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Abstract

This short paper studies the problem of merging of differ-
ent independent data sources linked to a lightweight ontol-
ogy under the incommensurability assumption. In general,
data are often provided by several and potentially conflicting
sources of information having different levels of priority. To
encode prioritized assertional bases, we use possibilistic DL-
Lite logic. We investigate an egalitarist merging strategy that
minimize dissatisfaction between the source involved in the
merging process. We provide a safe way to merge incom-
mensurable possibilistic DL-Lite assertional bases using the
notion of compatible scales.

Introduction
Description Logics (DLs) are a well-known family of logic-
based formalisms used to represent knowledge of a partic-
ular domain and make it available for reasoning. DLs are
recognized as powerful frameworks that support ontologies.
A DL knowledge base is formed by a terminological base,
called TBox, and an assertional base, called ABox. The
TBox contains intentional (or generic) knowledge of the ap-
plication domain whereas the ABox stores data (individuals
or constants) that instantiate terminological knowledge.

In the last years, there has been an increasingly interest
in Ontology-based Data Access (OBDA) that studies how to
query a set of data linked to a unified TBox (ontology). A
lot of attention was given to DL-Lite, a family of lightweight
DLs specifically dedicated for applications that use huge
volumes of data, in which query answering is the most im-
portant reasoning task. DL-Lite offers a very low computa-
tional complexity for the reasoning process.

In many applications, data are often provided by several
and potentially conflicting sources having different relia-
bility levels. Moreover, a given source may provide dif-
ferent sets of uncertain data with different confidence lev-
els. In such situation, there are two main attitudes that
may be followed: the first attitude consists first in gath-
ering sets of assertions provided by each sources which
gives generally an inconsistent (prioritized or flat) asser-
tional base and then coping with inconsistencies when per-
forming inference using different inconsistency-tolerant in-
ference strategies (e.g. (Lembo et al. 2010; Bienvenu 2012;
Bienvenu and Rosati 2013)). The second one consists in

merging the assertional bases using some aggregation strate-
gies.

Knowledge bases merging or belief merging (e.g. (Bloch
et al. 2001; Konieczny and Pérez 2002)), is a problem
largely studied within the propositional logic setting. It fo-
cuses on aggregating pieces of information issued from dis-
tinct, and may be conflicting or inconsistent, sources in or-
der to obtain a unified point of view by taking advantage
of pieces of information provided by each source. Sev-
eral merging approaches have been proposed which depend
on the nature and the representation of knowledge such as
merging propositional knowledge bases (e.g. (Konieczny
and Pérez 2002)), prioritized knowledge bases (e.g. (Del-
grande, Dubois, and Lang 2006)) or weighted logical knowl-
edge bases (e.g. (Benferhat, Dubois, and Prade 1997)). Re-
cently, some works (e.g. (Noy and Musen 2000; Kotis,
Vouros, and Stergiou 2006; Moguillansky and Falappa 2007;
Cóbe, Resina, and Wassermann 2013)), have proposed to
merge ontologies.

In (Benferhat, Bouraoui, and Loukil 2013), the authors
study the counterpart of the min-based merging (Benfer-
hat, Dubois, and Prade 1997) when uncertain pieces of in-
formation are represented by a possibilistic DL-Lite knowl-
edge base. The min-based merging operator, well-known as
idempotent conjunctive operator, is suitable when sources
are assumed to be dependent. In (Benferhat et al. 2014),
a min-based merging operator based on conflict resolution
is proposed to merge uncertain DL-Lite assertional bases
linked to the same terminological base (i.e. a TBox) seen
as merging integrity constraints.

This paper goes one step further by extending the min-
based possibilistic merging operator in the case where un-
certainty scales used by different sources are incommensu-
rable. We will follow the idea of egalitarist merging operator
proposed in (Benferhat, Lagrue, and Rossit 2007) based on
the concept of comparable scales. In this paper, we assume
that the TBox is coherent and fully certain and only asser-
tional facts (ABoxes) issued from distinct sources may be
somewhat certain.

