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Abstract
The increasing popularity of the Semantic Web drove to a
widespread adoption of Description Logics (DLs) for mod-
eling real world domains. To help the diffusion of DLs, a
large number of reasoning algorithms have been developed.
Usually these algorithms are implemented in procedural lan-
guages such as Java or C++. Most of the reasoners exploit the
tableau algorithm which has to manage non-determinism, a
feature that is not easy to handle using such languages. Rea-
soning on real world domains also requires the capability of
managing probabilistic and uncertain information. We thus
present TRILL, for “Tableau Reasoner for descrIption Log-
ics in proLog”, that implements a tableau algorithm and is
able to return explanations for queries and their correspond-
ing probability, and TRILLP , for “TRILL powered by Pin-
pointing formulas”, which is able to compute a Boolean for-
mula representing the set of explanations for a query. This
approach can speed up the process of computing the proba-
bility. Prolog non-determinism allows us to easily handle the
tableau’s non-deterministic expansion rules.

Introduction
The Semantic Web aims at making information regarding
real world domains available in a form that is understand-
able by machines (Hitzler, Krötzsch, and Rudolph 2009).
The World Wide Web Consortium is working for realizing
this vision by supporting the development of the Web On-
tology Language (OWL), a family of knowledge representa-
tion formalisms for defining ontologies. OWL is based on
Description Logics (DLs), a set of languages that are re-
strictions of first order logic (FOL) with decidability and,
in some cases, low complexity. For example, the OWL DL
sublanguage is based on the expressive SHOIN (D) DL
while OWL 2 corresponds to the SROIQ(D) DL (Hitzler,
Krötzsch, and Rudolph 2009). Moreover, uncertain informa-
tion is intrinsic to real world domains, thus the combination
of probability and logic theories becomes of foremost im-
portance.

In order to fully support the development of the Seman-
tic Web, efficient DL reasoners, such us Pellet, RacerPro,
FaCT++ and HermiT, are able to extract implicit informa-
tion from the modeled ontologies. Despite the large number
of available reasoners, only few of them are able to man-
age probabilistic information as well. One of the most com-
mon approaches for reasoning is the tableau algorithm that

exploits some non-deterministic expansion rules. This re-
quires the developers to implement a search strategy in an
or-branching search space. Moreover, if we want to com-
pute the probability of a query, the algorithm has to compute
all the explanations for the query, thus it has to explore all
the non-deterministic choices taken during the execution.

In this paper, we present the systems TRILL for “Tableau
Reasoner for descrIption Logics in proLog” and TRILLP
for “TRILL powered by Pinpointing formulas”. They are
tableau reasoners for the SHOIN DL and for the ALC
DL respectively, both implemented in Prolog. Prolog search
strategy is exploited for taking into account the non-
determinism of the tableau rules. They use the Thea2 li-
brary (Vassiliadis, Wielemaker, and Mungall 2009) for pars-
ing OWL in its various dialects. Thea2 translates OWL files
into a Prolog representation in which each axiom is mapped
into a fact. TRILL and TRILLP can check the consistency of
a concept and the entailment of an axiom from an ontology,
and can compute the probability of the entailment follow-
ing DISPONTE (Riguzzi et al. 2012), a semantics for prob-
abilistic ontologies. The availability of a Prolog implementa-
tion of a DL reasoner will also facilitate the development of
probabilistic reasoners that can integrate probabilistic logic
programming with probabilistic DLs. In probabilistic logic
programming one of the most widespread approaches is the
Distribution Semantics (Sato 1995), on which DISPONTE is
based. Since our systems follow DISPONTE, they are easily
extensible to take into account this integration.

Description Logics
DLs are knowledge representation formalisms that are at the
basis of the Semantic Web (Baader et al. 2003; Baader, Hor-
rocks, and Sattler 2008) and are used for modeling ontolo-
gies. They possess nice computational properties such as de-
cidability and/or low complexity.

Usually, DLs’ syntax is based on concepts and roles
which correspond respectively to sets of individuals and sets
of pairs of individuals of the domain. We first briefly de-
scribe ALC and then SHOIN (D).

