ. Since TGDs can be reduced to TGDs with only
single atoms in their heads, in the sequel, every TGD has
without loss of generalization a single atom in its head.

A conjunctive query (CQ) over R has the form
Q(X) =∃Y Φ(X,Y), where Φ(X,Y) is a conjunction of
atoms (possibly equalities, but not inequalities) with the
variables X and Y, and possibly constants, but without
nulls. In this work we restrict our attention to atomic queries.
A Boolean CQ (BCQ) over R is a CQ of the form Q(),
often written as the set of all its atoms, without quanti-
fiers. The set of answers for a CQ Q to D and Σ, denoted
ans(Q,D,Σ), is the set of all tuples a such that a∈Q(B)
for all B ∈mods(D,Σ). The answer for a BCQ Q to D and
Σ is Yes, denoted D∪Σ |=Q, iff ans(Q,D,Σ) 6= ∅. It is im-
portant to remark that BCQsQ overD and Σ

T
can be evalu-

ated on the chase forD and Σ
T

, i.e.,D∪Σ
T
|= Q is equiva-

lent to chase(D,Σ
T

) |= Q (Calı̀, Gottlob, and Lukasiewicz
2012b).

Negative constraints (NCs) are first-order formulas of the

form ∀XΦ(X)→ ⊥, where the body X is a conjunction of
atoms (without nulls) and the head is the truth constant false,
denoted ⊥. Intuitively, the head of these constraints have to
evaluate to false in D under a set of TGDs Σ

T
. That is, an

NC τ is satisfied by a database D under a set of TGDs Σ
T

iff there not exists a homomorphism h that maps the atoms
of Φ(X) toD, whereD is such that every TGD in Σ

T
is sat-

isfied. As we will see through the paper, negative constraints
are important to identify inconsistencies in a Datalog± on-
tology, as their violation is one of the main inconsistency
sources. In this work we restrict our attention to binary neg-
ative constraints (or denial constraints), which are NCs such
that their body is the conjunction of exactly two atoms, e.g.,
p(X,Y) ∧ q(X,Z) → ⊥. As we will show later, this class
of constraints suffices for the formalization of the concept of
conflicting atoms.

Equality-generating dependencies (EGDs) are first-order
formulas of the form ∀XΦ(X)→ Xi = Xj , where Φ(X) is
a conjunction of atoms, andXi andXj are variables from X.
An EGD σ is satisfied in a database D for R iff, whenever
there exists a homomorphism h such that h(Φ(X)) ⊆ D, it
holds that h(Xi) = h(Xj). In this work we will focus on
a particular class of EGDs, called separable (Calı̀, Gottlob,
and Lukasiewicz 2012a); intuitively, separability of EGDs
w.r.t. a set of TGDs states that, if an EGD is violated, then
atoms contained inD are the reason of the violation (and not
the application of TGDs); i.e., if an EGD in Σ

E
is violated

when we apply the TGDs in Σ
T

for a database D, then the
EGD is also violated in D. Separability is an standard as-
sumption in Datalog± ontology, as one of the most impor-
tant features of this family of languages is the focus on de-
cidable (Calı̀, Lembo, and Rosati 2003) (actually tractable)
fragments of Datalog±. EGDs play also an important role
in the matter of conflicts in Datalog± ontologies. Note that
the restriction of using only separable EGDs makes that cer-
tain cases of conflicts are not considered in our proposal; the
treatment of such cases, though interesting from a technical
point of view, are outside the scope of this work since we
focus on tractable fragments of Datalog± as the ones men-
tioned above. Moreover, as for the case with NCs, we restrict
EGDs to binary ones; that is, those which body ∀XΦ(X) is
such that Φ(X) is the conjunction of exactly two atoms, e.g.,
p(X,Y) ∧ q(X,Z)→ Y = Z.

We usually omit the universal quantifiers in TGDs, NCs
and EGDs, and we implicitly assume that all sets of depen-
dencies and/or constraints are finite.

Datalog± Ontologies. A Datalog± ontology KB = (D, Σ),
where Σ = Σ

T
∪Σ

E
∪Σ

NC
, consists of a databaseD, a set of

TGDs Σ
T

, a set of separable EGDs Σ
E

, and a set of negative
constraints ΣNC . Example 1 illustrates a simple Datalog±
ontology.

Example 1 Consider the following KB.

D : {a1 : can sing(simone)
a2 : rock singer(axl),
a3 : sing loud(ronnie),
a4 : has fans(ronnie),

a5 : manage(band1 , richard)}

ΣNC : {τ1 : sore throat(X) ∧ can sing(X)→ ⊥,
τ2 : unknown(X) ∧ famous(X)→ ⊥}

ΣE : {ν1 : manage(X,Y) ∧manage(X,Z)→ Y = Z}

ΣT : {σ1 : rock singer(X)→ sing loud(X),
σ2 : sing loud(X)→ sore throat(X),
σ3 : has fans(X)→ famous(X),

σ4 : rock singer(X)→ can sing(X)}

Following the classical notion of consistency, we say that

a consistent Datalog± ontology has a non-empty set of mod-
els.

Consistency. A Datalog± ontology KB = (D,Σ) is consis-
tent iff mods(D,Σ) 6= ∅. We say that KB is inconsistent
otherwise.

Incoherence in Datalog±

The problem of obtaining consistent knowledge from an in-
consistent knowledge base is natural in many computer sci-
ence fields. As knowledge evolves, contradictions are likely
to appear, and these inconsistencies have to be handled in a
way such that they do not affect the quality of the informa-
tion obtained from the knowledge base.