A compatible scale is a re-assignment of certainty degrees
to assertional facts such that the initial plausibility order-
ing inside each ABox (source) is preserved. We show, in
particular, that merging a set of ABoxes under incommen-
surable assumption comes down to apply min-based possi-



bilistic merging of ABox with respect to each compatible
scale.

The rest of the paper is organized as follows: Section 2
gives brief preliminaries on DL-Lite. Section 3 recalls DL-
Liteπ an extension of DL-Lite within a possibility theory
setting. Section 4 investigates min-based merging of multi-
ple and uncertain DL-Lite ABoxs under the incommensura-
bility assumption. Section 5 concludes the paper.

A brief refresh on DL-Lite
For the sake of simplicity, we only present DL-Litecore
the core fragment of all the DL-Lite family (Calvanese et
al. 2007) and we will simply use DL-Lite instead of DL-
Litecore. However, results of this paper are valid for DL-
LiteR and DL-LiteF , two important members of the DL-
Lite family. The DL-Lite language is defined as follows:

R −→ P |P− B −→ A|∃R C −→ B|¬B
where A is an atomic concept, P is an atomic role and

P− is the inverse of P . B (resp. C) is called basic (resp.
complex) concept and role R is called basic role. A DL-Lite
knowledge base (knowledge base) is a pairK=〈T ,A〉where
T is the TBox and A is the ABox. The TBox T includes a
finite set of inclusion assertions of the form B v C where
B and C are concepts. The ABox A contains a finite set
of assertions on atomic concepts and roles of the form A(a)
and P (a, b) where a and b are two individuals.

The semantics of a DL-Lite knowledge base is given in
term of interpretations. An interpretation I = (∆I , .I) con-
sists of a non-empty domain ∆I and an interpretation func-
tion .I that maps each individual a to aI ∈ ∆I , each A to
AI ⊆ ∆I and each role P to P I ⊆ ∆I×∆I . Furthermore,
the interpretation function .I is extended in a straightforward
way for complex concepts and roles: (¬B)I = ∆I \ BI ,
(P−)I = {(y, x)|(x, y) ∈ P I} and (∃R)I = {x|∃y s.t.
(x, y) ∈ RI}. An interpretation I is said to be a model
of a concept inclusion axiom, denoted by I |= B v C, iff
BI ⊆ CI . Similarly, we say that I satisfies a concept (resp.
role) assertion, denoted by I |= A(a) (resp. I |= P (a, b)),
iff aI ∈AI (resp. (aI , bI) ∈ P I).

An interpretation I is said to be a model of K=〈T ,A〉,
denoted by I |= K, iff I |= T and I |= A where I |= T
(resp. I |= A) means that I is a model of all axioms in T
(resp. A). A knowledge base K is said to be consistent if it
admits at least one model, otherwise K is said to be incon-
sistent. A DL-Lite TBox T is said to be incoherent if there
exists at least a concept C such that for each interpretation
I which is a model of T , we have CI=∅. Note that within a
DL-Lite setting, the inconsistency problem is always defined
with respect to some ABox since a TBox may be incoherent
but never inconsistent.

Possibilistic DL-Lite
In this section, we recall the main notions of possibilistic
DL-Lite framework (Benferhat and Bouraoui 2013), denoted
by DL-Liteπ , as an adaptation of DL-Lite within a possibil-
ity theory setting (Dubois and Prade 1988). DL-Liteπ pro-
vides an excellent mechanism to deal with uncertainty and to

ensure reasoning under inconsistency while keeping a com-
putational complexity identical to the one used in standard
DL-Lite.