Let C, R and I be sets of atomic concepts, atomic roles
and individuals, respectively. Concepts are defined by induc-
tion as follows. Each C ∈ C is a concept, ⊥ and > are
concepts. If C, C1 and C2 are concepts and R ∈ R, then
(C1uC2), (C1tC2) and ¬C are concepts, as well as ∃R.C



and ∀R.C. A TBox T is a finite set of concept inclusion ax-
ioms C v D, where C and D are concepts. We use C ≡ D
to abbreviate the conjunction of C v D and D v C. An
ABox A is a finite set of concept membership axioms a : C,
role membership axioms (a, b) : R, equality axioms a = b
and inequality axioms a 6= b, where C ∈ C, R ∈ R and
a, b ∈ I. A knowledge base (KB) K = (T ,A) consists of a
TBox T and an ABox A and is usually assigned a seman-
tics in terms of interpretations I = (∆I , ·I), where ∆I is a
non-empty domain and ·I is the interpretation function that
assigns an element in ∆I to each a ∈ I, a subset of ∆I to
each C ∈ A and a subset of ∆I ×∆I to each R ∈ R.

The mapping ·I is extended to all concepts (where
RI(x) = {y|(x, y) ∈ RI}) as:

>I = ∆I

⊥I = ∅
(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

In the following we describe SHOIN (D) showing what it
adds to ALC. A role is either an atomic role R ∈ R or the
inverse R− of an atomic role R ∈ R. We use R− to denote
the set of all inverses of roles in R. An RBox R consists of
a finite set of transitivity axioms Trans(R), where R ∈ R,
and role inclusion axioms R v S, where R,S ∈ R ∪R−.

If a ∈ I, then {a} is a concept called nominal, and if C,
C1 and C2 are concepts andR ∈ R∪R−, then≥ nR and≤
nR for an integer n ≥ 0 are also concepts. A SHOIN (D)
KB K = (T ,R,A) consists of a TBox T , an RBox R and
an ABox A.

The mapping ·I is extended to all new concepts (where
#X denotes the cardinality of the set X) as:

(R−)I = {(y, x)|(x, y) ∈ RI}
{a}I = {aI}

(≥ nR)I = {x ∈ ∆I |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ∆I |#RI(x) ≤ n}

SHOIN (D) allows for the definition of datatype roles,
i.e., roles that map an individual to an element of a datatype
such as integers, floats, etc. Then new concept definitions in-
volving datatype roles are added that mirror those involving
roles introduced above. We also assume that we have predi-
cates over the datatypes.
SHOIN (D) is decidable iff there are no number restric-

tions on roles which are transitive or have transitive subroles.
A query Q over a KB K is usually an axiom for which we

want to test the entailment from the KB, writtenK |= Q. The
entailment test may be reduced to checking the unsatisfia-
bility of a concept in the knowledge base, i.e., the emptiness
of the concept. For example, the entailment of the axiom
C v D may be tested by checking the unsatisfiability of the
concept C u ¬D while the entailment of the axiom a : C
may be tested by checking the unsatisfiability of a : ¬C.

Example 1 The following KB is inspired by the ontology
people+pets (Patel-Schneider, Horrocks, and Bechhofer
2003):

∃hasAnimal.Pet v NatureLover
fluffy : Cat
tom : Cat
Cat v Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet
are nature lovers and that kevin owns the animals fluffy
and tom, which are cats. Moreover, cats are pets. The KB
entails the query Q = kevin : NatureLover.

Querying KBs: The Tableau Algorithm
In order to answer queries to DL KBs, a tableau algorithm
can be used. A tableau is an ABox represented as a graph
G where each node corresponds to an individual a and is
labeled with the set of concepts L(a) to which a belongs.
Each edge 〈a, b〉 in the graph is labeled with the set of roles
L(〈a, b〉) to which the couple (a, b) belongs. A tableau algo-
rithm proves an axiom by refutation, starting from a tableau
that contains the negation of the axiom. For example, the ax-
iomC v D can be proved by showing thatCu¬D is empty,
while, if the query is a class assertion, C(a), we add ¬C to
the label of a. For testing the inconsistency of a concept C
we have to test the emptiness of C by adding a new anony-
mous node a to the tableau whose label contains C. Then,
the tableau algorithm repeatedly applies a set of consistency
preserving tableau expansion rules until a clash (i.e., a con-
tradiction, for example, a concept C and a node a where C
and ¬C are present in the label of a) is detected or a clash-
free graph is found to which no more rules are applicable. If
no clashes are found, the tableau represents a model for the
negation of the query, which is thus not entailed.