In the setting of Consistent Query Answering (CQA),
database repairing, and inconsistency-tolerant query an-
swering in ontological languages (Arenas, Bertossi, and
Chomicki 1999; Lembo et al. 2010; Lukasiewicz, Martinez,
and Simari 2012), often the assumption is made that the set
of constraints Σ expresses the semantics of the data in the
component D, and as such there is no internal conflict on
the set of constraints and these constraints are not subject
to changes over time. We argue that it is also important to
identify and separate the sources of conflicts in Datalog±
ontologies. In the previous section we defined inconsistency
of a Datalog± ontology based on the lack of models. From
an operational point of view, conflicts appear in a Datalog±
ontology whenever a NC or an EGD is violated, that is,
whenever the body of one such constraint can be mapped
to either atoms in D or atoms that can be obtained from D
by the application of the TGDs in ΣT ⊆ Σ. Besides these
conflicts, we will also focus on the relationship between the
set of TGDs and the set of NCs and EGDs, as it could hap-
pen that (a subset of) the TGDs in ΣT cannot be applied
without always leading to the violation of the NCs or EGDs.
Note that in this case clearly the data in the database instance
is not the problem, as any database in which these TGDs
are applicable will inevitable produce an inconsistent ontol-
ogy. This issue is related to that of unsatisfiability problem
of a concept in an ontology and it is known in the Descrip-
tion Logics community as incoherence (Flouris et al. 2006;

Qi and Hunter 2007). Incoherence can be particularly im-
portant when combining multiple ontologies since the con-
straints imposed by each one of them over the data could
(possibly) represent conflicting modellings of the applica-
tion at hand. Clearly, the notions of incoherence and in-
consistency are highly related; in fact, Flouris et al. (2006)
establish a relation between incoherence and inconsistency,
considering the former as a particular form of the latter.

Our proposed notion of incoherence states that given a
set of incoherent constraints Σ it is not possible to find
a set of atoms D such that KB = (D,Σ) is a consis-
tent ontology and at the same time all TGDs in Σ

T
⊆ Σ

are applicable in D. This means that a Datalog± ontol-
ogy KB can be consistent even if the set of constraints
is incoherent, as long as the database instance does not
make those dependencies applicable. On the other hand, a
Datalog± ontology KB can be inconsistent even when the
set of constraints is coherent. Consider, as an example, the
following KB = ({tall(peter), small(peter)}, {tall(X) ∧
small(X)→ ⊥}), where the (empty) set of dependencies is
trivially coherent; the ontology is, nevertheless, inconsistent.

In the last decades, several approaches to handling in-
consistency were developed in Artificial Intelligence and
Database Theory (e.g., (Konieczny and Pérez 2002; Del-
grande and Jin 2012; Arenas, Bertossi, and Chomicki
1999)). Some of the best known approaches deal with incon-
sistency by removing from the theory atoms, or a combina-
tion of atoms and constraints or rules. A different approach
is to simultaneously consider all possible ways of repairing
the ontology by deleting or adding atoms, as in most ap-
proaches to Consistent Query Answering (Arenas, Bertossi,
and Chomicki 1999) (CQA for short). However, these data-
driven approaches might not be adequate for an incoherent
theory and may produce meaningless results. As we stated
before, an incoherent set Σ renders inconsistent any ontol-
ogy whose database instance is such that the TGDs are ap-
plicable; in particular cases this may lead to the removal of
every single atom in a database instance in an attempt to re-
store consistency, resulting in an ontology without any valu-
able information, when it could be the case that it is the set
of constraints that is ill defined.

Before formalizing the notion of incoherence that we use
in our Datalog± setting we need to identify the set of atoms
relevant to a given set of TGDs. Intuitively, we say that a set
of atoms A is relevant to a set T of TGDs if the atoms in the
set A are such that the application of T over A generates the
atoms that are needed to apply all dependencies in T , i.e.,
A triggers the application of every TGD in T . Formally, the
definition of atom relevancy is as follows:

Definition 1 (Relevant Set of Atoms for a Set of TGDs)
Let R be a relational schema, T be a set of TGDs, and A a
(possibly existentially closed) non-empty set of atoms, both
over R. We say that A is relevant to T iff for all σ ∈ T
of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) it holds that
chase(A, T) |= ∃X∃YΦ(X,Y).

When it is clear from the context, if a singleton set A =
{a} is relevant to T ⊆ Σ

T
we just say that atom a is relevant

to T . The following example illustrates atom relevancy.

Example 2 (Relevant Set of Atoms) Consider the follow-
ing constraints:

Σ
T

= {σ1 : supervises(X,Y)→ supervisor(X),
σ2 : supervisor(X) ∧ take decisions(X)→

leads department(X,D),
σ3 : employee(X)→ works in(X,D)}

First, let us consider the set A1 =
{supervises(walter, jesse), take decisions(walter),
employee(jesse)}. This set is a relevant set of atoms
to the set of constraints Σ

T
= {σ1, σ2, σ3}, since σ1

and σ3 are directly applicable to A1 and σ2 becomes
applicable when we apply σ1 (i.e., the chase entails
the atom supervisor(walter), which together with
take decisions(walter) triggers σ2).

However, the set A2 = {supervises(walter, jesse),
take decisions(gus)} is not relevant to Σ

T
. Note that even

though σ1 is applicable to A2, the TGDs σ2 and σ3 are
never applied in chase(A2,ΣT

), since the atoms in their
bodies are never generated in chase(A2,ΣT

). For instance,
consider the TGD σ2 ∈ Σ

T
. In the chase of Σ

T
over D

we create the atom supervisor(walter), but nevertheless
we still cannot trigger σ2 since we do not have and cannot
generate the atom take decisions(walter), and the atom
take decisions(gus) that is already in A2 does not match
the constant value.

We now present the notion of coherence for Datalog±,
which adapts the one introduced by Flouris et al. for
DLs (Flouris et al. 2006). Our conception of (in)coherence
is based on the notion of satisfiability of a set of TGDs w.r.t.
a set of constraints. Intuitively, a set of dependencies is sat-
isfiable when there is a relevant set of atoms that triggers the
application of all dependencies in the set and does not pro-
duce the violation of any constraint in Σ

NC
∪ Σ

E
, i.e., the

TGDs can be satisfied along with the NCs and EGDs in KB.

Definition 2 (Satisfiability of a set of TGDs w.r.t. a set of
constraints) LetR be a relational schema, T ⊆ Σ

T
be a set

of TGDs, and N ⊆ ΣNC ∪ Σ
E

, both over R. The set T is
satisfiable w.r.t. N iff there is a set A of (possibly existen-
tially closed) atoms overR such that A is relevant to T and
mods(A, T ∪ N) 6= ∅. We say that T is unsatisfiable w.r.t.
N iff T is not satisfiable w.r.t. N . Furthermore, Σ

T
is satis-

fiable w.r.t. Σ
NC
∪ Σ

E
iff there is no T ⊆ Σ

T
such that T is

unsatisfiable w.r.t. some N with N ⊆ Σ
NC
∪ Σ

E
.