Possibility Distribution over DL-Lite Interpretation
Let Ω be a universe of discourse composed by a set of DL-
Lite interpretations (I=(∆, .I) ∈ Ω). The semantic coun-
terpart of a DL-Liteπ is given by a possibility distribution,
denoted by π, which is a mapping from Ω to the unit inter-
val [0, 1] that assigns to each interpretation I ∈ Ω a possi-
bility degree π(I) ∈ [0, 1] that represents its compatibility
or consistency with respect to the set of available knowl-
edge. When π(I)=0, we say that I is impossible and it
is fully inconsistent with the set of available knowledge,
whereas when π(I)=1, we say that I is totally possible
and it is fully consistent with the set of available knowl-
edge. For two interpretations I and I ′, when π(I) > π(I ′)
we say that I is more consistent or more preferred than I ′
w.r.t available knowledge. Lastly, π is said to be normal-
ized if there exists at least one totally possible interpreta-
tion, namely ∃I ∈ Ω, π(I)=1, otherwise, we say that π is
sub-normalized. The concept of sub-normalization reflects
the presence of conflicts in the set of available information.

Given a possibility distribution π defined on a set of inter-
pretations Ω, one can define two measures on a DL-Lite ax-
iom ϕ: A possibility measure Π(ϕ)=max

I∈Ω
{π(I) : I |= ϕ}

that evaluates to what extent an axiom ϕ is compatible with
the available knowledge encoded by π and a necessity mea-
sure N(ϕ)=1−max

I∈Ω
{π(I) : I 6|= ϕ} that evaluates to what

extent ϕ is certainty entailed from available knowledge en-
coded by π.

DL-Liteπ Knowledge Base
Let L be a DL-Lite description language, a DL-Liteπ
knowledge base is a set of possibilistic axioms of the form
(ϕ,W (ϕ)) where ϕ is an axiom expressed inL andW (ϕ) ∈
] 0, 1] is the degree of certainty/priority of ϕ. Namely, aDL-
Liteπ knowledge baseK is such thatK={(ϕi,W (ϕi)) : i =
1, ..., n}. Only somewhat certain information are explicitly
represented in a DL-Liteπ knowledge base. Namely, ax-
ioms with a null weight (W (ϕi) = 0) are not explicitly
represented in the knowledge base. The weighted axiom
(ϕ,W (ϕ)) means that the certainty degree of ϕ is at least
equal to W (ϕi). A DL-Liteπ knowledge base K will also
be represented by a couple K=〈T ,A〉 where both elements
in T and A may be uncertain. It is important to note that, if
we consider all W (ϕi) = 1 then we found a classical DL-
Lite knowledge base: K∗={ϕi : (ϕi,W (ϕi)) ∈ K}.

Given K=〈T ,A〉 a DL-Liteπ knowledge base, we define
the α-cut ofK (resp. T andA), denoted byK≥α (resp. T≥α
and A≥α), the subbase of K (resp. T and A) composed of
axioms having weights at least greater than α.

We say thatK is consistent if the standard knowledge base
obtained fromK by ignoring the weights associated with ax-
ioms is consistent. In case of inconsistency, we attach to K
an inconsistency degree. The inconsistency degree of a DL-
Liteπ knowledge base K, denoted by Inc(K), is syntacti-



cally defined as follow: Inc(K)=max{W (ϕi):K≥W (ϕi) is
inconsistent}.

Given a DL-Liteπ knowledge base K, one can associate
to K a joint possibility distribution, denoted by πK, defined
over the set of all interpretations I=(∆, .I) by associating
to each interpretation its level of consistency with the set of
available knowledge, that is, with K. Namely:

Definition 1. The possibility distribution induced from a
DL-Liteπ is defined as follows: ∀I ∈ Ω:

πK(I)=
{

1 if ∀ (ϕi,W (ϕi)) ∈ K, I |= ϕi
1-max{W (ϕi):(ϕi,W (ϕi))∈K,I6|=ϕi} otherwise

A DL-Liteπ knowledge base K is said to be consistent
if its joint possibility distribution πK is normalized. If not,
K is said to be inconsistent and its inconsistency degree is
defined semantically as follow: Inc(K)=1−max

I∈Ω
{πK(I)}.