Each expansion rule updates as well a tracing function
τ , which associates labels of nodes and edges with a subset
of the axioms of the KB. τ is initialized as the empty set
for all the elements of its domain except for τ(C, a) and
τ(R, 〈a, b〉) to which the values {a : C} and {(a, b) : R} are
assigned if a : C and (a, b) : R are in the ABox respectively.
The tableau expansion rules for SHOIN (D) are shown in
Figure 1, where the rules for the ALC DL are marked by
(∗).

For ensuring the termination of the algorithm, a special
condition known as blocking (Kalyanpur 2006) is used. In
a tableau a node x can be a nominal node if its label L(x)
contains a nominal or a blockable node. If there is an edge
e = 〈x, y〉 then y is a successor of x and x is a predecessor
of y. Ancestor is the transitive closure of predecessor while
descendant is the transitive closure of successor. A node y
is called an R-neighbour of a node x if y is a successor of x
and R ∈ L(〈x, y〉), where R ∈ R.

An R-neighbour y of x is safe if (i) x is blockable or if
(ii) x is a nominal node and y is not blocked. Finally, a node
x is blocked if it has ancestors x0, y and y0 such that all the
following conditions are true: (1) x is a successor of x0 and
y is a successor of y0, (2) y, x and all nodes on the path



from y to x are blockable, (3) L(x) = L(y) and L(x0) =
L(y0), (4) L(〈x0, x〉) = L(〈y0, y〉). In this case, we say that
y blocks x. A node is blocked also if it is blockable and all its
predecessors are blocked; if the predecessor of a safe node
x is blocked, then we say that x is indirectly blocked.

Finding Explanations
The problem of finding explanations for a query has been in-
vestigated by various authors (Schlobach and Cornet 2003;
Kalyanpur 2006; Halaschek-Wiener, Kalyanpur, and Parsia
2006; Kalyanpur et al. 2007). It was called axiom pinpoint-
ing in (Schlobach and Cornet 2003) and considered as a non-
standard reasoning service useful for tracing derivations and
debugging ontologies. In particular, minimal axiom sets or
MinAs for short, also called explanations, are introduced in
(Schlobach and Cornet 2003).

Definition 1 (MinA) Let K be a knowledge base and Q an
axiom that follows from it, i.e.,K |= Q. We call a setM ⊆ K
a minimal axiom set or MinA for Q in K if M |= Q and it
is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called MIN-A-
ENUM in (Schlobach and Cornet 2003). ALL-MINAS(Q,K)
is the set of all MinAs for queryQ in the knowledge baseK.

The tableau algorithm returns a single MinA using the
tracing function. To solve MIN-A-ENUM, reasoners written
in imperative languages, like Pellet (Sirin et al. 2007), have
to implement a search strategy in order to explore the entire
search space of the possible explanations. In particular, Pel-
let, that is written entirely in Java, uses Reiter’s hitting set
algorithm (Reiter 1987). The algorithm, described in detail
in (Kalyanpur 2006), starts from a MinA S and initializes
a labeled tree called Hitting Set Tree (HST) with S as the
label of its root v. Then it selects an arbitrary axiom E in
S, it removes it from K, generating a new knowledge base
K′ = K − {E}, and tests the unsatisfiability of C w.r.t. K′.
If C is still unsatisfiable, we obtain a new explanation. The
algorithm adds a new node w and a new edge 〈v, w〉 to the
tree, then it assigns this new explanation to the label ofw and
the axiom E to the label of the edge. The algorithm repeats
this process until the unsatisfiability test returns negative: in
that case the algorithm labels the new node withOK, makes
it a leaf, backtracks to a previous node, selects a different ax-
iom to be removed from the KB and repeats these operations
until the HST is fully built. The algorithm also eliminates ex-
traneous unsatisfiability tests based on previous results: once
a path leading to a node labeled OK is found, any super-
set of that path is guaranteed to be a path leading to a node
where C is satisfiable, and thus no additional unsatisfiability
test is needed for that path, as indicated by an X in the node
label. When the HST is fully built, all leaves of the tree are
labeled with OK or X . The distinct non leaf nodes of the
tree collectively represent the set ALL-MINAS(C,K).