In the rest of the paper sometimes we write that a set of
TGDs is (un)satisfiable omitting the set of constraints, we
do this in the context of a particular ontology where we have
a fixed set of constraints ΣNC ∪Σ

E
. Also, through the paper

we denote by U(KB) the set of minimal unsatiasfiable sets
of TGDs in Σ

T
for KB (i.e., unsatisfiable set of TGDs such

that every proper subset of it is satisfiable). The following
example illustrates the concept of satisfiability of a set of
TGDs in a Datalog± ontology

Example 3 (Unsatisfiable sets of dependencies) Consider the
following sets of constraints.
Σ1

NC
= {τ : risky job(P) ∧ unstable(P)→ ⊥}

Σ1
T

= {σ1 : dangerous work(W) ∧ works in(W,P)→

risky job(P),

σ2 : in therapy(P)→ unstable(P)}
The set Σ1

T
is a satisfiable set of TGDs, and even though the

simultaneous application of σ1 and σ2 may violate some
formula in Σ1

NC
∪ Σ1

E
, that does not hold for every relevant

set of atoms. Consider as an example the relevant set D1 =
{dangerous work(police), works in(police,marty),
in therapy(rust)}; D1 is a relevant set for Σ1

T
, however,

as we have that mods(D1,Σ
1
T
∪Σ1

NC
∪Σ1

E
) 6= ∅ then Σ1

T
is

satisfiable.
On the other hand, as an example of unsatisfiability con-

sider the following constraints:

Σ2
NC

= {τ1 : sore throat(X) ∧ can sing(X)→ ⊥}

Σ2
T

= {σ1 : rock singer(X)→ sing loud(X),
σ2 : sing loud(X)→ sore throat(X),
σ3 : rock singer(X)→ can sing(X)}

The set Σ2
T

is an unsatisfiable set of dependencies, as the
application of TGDs {σ1, σ2, σ3} on any relevant set of
atoms will cause the violation of τ1. For instance, consider
the relevant atom rock singer(axl): we have that the ap-
plication of Σ2

T
over {rock singer(axl)} causes the vio-

lation of τ1 when considered together with Σ2
T

, therefore
mods({rock singer(axl)},Σ2

T
∪Σ2

NC
∪Σ2

E
) = ∅. Note that

any set of relevant atoms will cause the violation of τ1.

We are now ready to formally define coherence for a
Datalog± ontology. Intuitively, an ontology is coherent if
there is no subset of their TGDs that is unsatisfiable w.r.t.
the constraints in the ontology.

Definition 3 (Coherence) Let KB = (D,Σ) be a Datalog±
ontology defined over a relational schemaR, and Σ = Σ

T
∪

Σ
E
∪Σ

NC
, where Σ

T
is a set of TGDs, Σ

E
a set of separable

EGDs and Σ
NC

a set of negative constraints. KB is coherent
iff Σ

T
is satisfiable w.r.t. ΣNC ∪ Σ

E
. Also, KB is said to be

incoherent iff it is not coherent.

Example 4 (Coherence) Consider the sets of dependencies
and constraints defined in Example 3 and an arbitrary
database instance D. Clearly, the Datalog± ontology
KB1 = (D,Σ1

T
∪ Σ1

NC
∪ Σ1

E
) is coherent, while KB2 =

(D,Σ2
T
∪ Σ2

NC
∪ Σ2

E
) is incoherent.

Finally, we look deeper into the relation between incoher-
ence and inconsistency. Looking into Definitions 2 and 3 we
can infer that an incoherent KB will induce an inconsistent
KB when the database instance contains any set of atoms
that is relevant to the unsatisfiable sets of TGDs. This result
is captured in the following proposition.

Proposition 1 Let KB = (D,Σ) be a Datalog± ontology
where Σ = Σ

T
∪ Σ

E
∪ ΣNC . If KB is incoherent and there

exists A ⊆ D such that A is relevant to some unsatisfiable
set U ∈ U(KB) then KB = (D,Σ) is inconsistent.

Example 5 (Relating Incoherence and Inconsistency) As an
instance of the relationship expressed in Proposition 1,
consider once again the ontology presented in Example
1. As hinted previously in Example 3, there we have the

set A ⊂ D = {rock singer(axl)} and the unsatisfiable
set of TGDs U ⊂ Σ

T
= {σ1 : rock singer(X) →

sing loud(X), σ2 : sing loud(X)→ sore throat(X), σ4 :
rock singer(X) → can sing(X)}. Since A is relevant to
U the conditions in Proposition 1 are fulfilled, and indeed
the ontology KB = (D,Σ) from Example 1 is inconsistent
since τ1 ∈ Σ

T
is violated.

Incoherence influence on classic
inconsistency-tolerant semantics

We have established the relation between incoherence and
inconsistency. As explained, classic inconsistency-tolerant
techniques do not account for coherence issues since they
assume that such kind of problems will not appear. Never-
theless, if we consider that both components in the ontol-
ogy evolve (perhaps being collaboratively maintained by a
pool of users) then certainly incoherence is prone to arise.
In the following we show that it may be important for
inconsistency-tolerant techniques to consider incoherence in
ontologies as well, since if not treated appropriately an in-
coherent set of TGDs may lead to the trivial solution of re-
moving every single relevant atom in D (which in the worst
case could be the entire database instance). This may be ad-
equate for some particular domains, but does not seem to be
a desirable outcome in the general case.

Although classical query answering in Datalog± is not
tolerant to inconsistency issues, a variety of inconsistency-
tolerant semantics have been developed in the last decade
for ontological languages, including lightweight Descrip-
tion Logics (DLs), such as EL and DL-Lite (Lembo et al.
2010; Bienvenu and Rosati 2013), and several fragments
of Datalog± (Lukasiewicz, Martinez, and Simari 2012). In
this section we analyze how incoherence influence in several
inconsistency-tolerant semantics for ontological languages:
AR semantics (Lembo et al. 2010),CAR semantics (Lembo
et al. 2010), adn provide some insights for sound approxi-
mations of AR and of CAR. We present the basic concepts
needed to understand the different semantics for query an-
swering on Datalog± ontologies and then show how entail-
ment under such semantics behaves in the presence of in-
coherence. The notion of repair in relational databases is a
model of the set of integrity constraints that is maximally
close, i.e., “as close as possible” to the original database.

Depending on how repairs are obtained we can have
different semantics. In the following we recall AR-
semantics (Lembo et al. 2010), one of the most widely ac-
cepted inconsistency-tolerant semantics, along with an alter-
native to AR called CAR-semantics.