It was shown in (Benferhat and Bouraoui 2013) that com-
puting the inconsistency degree of a DL-Liteπ knowledge
base comes from the extension of the algorithm presented in
(Calvanese et al. 2007) by modifying it to query for individ-
uals with a given certainty degree.

Example 1. Let K=〈T ,A〉 be a DL-Liteπ knowledge base
where T ={(AvB, 1), (Bv¬C, .9)} and A={(A(a), .6),
(C(b), .5)}. The possibility distribution πK associated to K
is computed using Definition 1 as follows where ∆={a, b}:

I .I πK
I1 A={a},B={},C={b} 0
I2 A={a},B={a},C={b} 1
I3 A={},B={},C={a,b} .4
I4 A={a,b},B={a,b},C={} .5

Table 1: Example of a possibility distribution induced from
a DL-Liteπ knowledge base

One can observe that πK(I2)=1 meaning that πK is normal-
ized, and thus, K is consistent.

Fusion-based on compatible scalings
This section studies min-based possibilistic merging opera-
tor in the case where uncertainty scales used by the different
sources are incommensurable. Throughout this section, we
assume that the TBox is coherent and fully certain and only
assertional facts (ABoxes) may be somewhat certain. We
first present merging using min-based operator of DL-Lite
assertional bases under commensurability assumption.

Merging using the min-based operator
LetA = {A1, ...,An} be a set of n uncertain ABoxes issued
from n distinct sources, and let T be a DL-Lite TBox rep-
resenting the integrity constraints to be satisfied. Let us as-
sume that π1, ..., πn are possibility distributions provided by
n sources of information that share the same domain of inter-
pretations (namely ∆I1 = ... = ∆In), and that all possibility
distributions use the same scale to represent uncertainty. We
suppose that each ABox is consistent with T , namely each

possibility distribution πi that encodes Ki = 〈T ,Ai〉 is nor-
malized. For the sake of simplicity, we use πAi instead of
πKi

to denote the possibility distribution associated to each
Ki = 〈T ,Ai〉

Given n commensurable ABoxes, merging aims to com-
pute ∆T (A), an ABox representing the result of the fusion
of these ABoxes. In the literature, different methods for
merging have been proposed. In this section, we perform
merging ofA1,...,An a set of ABoxes with respect to a TBox
T using min-based merging operator proposed to aggregate
DL-Liteπ knowledge bases. This operator is a direct ex-
tension of the well-known idempotent conjunctive operator
(e.g. (Benferhat, Dubois, and Prade 1997)) within possibilis-
tic DL-Lite setting. It is recommended when distinct sources
that provide information are assumed to be dependent.

We first introduce the notion of profile associated with an
interpretation I, denoted by νA(I), and defined by

νA(I) =< πA1(I), ..., πAn(I) > .

Namely, νA(I) represents the possibility values of an in-
terpretation I with respect to each source.

From a semantics point of view, the result of merging is
a possibility distribution ∆T (A) obtained using two steps:
i) the possibility degrees πAi

(I)’s are first combined with a
merging operator (here we use the minimum operator), and
the interpretations with height degrees are kept. This leads
to define an order relation, denoted by /Min, between in-
terpretations as follows: an interpretation I is preferred to
another interpretation I ′ if the minimum element of the pro-
file of I is higher than the minimum element of the profile
of I ′. More formally:
Definition 2 (Definition of /Min). Let A = {A1, ...,An}
be a set of ABoxes linked to a TBox T . Let I and I ′ be
two interpretations and νA(I), νA(I ′) be their associated
profiles. Then:

I /Amin I ′ ⇐⇒ Min(νA(I)) > Min(νA(I ′))
where

Min(νA(I)) = Min{πAi
(I) : i ∈ {1, ..., n}}.