In (Baader and Peñaloza 2010a; 2010b) the authors con-
sider the problem of finding a pinpointing formula instead
of ALL-MINAS(Q,K). The pinpointing formula is a mono-
tone Boolean formula in which each Boolean variable cor-
responds to an axiom of the KB. This formula is built us-
ing the variables and the conjunction and disjunction con-

nectives. It compactly encodes the set of all MinAs. Let as-
sume that each axiom E of a KB K is associated with a
propositional variable, indicated with var(E). The set of all
propositional variables is indicated with var(K). A valua-
tion ν of a monotone Boolean formula is the set of proposi-
tional variables that are true. For a valuation ν ⊆ var(K),
let Kν := {t ∈ K|var(t) ∈ ν}.
Definition 2 (Pinpointing formula) Given a query Q and
a KB K, a monotone Boolean formula φ over var(K) is
called a pinpointing formula for Q if for every valuation
ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.
In Lemma 2.4 of (Baader and Peñaloza 2010b) the authors
proved that the set of all MinAs can be obtained by trans-
forming the pinpoiting formula into DNF and removing dis-
juncts implying other disjuncts. The example below illus-
trates axiom pinpointing and the pinpointing formula.
Example 2 (Pinpointing formula) Consider the KB of Ex-
ample 1. We associate Boolean variables to axioms as fol-
lows:
F1 = ∃hasAnimal.Pet v NatureLover
F2 = (kevin,fluffy) : hasAnimal
F3 = (kevin, tom) : hasAnimal
F4 = fluffy : Cat
F5 = tom : Cat
F6 = Cat v Pet.

Let Q = kevin : NatureLover be the query, then ALL-
MINAS(Q,K) = {{F2, F4, F6, F1}, {F3, F5, F6, F1}},
while the pinpointing formula is ((F2 ∧ F4) ∨ (F3 ∧ F5)) ∧
F6 ∧ F1.
In the following, we briefly define how a tableau algorithm
can be modified to find the pinpointing formula. For more
details and formal definitions see (Baader and Peñaloza
2010b).

Given a KB K, the modified algorithm associates a label
lab(a) that is a monotone Boolean formula over var(K) to
every assertion a. For deciding whether a rule is applicable
we have to control the insertability of the new assertion. Let
A be a set of labeled assertions and ψ a monotone Boolean
formula, the assertion a is ψ−insertable intoA if either a /∈
A, or a ∈ A but ψ 2 lab(a). Given a set B of assertions
and a set A of labeled assertions, the set of ψ−insertable
elements of B into A is defined as insψ(B,A) := {b ∈
B|b is ψ−insertable into A}. For deciding the applicability
of a rule we need also to give the definition of substitution.
A substitution is a mapping ρ : V → D, where V is a finite
set of variables and D is a countably infinite set of constants
that contains all the individuals in the KB and all the fresh
individuals created by the application of the rules. Variables
are seen as placeholder for individuals in the assertions. For
example, an assertion can be C(x) or R(x, y) where C is a
concept, R is a role and x and y are variables. In this case,
let C(x) be an assertion with the variable x and ρ : x → a
a substitution, then C(x)ρ denotes the assertion obtained by
replacing the variable with its ρ−image , i.e. C(a). A rule
is of the form (B0, S) → {B1, ..., Bm} where Bi are finite
set of assertions and S is a finite set of axioms. A rule is
applicable with a substitution ρ on the variable occurring in
B0 if S ⊆ K, B0ρ ⊆ A, where A is the set of assertions



Deterministic rules:
→ unfold (∗): if A ∈ L(a), A atomic and (A v D) ∈ K, then

if D /∈ L(a), then
Add(D,L(a))
τ(D, a) := (τ(A, a) ∪ {A v D})

→ CE (∗): if (C v D) ∈ K, with C not atomic, a not blocked, then
if (¬C tD) /∈ L(a), then
Add((¬C tD), a)
τ((¬C tD), a) := {C v D}