AR Semantics. The AR semantics corresponds to the no-
tion of consistent answers in relational databases (Arenas,
Bertossi, and Chomicki 1999). Intuitively, an atom a is said
to be AR-consistently entailed from a Datalog± ontology
KB, denoted KB |=AR a iff a is classically entailed from
every ontology that can be built from every possible A-box
repair (a maximally consistent subset of the D component
that after its application to Σ

T
respects every constraint in

Σ
E
∪ ΣNC). We denote by KB 2AR a the fact that a cannot

beAR-consistently inferred from KB. We extend entailment

to set of atoms straightforwardly, i.e., for a set of atoms A
it holds that KB |=AR A iff for every a ∈ A it holds that
KB |=AR a, and KB 2AR A otherwise.
CAR Semantics. As noted by Lembo et al. (2010), the AR
semantics is not independent from the form of the knowl-
edge base; it is easy to show that given two inconsistent
knowledge bases that are logically equivalent, contrary to
what one would expect, their respective repairs do not coin-
cide. To address this, another definition of repairs was also
proposed by Lembo et al. (2010) that includes knowledge
that comes from the closure of the database instance with
respect to the set of TGDs. Since the closure of an incon-
sistent ontology yields the whole language, they define the
consistent closure of an ontology KB = (D,Σ

T
∪Σ

E
∪ΣNC)

as the set CCL(KB) = {α | α ∈ H(LR) s.t. ∃S ⊆
D and mods(S,Σ

T
∪Σ

E
∪ΣNC) 6= ∅ and (S,ΣT) |= α}. A

Closed ABox repair of a Datalog± ontology KB is a consis-
tent subset D′ of CCL(KB) such that it maximally preserves
the database instance (Lembo et al. 2010). It is said that an
atom a is CAR-consistently entailed from a Datalog± on-
tology KB, denoted by KB |=CAR a iff a is classically en-
tailed from every ontology built from each possible closed
ABox repair. We extend entailment to set of atoms straight-
forwardly, i.e., for a set of atomsA it holds that KB |=CAR A
iff for every a ∈ A it holds that KB |=CAR a, and KB 2CAR

A otherwise.

Incoherence has great influence when calculating repairs,
as can be seen in the following result: independently of the
semantics (i.e., AR or CAR) no atom that is relevant to an
unsatisfiable set of TGDs belongs to a repair of an incoher-
ent KB.

Lemma 1 Let KB = (D,Σ) be an incoherent Datalog±
ontology where Σ = Σ

T
∪ Σ

E
∪ ΣNC and R(KB) be the

set of (A-Box or Closed A-Box) repairs of KB. If A ⊆ D is
relevant to some unsatisfiable set U ∈ U(KB) then A * R
for every R ∈ R(KB).

The proof of Lemma 1 follows from Proposition 1, since
any set of atoms relevant to an unsatisfiable set of TGDs will
be conflictive with Σ

NC
∪ Σ

E
, thus not qualifying to be part

of a proper repair.

Example 6 Consider the atom rock singer(axl) from the
ontology presented in Example 1. As we have explained in
Example 5, such atom is relevant to U ⊂ Σ

T
= {σ1 :

rock singer(X) → sing loud(X), σ2 : sing loud(X) →
sore throat(X), σ4 : rock singer(X)→ can sing(X)}.

It is easy to show that as a result of this the atom does
not belong to any A-Box or Closed A-Box repair. Con-
sider the case of A-Box repairs. We have that they are max-
imally consistent subsets of the component D. We have
that mods(rock singer(axl),Σ) = ∅, as the NC τ1 :
sore throat(X) ∧ can sing(X) → ⊥ is violated. More-
over, clearly this violation happens for every set A ⊆ D
such that rock singer(axl) ∈ A, and thus we have that
mods(A,Σ) = ∅, i.e., rock singer(axl) cannot be part of
any A-Box repair for the KB.

In an analogous way we can show that for any
D′ ⊆ D such that mods(D′,Σ) 6= ∅ it holds that

(D′,ΣT) 6|= rock singer(axl), and thus it holds that
rock singer(axl) /∈ CCL(KB). Then, since Closed A-Box
repairs are subsets of CCL(KB) it cannot happen that
rock singer(axl) belongs to any of these repairs.

Then, from Lemma 1 follows that every atom that is
relevant to an unsatisfiable set of TGDs cannot be AR-
consistently (resp, CAR-consistently) entailed.

Proposition 2 Let KB = (D,Σ) be an incoherent
Datalog± ontology where Σ = Σ

T
∪Σ

E
∪ΣNC . IfA ⊆ D is

relevant to some unsatisfiable set U ⊆ Σ
T

then KB 2AR A
and KB 2CAR A.

The proof follows from Lemma 1: since a relevant set of
atoms does not belong to any repair then it cannot be part of
the answers of the AR and CAR semantics. As a corollary,
in the limit case that every atom in the database instance
is relevant to some unsatisfiable subset of the TGDs in the
ontology then the set of AR-answers (resp, CAR-answers)
is empty.

Corollary 1 Let KB = (D,Σ) be an incoherent Datalog±
ontology where Σ = Σ

T
∪ Σ

E
∪ ΣNC , and let AAR

and ACAR be the set of atoms AR-consistently and CAR-
consistenly entailed from KB, respectively. If for every a ∈
D there exists A ⊆ D such that a ∈ A and A is a minimal
set of TGDs relevant to some U ∈ U(KB) then AAR = ∅
and ACAR = ∅.

Since they follow from Proposition 1, both Proposition 2
and Corollary 1 can be straightforwardly extended to other
repair based inconsistency-tolerant semantics such as ICAR
and ICR (Lembo et al. 2010).

Example 7 Consider once again KB in Example 1, and
the atom a2 : rock singer(axl) in D. Such atom is
relevant to the unsatisfiable set U ⊂ Σ

T
= {σ1 :

rock singer(X) → sing loud(X), σ2 : sing loud(X) →
sore throat(X), σ4 : rock singer(X) → can sing(X)},
and indeed it holds that KB 2AR rock singer(axl) and
KB 2CAR rock singer(axl). As explained in Example 6,
this is because rock singer(axl) cannot belong to any re-
pair since its consistent application to Σ is not feasible, i.e.,
mods((rock singer(axl),Σ)) = ∅.