The result of the merging ∆min
T (A) is a DL-Liteπ

knowledge base whose models are interpretations which are
models of a constraint T and which are maximal with re-
spect to /Min. More formally:
Definition 3 (Min-based merging operator). Let A =
{A1, ...,An} be a set of ABoxes and T be an integrity con-
straint. Let {πA1

, ..., πAn
} possibility distributions associ-

ated with (〈T ,A1〉 , ..., 〈T ,An〉). The result of merging is a
DL-Liteπ knowledge base, denoted by ∆min

T (A) where its
model are defined by:
Mod(∆min

T (A))={I∈Mod(T ):@I ′∈Mod(T ),I ′/AMinI}
In general, merging twoDL-Liteπ normalized possibility

distributions may lead to a sub-normalized possibility distri-
bution. The normalization process comes down to set the
degrees of interpretations in Mod(∆min

T (A)) to 1.
From a syntactic point of view, the min-based merging

operator, denoted by ∆min
T (A) is the union of all ABox.

Namely:



∆min
T (A)=〈T ,A1 ∪ A2 ∪ . . . ∪ An〉.

The aggregation of ABoxs is not guaranteed to be consis-
tent. Namely, the resulting knowledge base

〈
T ,∆min

T (A)
〉

may be inconsistent. To restore the consistency of the result-
ing knowledge base a normalization step is required. The
following definition gives the formal logical representation
of the normalized knowledge base.

Definition 4. Let T be a TBox and ∆min
T (A) be the aggre-

gation of A1, ...An, n ABox using classical min-based op-
erator. Let x=∆min

T (A). Then, the normalized knowledge
base, denoted ∆min

T (K) is such that:

∆min
T (K)={(fij ,W (fij)):(f,W (fij)∈∆min

T (A) and
W (fij) > x}〉

Example 2 (continued). Let us continue with the TBox
T ={A v B, B v ¬C} presented in Example 1 while
assuming that the certainty degree of each axioms is set
to 1. Let us consider the following set of ABoxes to be
linked to T : A1={(A(a), .6), (C(b), .5)}, A2={(C(a), .4),
(B(b), .8), (A(b), .7)}. We have:

I .I πA1
πA2

∆min
T (A)

I1 A={a},B={a},C={b} 1 .2 .2
I2 A={},B={},C={a,b} .4 .2 .4
I3 A={a,b},B={a,b},C={} .5 .6 .5
I4 A={b},B={b},C={a} .4 1 .4

Table 2: Example of merging of possibility distributions us-
ing min-based operator

One can check that the resulting possibility distribution
(∆min
T (A)) is sub-normalized. To normalize ∆min

T (A),
it is enough to set I3 = .5 to 1. At syntactic level,
we have ∆min

T (A)=〈T , {(A(a), .6), (C(b), .5), (C(a), .4),
(B(b), .8), (A(b), .7)}〉. We have Inc(∆min

T (A))=.5 and
∆min
T (K)=T , {(A(a), .6), (B(b), .8), (A(b), .7)}.
In the next section, we investigate min-based merging un-

der incommensurability assumption.

Using compatible scales
The min-based merging operator presented in the previous
section is defined over the assumption that all the sources
providing the ABoxs use the same scale to encode uncer-
tainties between facts. In Example 2, when dealing with
assertions, we assumed that the weight attached to f ∈ Ai
can be compared to the weight associated with g ∈ Aj with
j 6= i. In this section, we drop this assumption and we sup-
pose that sources are incommensurable.

We investigate a min-based fusion operator to merge in-
commensurable DL-Lite assertional bases. To make sources
using different scale commensurable, we use the notion of
"compatible scale" on existing scales used by each source.

A ranking scale is said to be compatible with all sources
if it preserves original order relations between assertions of
each ABox. The new ranking, denoted by R, defines a new
ranking relations for each ABox to be merged. More for-
mally,

Definition 5 (Compatible ranking scale). Let A =
{A1, ...,An} where Ai = {(fij ,WAi

(fij))}. Then a rank-
ingR is defined by:
R: A1 ∪ ... ∪ An → ]0, 1]

(fij ,WBi(fij)) 7→ R(fij)
A rankingR is said to be compatible with WA1

, ...,WAn

if and only if:

∀Ai ∈ A, ∀f,WAi
(f)), (f ′,WAi

(f ′)) ∈ Ai,
WAi

(f) ≤WAi
(f ′) ⇐⇒ R(f) ≤ R(f ′).