→ u (∗): if (C1 u C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} 6⊆ L(a), then
Add({C1, C2}, a)
τ(Ci, a) := τ((C1 u C2), a)

→ ∃ (∗): if ∃S.C ∈ L(a), a is not blocked, then
if a has no S-neighbor b with C ∈ L(b), then

create new node b, Add(S, 〈a, b〉), Add(C, b)
τ(C, b) := τ((∃S.C), a)
τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀ (∗): if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an S-neighbor b of a, then
if C /∈ L(b), then
Add(C, b)
τ(C, b) := τ((∀S.C), a) ∪ τ(S, 〈a, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked
and there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then
Add(∀R.C, b)
τ((∀R.C), b) := τ((∀S.C), a) ∪ τ(R, 〈a, b〉) ∪ {Trans(R)} ∪ {R v S}

→≥: if (≥ nS) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn; Add(S, 〈a, bi〉); 6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a)
τ( 6=(bi, bj)) := τ((≥ nS), a)

→ O: if, {o} ∈ L(a) ∩ L(b) and not a6=b, then Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a), τ(Add(Ci,L(b))) := τ(Add(Ci,L(a))) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

Non-deterministic rules:
→ t (∗): if (C1 t C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ∩ L(a) = ∅, then
Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a) in Gi for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked,
and there are m S-neighbors b1, ..., bm of a with m > n, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then

Generate a graph G′

τ(Merge(bi, bj)) := τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉)
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj if merged into bi)

Figure 1: TRILL tableau expansion rules; the subset of rules marked by (∗) is employed by TRILLP .



contained in the ABox and found during inference, and, for
every 1 ≤ i ≤ m and every substitution ρ′ on the variables
occurring in B0 ∪ Bi, we have insψ(Biρ

′, A) 6= ∅, where
ψ :=

∨
b∈B0

lab(bρ) ∧
∨
s∈S lab(s). Moreover, except for

the unfold rule, the node N to which the rule is applicable is
not (indirectly) blocked. When the tableau is fully built, the
algorithm conjoins the labels of each clash for building the
final pinpointing formula.

TRILL and TRILLP

Both TRILL and TRILLP implement a tableau algorithm,
the first solves MIN-A-ENUM while the second computes the
pinpointing formula representing the set of MinAs. They can
answer concept and role membership queries, subsumption
queries and can test the unsatifiability of a concept of the KB
or the inconsistency of the entire KB. TRILL and TRILLP
are implemented in Prolog, so the management of the non-
determinism of the rules is delegated to the language.

We use the Thea2 library (Vassiliadis, Wielemaker,
and Mungall 2009) for converting OWL DL KBs into
Prolog. Thea2 performs a direct translation of the
OWL axioms into Prolog facts. For example, a sim-
ple subclass axiom between two named classes Cat v
Pet is written using the subClassOf/2 predicate as
subClassOf(‘Cat’,‘Pet’). For more complex ax-
ioms, Thea2 exploits the list construct of Prolog, so the
axiom NatureLover ≡ PetOwner t GardenOwner
becomes equivalentClasses([‘NatureLover’,
unionOf([‘PetOwner’,‘GardenOwner’])]).

In order to represent the tableau, TRILL and TRILLP use
a pair Tableau = (A, T ), where A is a list containing infor-
mation about individuals and class assertions with the cor-
responding value of the tracing function. The tracing func-
tion stores a fragment of the knowledge base in TRILL and
the pinpointing formula in TRILLP . T is a triple (G, RBN ,
RBR) in whichG is a directed graph that contains the struc-
ture of the tableau, RBN is a red-black tree (a key-value
dictionary), where a key is a couple of individuals and its
value is the set of the labels of the edge between the two
individuals, and RBR is a red-black tree, where a key is a
role and its value is the set of couples of individuals that are
linked by the role. This representation allows to quickly find
the information needed during the execution of the tableau
algorithm. For managing the blocking system we use a predi-
cate for each blocking state: nominal/2, blockable/2,
blocked/2, indirectly blocked/2 and safe/3.
Each predicate takes as arguments the individual Ind and
the tableau (A, T ); safe/3 takes as input also the role
R. For each individual Ind in the ABox, we add the atom
nominal(Ind) to A, then every time we have to check the
blocking status of an individual we call the corresponding
predicate that returns the status by checking the tableau.