Incoherency-tolerant semantics
We have shown how incoherence affects classic
inconsistency-tolerant semantics up to the point of not
returning any meaningful answer (since they were not
develop to consider such kind of issues). In this section we
propose the notion of tolerance to incoherence for query
answering semantics. Such semantics will allow to be able
to obtain useful answers from incoherent ontologies. We
continue this section by showing an alternative semantics
for Datalog± based on the use of argumentative inference
that is tolerant to incoherence. For the elements of argu-
mentation we refer the reader to (Besnard and Hunter 2008;
Rahwan and Simari 2009).

Definition 4 (Incoherence-tolerant semantics) Let KB =
(D,Σ) be a Datalog± ontology where Σ = Σ

T
∪ Σ

E
∪

Σ
NC

. A query answering semantics S is said to be tolerant to

incoherence (or incoherency-tolerant) iff there existsA ⊆ D
and U ∈ U(KB) such that A is relevant to U and it holds
that KB |=S A.

Intuitively, a query answering semantics is tolerant to in-
coherence if it can entail atoms that trigger incoherent sets
of TGDs as answers. Clearly, from Proposition 2 it follows
that inconsistency-tolerant semantics based on repairs are
not tolerant to incoherence.

Observation 1 AR and CAR semantics are not
incoherency-tolerant semantics.

An Incoherency-tolerant Semantics via
Argumentative Inference
We begin by recalling Defeasible Datalog± (for the inter-
ested reader, a more complete presentation of the framework
can be found in (Martinez et al. 2014)), and then we move
on to show the behaviour of this semantics in the presence
of incoherence.

Defeasible Datalog± (Martinez et al. 2014) is a varia-
tion of Datalog± that enables argumentative reasoning in
Datalog± by means of transforming the information en-
coded in a KB to represent statements whose acceptance can
be challenged. To do this, a Datalog± ontology is extended
with a set of em defeasible atoms and defeasible TGDs; thus,
a Defeasible Datalog± ontology contains both (classical)
strict knowledge and defeasible knowldge. The set of defea-
sible TGDs allows to express weaker connections between
pieces of information than in a classical TGDs. Defeasible
TGDs are rules of the form Υ(X,Y) �–∃ZΨ(X, Z), where
Υ(X,Y) and Ψ(X, Z) are conjunctions of atoms. As in
DeLP’s defeasible rules (Garcı́a and Simari 2004), defeasi-
ble TGDs are used to represent weaker connections between
the body and the head of a rule. Defeasible TGDs are writ-
ten using the symbol “ �– ”, while the classical (right) arrow
“→” is reserved to strict TGDs and NCs.

Defeasible Datalog± Ontologies. A defeasible Datalog±
ontology KB consists of a finite set F of ground atoms,
called facts, a finite set D of defeasible atoms, a finite set
of TGDs ΣT , a finite set of defeasible TGDs ΣD, and a fi-
nite set of binary constraints Σ

E
∪ Σ

NC
.

The following example shows a defeasible Datalog± on-
tology that encodes the knowledge from Example 1 chang-
ing some of the facts and TGDs to defeasible ones.
Example 8 The information from the ontology
presented in Example 1 can be better repre-
sented by the following defeasible Datalog± on-
tology KB = (F,D, Σ′T , ΣD,ΣNC), where F =
{can sing(simone), rock singer(axl), sing loud(ronnie),
has fans(ronnie)} and D = {manage(band1 , richard)}.
Note that we have changed the fact stating that richard
manages band1 to a defeasible one, since reports indicates
that the members of band1 are looking for a new manager.
The sets of TGDs, and defeasible TGDs are now given
by the following sets; note that we have changed some
of the TGDs into defeasible TGDs to make clear that the
connection between the head and body is weaker.

ΣT ′ = {sing loud(X)→ sore throat(X),
rock singer(X)→ can sing(X)

ΣD = {rock singer(X) �– sing loud(X),
has fans(X) �– famous(X)}

Derivations from a defeasible Datalog± ontology rely in
the application of (strict or defeasible) TGDs. Given a de-
feasible Datalog± ontology KB = (F,D,ΣT ,ΣD,ΣNC),
a (strict or defeasible) TGD σ is applicable if there exist a
homomorphism mapping the atoms in the body of σ into
F ∪ D. The application of σ on KB generates a new atom
from the head of σ if it is not already in F ∪D, in the same
way as explained in the preliminaries of this work.

The following definitions follow similar ones first intro-
duced by Martinez et al. (2012). Here we adapt the notions
to defeasible Datalog± ontologies. An atom has a deriva-
tion from a KB iff there is a finite sequence of applications
of (strict or defeasible) TGDs that has the atom as its last
component.

Definition 5 Let KB = (F,D,ΣT ,ΣD,ΣNC) be a defea-
sible Datalog± ontology and L an atom. An annotated
derivation ∂ of L from KB consists of a finite sequence
[R1, R2, . . . , Rn] such that Rn is L, and each atom Ri is
either: (i) Ri is a fact or defeasible atom, i.e., Ri ∈ F ∪D,
or (ii) there exists a TGD σ ∈ ΣT ∪ ΣD and a homomor-
phism h such that h(head(σ)) = Ri and σ is applicable to
the set of all atoms and defeasible atoms that appear before
Ri in the sequence. When no defeasible atoms and no defea-
sible TGDs are used in a derivation, we say the derivation is
a strict derivation, otherwise it is a defeasible derivation.

Note that there is non-determinism in the order in which the
elements in a derivation appear; TGDs (strict and defeasi-
ble) can be reordered, and facts and defeasible atoms could
be added at any point in the sequence before they are needed
to satisfy the body of a TGD. These syntactically distinct
derivations are, however, equivalent for our purposes. It is
possible to introduce a canonical form for representing them
and adopt that canonical form as the representative of all
of them. For instance, we might endow the elements of the
program from which the derivation is produced with a to-
tal order; thus, it is possible to select one derivation from
the set of all the derivations of a given literal that involve
the same elements by lexicographically ordering these se-
quences. When no confusion is possible, we assume that a
unique selection has been made.

We say that an atom a is strictly derived from KB iff
there exists a strict derivation for a from KB, denoted with
KB ` a, and a is defeasibly derived fromKB iff there exists
a defeasible derivation for a from KB and no strict derivation
exists, denoted with KB∼ a. . A derivation ∂ for a is minimal
if no proper sub-derivation ∂′ of ∂ (every member of ∂′ is a
member of ∂) is also an annotated derivation of a. Consid-
ering minimal derivations in a defeasible derivation avoids
the insertion of unnecessary elements that will weaken its
ability to support the conclusion by possibly introducing un-
necessary points of conflict. Given a derivation ∂ for a, there
exists at least one minimal sub-derivation ∂′ ⊆ ∂ for an atom
a. Thus, through the paper we only consider minimal deriva-
tions (Martinez et al. 2014).