Definition 5 is basically the adaptation of the one given
in (Benferhat, Lagrue, and Rossit 2007) for the context of
DL-Lite.
Example 3 (continued). Let us consider again the follow-
ing set of ABoxes to be linked to T given in Example
2: A1={(A(a), .6),(C(b), .5)}, A2={(C(a), .4), (B(b), .8),
(A(b), .7)}. The following table gives examples of ranking
scales.

fij WAi
(fij) R1(fij) R2(fij) R3(fij)

A1 A(a) .6 .5 .4 .6
C(b) .5 .2 .7 .5

A2 C(a) .4 .3 .3 .4
B(b) .8 .7 .6 .8
A(b) .7 .4 .2 .7

Table 3: Examples of ranking scales

The scaling R1 is a compatible one, because it preserves
the order inside each ABox. However, the scaling R2 is not
a compatible one since it inverses priorities inside A1 and
A2.

According to Example 3, it is obvious that a compatible
ranking scale is not unique. Let us denote by R(A) the set
of compatible scaling associated with A = {A1, ...,An}.
The setR(A) is non-empty and an immediate way to obtain
a ranking relation over A is to considerR(fij) = WAi

(fij)
(For instance, the scale R3(fij) given in Example 3). Note
that this ranking is compatible in the sense that it permits to
preserve the relative ordering between assertions of eachAi.

Given a compatible scales R, we denote by ARi the as-
sertional base obtained from Ai by replacing each assertion
(fij ,WAi

(fij)) by (fij ,R(fij)). Similarly, we denote by
AR the set obtained from A by replacing each Ai in A by
ARi .

Now, given the set of all compatible scales R(A), dif-
ferent possibilities may exist in order to merge the ABoxs.
For instance, one can only select one scale to perform merg-
ing or one can consider all the compatible ranking inR(A),
etc. To avoid an arbitrary choice, we consider all compatible
rankings to perform merging.

Semantics merging
We first introduce the notion of preference between inter-
pretation according to the notion of compatible scales. An
interpretation I is then said to be preferred to I ′, if for each
compatible scale R, I is preferred to I ′ using Definition 2
(namely, I /AR

Min I ′). More precisely,



Definition 6 (Ordering between interpretations). Let A =
{A1, ...,An} be a set ofDL-Liteπ ABoxs andR(A) be the
set of all compatible scalings associated with A. Let I, I ′
be two interpretations. Then:

I <A∀ I ′ ⇐⇒ ∀R ∈ R(A), I /A
R

Min I ′

where /A
R

Min is the result of applying Definition 2 on AR.

According to Definition 6, we have models of ∆∀T (A) are
those which are models of T and minimal for <A∀ , namely:

Mod(∆∀T (A))={I∈Mod(T ): @I ′∈Mod(T ), I ′<A∀ I}.
Note that<A∀ is only a partial order. The following propo-

sition shows that an interpretation I is a model of ∆∀T (A) if
and only if there exists a compatible scaling where this in-
terpretation belongs to the result fusion, namely it is a model
of ∆A

R

Min(A). More formally:
Proposition 1. Let A be a set of ABoxes linked to the same
TBox T . Then I ∈Mod(∆∀T (A)), if and only if there exists
a compatible scalingR such that I ∈Mod(∆min

T (AR)).

The following example illustrates the fusion based on all
compatible scalings.
Example 4 (continued). Let us consider again the follow-
ing set of ABoxes given in Example 2: A1={(A(a), .6),
(C(b), .5)}, A2={(C(a), .4), (B(b), .8), (A(b), .7)}. Let us
consider again R1 where AR1

1 = {(A(a), .8), (C(b), .4))}
and AR1

2 = {(C(a), .2), (B(b), .9), (A(b), .6)} and a scal-
ing R2 where AR2

1 = {(A(a), .4), (C(b), .2))} and AR2
2 =

{(C(a), .3), (B(b), .6), (A(b), .5)}. Both of them are com-
patible. Table 4 presents the profile of each interpretation
for each scaling.