Deterministic and non-deterministic tableau expansion
rules are treated differently. Non-deterministic rules are
implemented by a predicate rule name(Tab, TabList)
that, given the current tableau Tab, returns the list of
tableaux TabList created by the application of the rule to
Tab. Deterministic rules are implemented by a predicate
rule name(Tab, Tab1) that, given the current tableau

apply_all_rules(Tab,Tab2):-
apply_nondet_rules([...],Tab,Tab1),
(Tab=Tab1 -> Tab2=Tab1 ;

apply_all_rules(Tab1,Tab2)).

apply_nondet_rules([],Tab,Tab1):-
apply_det_rules([...],Tab,Tab1).

apply_nondet_rules([H|T],Tab,Tab1):-
C=..[H,Tab,L],
call(C),!
member(Tab1,L),
Tab \= Tab1.

apply_nondet_rules([_|T],Tab,Tab1):-
apply_nondet_rules(T,Tab,Tab1).

apply_det_rules([],Tab,Tab).

apply_det_rules([H|T],Tab,Tab1):-
C=..[H,Tab,Tab1],
call(C),!.

apply_det_rules([_|T],Tab,Tab1):-
apply_det_rules(T,Tab,Tab1).

Figure 2: Definition of the non-deterministic expansion
rules by means of the predicates apply all rules/2,
apply nondet rules/3 and apply det rules/3.
The list [...] contains the available rules and is different
in TRILL and TRILLP .

Tab, returns the tableau Tab1 obtained by the application
of the rule to Tab. Expansion rules are applied in order
by apply all rules/2, first the non-deterministic
ones and then the deterministic ones. The predicate
apply nondet rules/3 takes as input the
list of non-deterministic rules and the current
tableau and returns a tableau obtained by the
application of one of the rules. It is called as
apply nondet rules(RuleList,Tab,Tab1) and
is shown in Figure 2.

If a non-deterministic rule is applicable, the list of
tableaux obtained by its application is returned by the
predicate corresponding to the applied rule, a cut is per-
formed to avoid backtracking to other rule choices and a
tableau from the list is non-deterministically chosen with
the member/2 predicate. If no non-deterministic rule is ap-
plicable, deterministic rules are tried sequentially with the
predicate apply det rules/3, shown in Figure 2, that is
called as apply det rules(RuleList,Tab,Tab1).
It takes as input the list of deterministic rules and the current
tableau and returns a tableau obtained with the application
of one of the rules. After the application of a determinis-
tic rule, a cut avoids backtracking to other possible choices
for the deterministic rules. If no rule is applicable, the input
tableau is returned and rule application stops, otherwise a
new round of rule application is performed.

In Figure 1, the symbol (∗) denotes the rules shared by
TRILL and TRILLP . In these rules, the operator ∪ for τ



means union between two sets in TRILL, while in TRILLP
it joins two Boolean formulas with the OR Boolean operator.
Moreover, when a concept is already present in a node label,
TRILL checks whether to update the tracing function by ver-
ifying that the corresponding set of axioms is not a subset of
τ , while TRILLP performs a ψ−insertability test.

In case the assertion a to be inserted is already associ-
ated with the corresponding individual, TRILLP tests its
ψ−insertability by means of a satisfiability solver. In par-
ticular, it conjoins the negation of lab(a) with the Boolean
formula associated to the individual in the tableau, and tests
the satisfiability of such formula. If the test returns true, the
two Boolean formulas are combined with the OR Boolean
operator.

Computing the Probability
The aim of our work is to implement algorithms which
can compute the probability of queries to KBs following
DISPONTE (Riguzzi et al. 2012). DISPONTE applies the
distribution semantics (Sato 1995) of probabilistic logic pro-
gramming to DLs. A program following this semantics de-
fines a probability distribution over normal logic programs
called worlds. Then the distribution is extended to a joint
distribution over worlds and queries from which the proba-
bility of a query is obtained by marginalization.

In DISPONTE, a probabilistic knowledge base K con-
tains a set of probabilistic axioms which take the form

p :: E (1)
where p is a real number in [0, 1] and E is a DL axiom.
The probability p can be interpreted as an epistemic prob-
ability, i.e., as the degree of our belief in the truth of ax-
iom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in
C(a). A probabilistic concept inclusion axiom of the form
p :: C v D represents the fact that we believe in the truth of
C v D with probability p.