Example 9 From the defeasible Datalog± ontology in
Example 8, we can get the following (minimal) annotated
derivation for atom sore throat(axl):

∂ =
[
rock singer(axl),

rock singer(X) �– sing loud(X),
sing loud(axl),

sing loud(X)→ sore throat(X),
sore throat(axl)

]
Then, we have that KB ` rock singer(axl) and that
KB ∼sore throat(axl).

Classical query answering in defeasible Datalog± ontolo-
gies is equivalent to query answering in Datalog± ontolo-
gies.

Proposition 3 ((Martinez et al. 2014)) Let L be a ground
atom, KB = (F,D,ΣT ,ΣD,ΣNC) be a defeasible Datalog±
ontology, KB′ = (F ∪ D,Σ′T ∪ ΣNC) is a classical
Datalog± ontology where Σ′T = ΣT ∪ {Υ(X,Y) →
∃ZΨ(X,Z) |Υ(X,Y) �–∃ZΨ(X,Z)}. Then, KB′ |= L iff
KB ` L or KB ∼L.

Proposition 3 states the equivalence between derivations
from defeasible Datalog± ontologies and entailment in tra-
ditional Datalog± ontologies whose database instance cor-
responds to the union of facts and defeasible atoms, and the
set of TGDs corresponds to the union of the TGDs and the
strict version of the defeasible TGDs. As a direct conse-
quence, all the existing work done for Datalog± directly ap-
plies to defeasible Datalog±. In particular, it is easy to spec-
ify a defeasible Chase procedure over defeasible Datalog±
ontologies, based on the revised notion of application of (de-
feasible) TGDs, whose result is a universal model. There-
fore, a (B)CQ Q over a defeasible Datalog± ontology can
be evaluated by verifying that Q is a classical consequence
of the chase obtained from the defeasible Datalog± ontol-
ogy.

Argumentation-based Reasoning in Defeasible Datalog±
Conflicts in defeasible Datalog± ontologies come, as in
classical Datalog±, from the violation of NCs or EGDs. In-
tuitively, two atoms are in conflict relative to a defeasible
Datalog± ontology whenever they are both derived from the
ontology (either strictly or defeasible) and together map to
the body of a negative constraint or they violate an equality-
generating dependency.

Definition 6 Given a set of NCs ΣNC and a set of non-
conflicting EGDs Σ

E
, two ground atoms (possibly with

nulls) a and b are said to be in conflict relative to Σ
E
∪ Σ

NC

iff there exists an homomorphism h such that h(body(υ)) =
a ∧ b for some υ ∈ Σ

NC
or h(Xi) 6= h(Yj) for some ν ∈ Σ

E

where h(Xi) is a term in a and h(Yj) is a term in b.

In what follows, we say that a set of atoms is a conflicting set
of atoms relative to Σ

E
∪Σ

NC
if and only if there exist at least

two atoms in the set that are in conflict relative to Σ
E
∪Σ

NC
,

otherwise will be called non-conflicting. Whenever is clear
from the context we omit the set of NCs and EGDs.

Example 10 Consider the NC {sore throat(X) ∧
can sing(X) → ⊥} in ΣNC from the defeasible on-
tology in Example 8. In this case, the set of atoms
{sore throat(axl), can sing(axl)} is a conflicting set
relative to ΣNC. However, this is not the case for the set
S = {rock singer(axl)}: even when such set generates
a violation when applied to the set of TGDs, it is not
conflicting in itself.

Whenever defeasible derivations of conflicting atoms ex-
ist, we use a dialectical process to decide which informa-
tion prevails, i.e., which piece of information is such that no
acceptable reasons can be put forward against it. Reasons
are supported by arguments; an argument is an structure that
supports a claim from evidence through the use of a rea-
soning mechanism. We maintain the intuition that led to the
classic definition of arguments by Simari and Loui (1992),
as shown in the following definition.

Definition 7 Let KB be a defeasible Datalog± ontology and
L a ground atom. A set A of facts, defeasible atoms, TGDs,
and defeasible TGDs used in an annotated derivation ∂ of
L is an argument for L constructed from KB iff ∂ is a ⊆-
minimal derivation and no conflicting atoms can be defeasi-
ble derived from A ∪ ΣT . An argument A for L is denoted
〈A, L〉, and AKB will be the set of all arguments that can be
built from KB.

Example 11 Consider the derivation ∂ in Example 9. We
have that 〈sore throat(axl), ∂〉 is an argument in AKB. Fig-
ure 1 shows the argument.

Figure 1: An argument for sore throat(axl).

Answers to atomic queries are supported by arguments
built from the ontology. However, it is possible to build ar-
guments for conflicting atoms, and so arguments can at-
tack each other. We now adopt the definitions of counter-
argument and attacks for defeasible Datalog± ontologies
from (Garcı́a and Simari 2004). First, an argument 〈B, L′〉
is a sub-argument of 〈A, L〉 if B ⊆ A. Argument 〈A1, L1〉
counter-argues, rebuts, or attacks 〈A2, L2〉 at literal L, iff
there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that L
and L1 conflict.

Example 12 Consider derivation ∂ from Example 9 and let
A be the set of (defeasible) atoms and (defeasible) TGDs
used in ∂. A is an argument for sore throat(axl). Also,
we can obtain a minimal derivation ∂′ for can sing(axl)
where B, the set of (defeasible) atoms and (defea-
sible) TGDs used in ∂′, is such that no conflict-
ing atoms can be defeasibly derived from B ∪ ΣT .

As {sore throat(axl), can sing(axl)} is conflicting rel-
ative to ΣNC , we have that 〈A, sore throat(axl)〉 and
〈B, can sing(axl)〉 attack each other.

Figure 2: Attack between arguments.

Once the attack relation is established between argu-
ments, it is necessary to analyze whether the attack is strong
enough so one of the arguments can defeat the other. Given
an argument A and a counter-argument B, a comparison
criterion is used to determine if B is preferred to A and,
therefore, defeats A. For our defeasible Datalog± frame-
work, unless otherwise stated, we assume an arbitrary pref-
erence criterion � among arguments where A � B means
that B is preferred to A and thus defeats it. More properly,
given two arguments 〈A1, L1〉 and 〈A2, L2〉 we say that
argument 〈A1, L1〉 is a defeater of 〈A2, L2〉 iff there ex-
ists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that 〈A1, L1〉
counter-argues 〈A, L〉 at L, and either 〈A1, L1〉 � 〈A, L〉
(it is a proper defeater) or 〈A1, L1〉 6� 〈A, L〉, and 〈A, L〉 6�
〈A1, L1〉 (it is a blocking defeater).