I νAR1 (I) Min νAR2 (I) Min
I1 < 1, .1 > .1 < 1, .4 > .4
I2 < .2, .1 > .1 < .6, .4 > .4
I3 < .6, .8 > .6 < .8, .7 > .7
I4 < .2, 1 > .2 < .6, 1 > .6

Table 4: Two equivalent compatible scalings

Note that in both compatible scalings R1 and R2, I3 is
the preferred one.

Once preferred models are computed, query answering
from a set of uncertain ABox under incommensurability as-
sumption, is defined as follows:
Definition 7. Let A = A1, ...,An be a set of ABoxes
linked to the same TBox T . A query q is said to be
consequence of A under incommensurability assumption if
∀I, I ∈Mod(∆min

T (AR)), I |= q.
Example 5 (continued). From Example 4, we have
Mod(∆min

T (AR))={I3} where AI3 = {a, b}, BI3 =
{a, b} and CI3 = {}. Let q1(x) ← A(x) ∧ B(x) be a
conjunctive query. One can easily check that < b > is an
answer of q1(x) using ∆min

T (AR). Similarly, let B(a) be
an instance query, one can check that B(a) follows from
∆min
T (AR).

Using the set of all compatible scales may lead to a very
cautious merging operation. One way to get rid of in-
commensurability assumption is to use some normalization
function in the spirit of the ones used in clustering methods
for gathering attributes having incommensurable domains.
Let Ai be an ABox and αAi

be the set of different cer-
tainty degrees used in Ai. Let minAi

and maxAi
be re-

spectively the minimum and maximum certainty degrees as-
sociated with assertional facts in αAi

. Then an example of a
normalization function is

N(αi) =
αi − (minAi

− ε)
maxAi

− (minAi
− ε)

(1)

Where αi is a certainty degree belonging to αAi
and ε is

a very small number (lower than minAi
).

The main advantage of only having one normalization
function is that one can have an immediate syntactic coun-
terpart. More precisely, it is enough to replace for each fact
(fij ,WAi(fij)) by (fij , N(WAi(fij))) where N is the nor-
malization function given by Equation 1.

Example 6 (continued). From Example 2, we have
A1={(A(a), .6), (C(b), .5)}, A2={(C(a), .4), (B(b), .8),
(A(b), .7)}. We have minA1

= .5, minA2
= .4, maxA1

=
.6 and maxA2

= .8. Let ε = .01, then applying Equation 1
on A1 and A2, gives: A1={(A(a), 1), (C(b), .09)}, and
A2={(C(a), 0, 02), (B(b), 1), (A(b), .75)}.

Once the syntactic computation of normalized assertional
bases is done, it is enough the reuse merging of commensu-
rable possibilistic knowledge bases for query answering.

Example 7 (continued). From Example 6, we have
∆min
T (A)=〈T , {(A(a), 1), (C(b), .09), (C(a), .02),

(B(b), 1), (A(b), .75)}〉. We have Inc(∆min
T (A))=.09

and ∆min
T (K)=T , {(A(a), 1), (B(b), 1), (A(b), .75)}.

Consider now q1(x) ← A(x) ∧ B(x) and q2 ← B(a),
queries given in Example 5. One can check that < b > is an
answer of q1(x) from the and B(a) holds from the resulting
knowledge bases.

Conclusions
This paper proposed a min-based possibilistic merging op-
eration of uncertain assertional facts under incommensura-
bility assumption. The idea is to reuse standard min-based
merging, over a set of compatible scales. Future work in-
cludes developing a syntactic counterpart of incommensu-
rable merging operation. A natural question is whether one
can extend a polynomial time complexity algorithm, defined
for query answering from a standard uncertain ABox, to the
case where uncertainty scales are incommensurable.
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