The idea of DISPONTE is to associate independent
Boolean random variables to the axioms. To obtain a world
w we decide whether to include each axiom or not in w.
A world therefore is a non probabilistic KB that can be as-
signed a semantics in the usual way. A query is entailed by
a world if it is true in every model of the world.

Formally, an atomic choice is a pair (Ei, k) where Ei
is the ith probabilistic axiom and k ∈ {0, 1} indicates
whether Ei is chosen to be included in a world (k = 1)
or not (k = 0). If a set of atomic choices κ is consistent,
i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m (only
one decision is taken for each axiom), it is called a com-
posite choice. The probability of a composite choice κ is
P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1 − pi), where pi is the

probability associated with axiom Ei. A selection σ is a
composite choice which contains an atomic choice (Ei, k)
for every axiom of the theory. A selection σ identifies a the-
ory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈
σ}. The probability of a world wσ is P (wσ) = P (σ) =∏

(Ei,1)∈σ pi
∏

(Ei,0)∈σ(1−pi). P (wσ) is a probability dis-
tribution over worlds, i.e.,

∑
w∈WK

P (w) = 1, where WK
is the set of all worlds.

We can now assign probabilities to queries. Given a world
w, the probability of a query Q is defined as P (Q|w) = 1 if
w |= Q and 0 otherwise. The probability of a query can be
defined by marginalizing the joint probability of the query
and the worlds.

P (Q) =
∑

w∈WK

P (Q,w) (2)

=
∑

w∈WK

P (Q|w)P (w) (3)

=
∑

w∈WK:w|=Q

P (w) (4)

The following example illustrates inference under
DISPONTE semantics.

Example 3 Consider the following KB, a probabilistic ver-
sion of that proposed in Example 1.

(1) 0.5 :: ∃hasAnimal.Pet v NatureLover
fluffy : Cat
tom : Cat

(2) 0.6 :: Cat v Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It indicates that the individuals that own an animal which
is a pet are nature lovers with a 50% probability and cats
are pets with a 60% probability. The KB has four possible
worlds:

{(1), (2)}, {(1)}, {(2)}, {}
and the query axiom Q = kevin : NatureLover is true in
the first of them, while in the remaining ones it is false. The
probability of the query is P (Q) = 0.5 · 0.6 = 0.3.

When a probabilistic KB is given as input, all the axioms
are translated by means of the Thea2 library. Then, for each
probabilistic axiom of the form Prob :: Axiom, a fact
p(Axiom,Prob) is asserted in the Prolog KB.

To compute the probability of queries to KBs following
the DISPONTE semantics, we can first perform MIN-A-
ENUM. Then the explanations must be made mutually ex-
clusive, so that the probabilities of individual explanations
are computed and summed. This can be done by exploit-
ing a splitting algorithm as shown in (Poole 2000). Alter-
natively, we can assign independent Boolean random vari-
ables to the axioms contained in the explanations and define
the DNF Boolean formula fK which models the set of ex-
planations K. Thus fK(X) =

∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi

where X = {Xi|(Ei, k) ∈ κ, κ ∈ K} is the set of Boolean
random variables.

TRILLP , instead, computes directly a pinpointing for-
mula which is a monotone Boolean formula that represents
the set of all MinAs.

Irrespective of which representation of the explanations
we choose, a DNF or a general pinpointing formula, we can
apply knowledge compilation and transform it into a Binary
Decision Diagram (BDD), from which we can compute the
probability of the query with a dynamic programming algo-
rithm that is linear in the size of the BDD.



X1 n1

X2 n2
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Figure 3: BDD representing the function f(X) = (X1 ∧
X3) ∨ (X2 ∧X3).

A BDD for a function of Boolean variables is a rooted
graph that has one level for each Boolean variable. A node n
in a BDD has two children: one corresponding to the 1 value
of the variable associated with the level of n, indicated with
child1(n), and one corresponding to the 0 value of the vari-
able, indicated with child0(n). When drawing BDDs, the 0-
-branch - the one going to child0(n) - is distinguished from
the 1-branch by drawing it with a dashed line. The leaves
store either 0 or 1. Figure 3 shows a BDD for the func-
tion f(X) = (X1 ∧X3) ∨ (X2 ∧X3), where the variables
X = {X1, X2, X3} are independent Boolean random vari-
ables.