Finally, the combination of arguments, attacks and com-
parison criteria gives raise to Datalog± argumentation
frameworks.

Definition 8 Given a Defeasible Datalog± ontology KB de-
fined over a relational schemaR, a Datalog± argumentation
framework F is a tuple 〈LR,AKB,�〉, where � specifies a
preference relation defined over AKB.

To decide whether an argument 〈A0, L0〉 is undefeated
within a Datalog± argumentation framework, all its de-
featers must be considered, and there may exist defeaters for
their counter-arguments as well, giving raise to argumen-
tation lines. The dialectical process considers all possible
admissible argumentation lines for an argument, which to-
gether form a dialectical tree. An argument line for 〈A0, L0〉
is defined as a sequence of arguments that starts at 〈A0, L0〉,
and every element in the sequence is a defeater of its pre-
decessor in the line (Garcı́a and Simari 2004). Note that for
defeasible Datalog± ontologies arguments in an argumenta-
tion line can contain both facts and defeasible atoms.

Different argumentation systems can be defined by set-
ting a particular criterion for proper attack or defining the
admissibility of argumentation lines. Here, we adopt the one

from (Garcı́a and Simari 2004), which states that an argu-
mentation line has to be finite, and no argument is a sub-
argument of an argument used earlier in the line; further-
more, when an argument 〈Ai, Li〉 is used as a blocking de-
feater for 〈Ai−1, Li−1〉 during the construction of an argu-
mentation line, only a proper defeater can be used for de-
feating 〈Ai, Li〉.

The dialectical process considers all possible admissible
argumentation lines for an argument, which together form a
dialectical tree. Dialectical trees for defeasible Datalog± on-
tologies are defined following (Garcı́a and Simari 2004), and
we adopt the notion of coherent dialectical tree from (Mar-
tinez, Garcı́a, and Simari 2012), which ensures that the use
of defeasible atoms is coherent in the sense that conflict-
ing defeasible atoms are not used together in supporting (or
attacking) a claim. We denote with Args(T) the set of argu-
ments in T .
Definition 9 Let 〈A0, L0〉 be an argument from a Datalog±
argumentation framework F. A dialectical tree for 〈A0, L0〉
from F, denoted T (〈A0, L0〉), is defined as follows:
(1) The root of the tree is labeled with 〈A0, L0〉.
(2) Let N be a non-root node of the tree that is labeled
〈An, Ln〉, and C = [〈A0, L0〉, 〈A1, L1〉, . . . , 〈An, Ln〉]
be the sequence of labels of the path from the root to
N . Let 〈B1, Q1〉, 〈B2, Q2〉, . . . , 〈Bk, Qk〉 be all the de-
featers for 〈An, Ln〉. For each defeater 〈Bi, Qi〉(1 ≤
i ≤ k), such that the argumentation line C ′ =
[〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, . . . , 〈An, Ln〉, 〈Bi, Qi〉] is
admissible, the node N has a child Ni labeled 〈Bi, Qi〉. If
there is no defeater for 〈An, Ln〉 or there is no 〈Bi, Qi〉 such
that C ′ is admissible, then N is a leaf.

Argument evaluation, i.e., determining whether the root
node of the tree is defeated or undefeated, is done by means
of a marking or labelling criterion. Each node in an ar-
gument tree is labelled as either defeated (D) or unde-
feated (U). We denote the dialectical tree built for the ar-
gument A supporting claim L as T (〈A, L〉), Args(T) the
set of arguments in T , and the root of T (〈A, L〉) with
root(T (〈A, L〉)). Also, marking(N), where N is a node in
a dialectical tree, denotes the value of the marking for node
N (either U or D). Deciding whether a node is defeated or
undefeated depends on whether or not all its children are de-
feated: (1) if node N is a leaf then marking(N) = U , (2)
node N is such that marking(N) = D iff at least one of its
children that is marked with U , and (3) node N is such that
marking(N) = U iff all its children are marked with D.

By means of the marking procedure we can define when
an atom is warranted in the argumentation framework.
Definition 10 Let KB be a Defeasible Datalog± on-
tology and F the corresponding Datalog± argumenta-
tion framework where �∈ F is an arbitrary argument
comparison criterion. An atom L is warranted in F
(through T) iff there exists an argument 〈A, L〉 such that
marking(root(T (〈A, L〉))) = U . We say that L is entailed
from KB (through F), denoted with KB |=F L, iff it is war-
ranted in F.
Example 13 Suppose that we have the query Q =
can sing(axl), i.e., we want to know whether or not Axl

can sing. Consider the conflict between arguments A and B
shown in Example 12. As we have stated, we do not define
any particular criterion� to solve attacks. Nevertheless, for
the sake of example assume now that we are indeed using a
criterion� that is such that B � A. Under such supposition
we have the labelled dialectical tree shown in Figure 3.

Figure 3: A labelled dialectical tree for atom can sing(axl).

As can be seen in the dialectical tree, if we assume that
B � A then we have reasons to think that Axl cannot sing
due to its throat being sore.

In Definition 10 we specify a semantics based on the
use of argumentative inference. From now on we denote
such semantics as D2 (Defeasible Datalog±). Such seman-
tics relies on the transformation of classic Datalog± ontolo-
gies to defeasible ones and then obtaining answers from the
transformed one. So, we begin by establishing how a clas-
sic Datalog± ontology can be transformed to a defeasible
one. Intuitively, the transformation of a classic ontology to a
defeasible one involves transforming every atom and every
TGD in the classic ontology to its defeasible version.

Definition 11 (Transformation between ontologies)
Let KB = (D,Σ

T
∪ Σ

E
∪ Σ

NC
) be a classic Datalog±

ontology. Then, its transformation to a defeasible Datalog±
ontology, denoted D(KB), is a defeasible ontology
KB′ = (F,D′,Σ′

T
,Σ

D
,Σ

E
∪ ΣNC) where F = ∅, D′ = D,

Σ′
T

= ∅ and Σ
D

= {Υ(X,Y) �–∃ZΨ(X,Z) |Υ(X,Y)→
∃ZΨ(X,Z)}.

Next, we define the set of answers in D2 for an atomic
query. Intuitively, a literal is an answer for a classical
Datalog± ontology KB under the D2 semantics iff it is war-
ranted in the transformation of KB to a defeasible one.

Definition 12 (Answers in D2) Let KB be a Datalog± on-
tology, KB′ = D(KB) its defeasible transformation, Q a
query and � a comparison criterion. Then, an atom L is
an answer for Q from KB under D2, denoted KB �D2

�
L, iff

KB′ |=F L where F = 〈LR,AKB′ ,�〉.
Note that the semantics is parametrized by the comparison

criterion �, which helps to solve conflicts when they arise.

Influence of incoherence in Defeasible Datalog±

Now, we focus on the behaviour of Defeasible Datalog±
regarding atoms relevant to unsatisfiable sets of TGDs.
It can be shown that the argumentation framework F =
〈LR,AD(KB),�〉 is such that one relevant atom L to
an unsatisfiable set is warranted (and thus an answer),
provided that the comparison criterion � is such that
marking(root(TF(〈A, L〉))) = U for some dialectical tree
TF(〈A, L〉) built upon F. It is interesting to see that such
comparison criterion can always be found: intuitively, it suf-
fices to arbitrary establish A as the most preferred argument
in AD(KB) (note however that other criteria can have the ex-
act same result).

Proposition 4 Let KB be a Datalog± ontology defined over
a relational schema R, and KB′ be a Defeasible Datalog±
ontology such that D(KB) = KB′. Finally, let L ∈ D and
U ∈ U(KB) such that L is relevant to U . Then, it holds that
there exists � such that KB �D2

�
L.

Corollary 2 (Corollary from Proposition 4) Given a
Datalog± ontology KB there exists � such that D2

� applied
to KB is tolerant to incoherence.

As an example of the above corollary, consider again the
running example.

Example 14 Let KB′ = D(KB) be the defeasi-
ble transformation of KB in Example 1, where the
sets Σ

E
and ΣNC are the same, F = ∅, D =

{can sing(simone), rock singer(axl), sing loud(ronnie),
has fans(ronnie),manage(band1 , richard)}, and
Σ

D
= {rock singer(X) �– sing loud(X),

sing loud(X) �– sore throat(X),
has fans(X) �– famous(X),
rock singer(X) �– can sing(X)}

Here, we have the dialectical tree with argument
〈
[
rock singer(axl)

]
, rock singer(axl)〉 as its undefeated

root, since no counterargument for it can be built (Figure 4).

Figure 4: A labelled dialectical tree for atom
rock singer(axl).

Then, clearly KB′ |=F rock singer(axl), and thus
KB �D2

�
rock singer(axl).

Note that in Example 14 the atom rock singer(axl) is
warranted under any criterion comparison �, and thus we
have not needed to perform any restriction on the criterion.

Conclusions
Incoherence is an important problem in knowledge repre-
sentation and reasoning, specially when integrating different

sources of information. Nevertheless, most of the works in
query answering for Datalog± ontologies and DLs have fo-
cused on consistency issues making the assumption that the
set of constraints correctly represents the semantics of the
data and therefore any conflict can only come from the data
itself.

In this work we have introduced the concept of incoher-
ence for Datalog± ontologies, relating it to the presence of
sets of TGDs such that their application inevitably yield to
violations in the set of negative constraints and equality-
generating dependencies. We have shown how incoherence
affects classic inconsistency-tolerant semantics to the point
that for some incoherent ontologies these semantics may
produce no useful answer. Finally, we have introduced the
concept of incoherency-tolerant semantics, and shown a par-
ticular semantics satisfying that property. Nevertheless, it
is important to remark that our definition of incoherency-
tolerant semantics is not tied to our particular proposal or
the Datalog± language, and that there exists other frame-
works that also falls under our definition, as it is the case of
the work (also argumentation-based) by Black et al. (2009)
where dialogue games between agents are used to solve
queries under Description Logics ontologies that can be in-
coherent.

References
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In Proc. of
PODS, 68–79.
Besnard, P., and Hunter, A. 2008. Elements of Argumenta-
tion. MIT Press.
Bienvenu, M., and Rosati, R. 2013. Tractable approxi-
mations of consistent query answering for robust ontology-
based data access. In Proc. of IJCAI.
Bienvenu, M. 2012. On the complexity of consistent query
answering in the presence of simple ontologies. In Proc. of
AAAI.
Black, E.; Hunter, A.; and Pan, J. Z. 2009. An argument-
based approach to using multiple ontologies. In SUM, 68–
79.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012a. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. In J. Web Sem., volume 14, 57–83.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012b. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. J. of Web Semant. 14:57–83.
Calı̀, A.; Lembo, D.; and Rosati, R. 2003. On the decid-
ability and complexity of query answering over inconsistent
and incomplete databases. In Proc. of PODS 2003, 260–271.
ACM.
Delgrande, J. P., and Jin, Y. 2012. Parallel belief revision:
Revising by sets of formulas. Artif. Intell. 176(1):2223–
2245.
Flouris, G.; Huang, Z.; Pan, J. Z.; Plexousakis, D.; and
Wache, H. 2006. Inconsistencies, negations and changes
in ontologies. In AAAI, 1295–1300. AAAI Press.

Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. TPLP 4(1-2):95–
138.
Konieczny, S., and Pérez, R. P. 2002. Merging information
under constraints: A logical framework. J. Log. Comput.
12(5):773–808.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2010. Inconsistency-tolerant semantics for description
logics. In Proc. of RR, 103–117.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2012.
Inconsistency handling in Datalog+/– ontologies. In Proc.
of ECAI, 558–563.
Martinez, M. V.; Deagustini, C. A. D.; Falappa, M. A.; and
Simari, G. R. 2014. Inconsistency-tolerant reasoning in
datalog± ontologies via an argumentative semantics. In
proc. of IBERAMIA 2014, 15–27.
Martinez, M. V.; Garcı́a, A. J.; and Simari, G. R. 2012. On
the use of presumptions in structured defeasible reasoning.
In Proc. of COMMA, 185–196.
Qi, G., and Hunter, A. 2007. Measuring incoherence in
description logic-based ontologies. In ISWC/ASWC, 381–
394.
Rahwan, I., and Simari, G. R. 2009. Argumentation in Arti-
ficial Intelligence. Springer.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Artif.
Intell. 53(2-3):125–157.