A BDD performs a Shannon expansion of the Boolean
formula f(X), so that, if X is the variable associated with
the root level of a BDD, the formula f(X) can be rep-
resented as f(X) = X ∧ fX(X) ∨ X ∧ fX(X) where
fX(X) (fX(X)) is the formula obtained by f(X) by set-
tingX to 1 (0). Now the two disjuncts are pairwise exclusive
and the probability of f(X) being true can be computed as
P (f(X)) = P (X)P (fX(X)) + (1−P (X))P (fX(X)) by
knowing the probabilities of the Boolean variables of being
true.

TRILL-on-SWISH
In order to popularize DISPONTE, we developed a Web
application called “TRILL-on-SWISH” and available at
http://trill.lamping.unife.it. We exploited
SWISH (Lager and Wielemaker 2014), a recently proposed
Web framework for logic programming that is based on var-
ious features and packages of SWI-Prolog. SWISH allows
the user to write Prolog programs and ask queries in the
browser without installing SWI-Prolog on his machine. We
modified it in order to manage OWL KBs. SWISH also al-
lows users to collaborate on code development. TRILL-on-
SWISH allows users to write a KB in the RDF/XML format
directly in the web page or load it from a URL, and specify
queries that are answered by TRILL running on the server.
Once the computation ends, the results are sent to the client
browser and visualized in the Web page.

Experiments
In order to evaluate TRILL and TRILLP performances, we
compared them with BUNDLE, a reasoner for DISPONTE
based on Pellet. We used four different knowledge bases of

various complexity to which we added 50 probabilistic ax-
ioms:

• BRCA1, which models the risk factor of breast cancer;

• an extract of the DBPedia2 ontology obtained from
Wikipedia;

• Biopax level 33, which models metabolic pathways;

• Vicodi4, which contains information on European history.

For the tests, we used a version of the DBPedia and Biopax
KBs without the ABox and a version of BRCA and of Vicodi
with an ABox containing 1 individual and 19 individuals re-
spectively. We added 50 probabilistic axioms to each KB.
In this experimentation, the probabilistic parameter values
were learned using EDGE (Riguzzi et al. 2013b), a system
that computes the probability value associated with axioms
starting from a set of positive and negative examples in the
form of class assertion axioms that we regard as true (false),
and for which we would like to get an high (low) probability
respectively.

For each dataset, we randomly created 100 different
queries. In particular, for the DBPedia and Biopax datasets,
we created 100 subclass-of queries, while for the other KBs
we created 80 subclass-of and 20 instance-of queries. For
generating the subclass-of queries, we randomly selected
two classes that are connected in the hierarchy of classes,
so that each query had at least one explanation. For the
instance-of queries, we randomly selected an individual a
and a class to which a belongs by following the hierarchy
of the classes, starting from the classes to which a explicitly
belongs in the KB.

Table 1 shows, for each ontology, the average number of
different MinAs computed and the average time in seconds
that TRILL, TRILLP and BUNDLE took for computing the
probability of the queries. In particular, the BRCA and the
version of DBPedia that we used contain a large number
of subclass axioms between complex concepts. These pre-
liminary tests show that both TRILL and TRILLP perfor-
mances can sometimes be better than BUNDLE, even if they
lack all the optimizations that BUNDLE inherits from Pel-
let. This represents evidence that a Prolog implementation
of a Semantic Web tableau reasoner is feasible and that may
lead to practical systems. Moreover, TRILLP provides an
improvement of the execution time with respect to TRILL
when more MinAs are present.

Related Work
Usually, DL reasoners implement a tableau algorithm using
a procedural language. Since some tableau expansion rules
are non-deterministic, the developers have to implement a
search strategy from scratch. Moreover, in order to solve
MIN-A-ENUM, all different ways of entailing an axiom must
be found. For example, Pellet (Sirin et al. 2007) is a tableau

1http://www2.cs.man.ac.uk/˜klinovp/pronto/
brc/cancer_cc.owl

2http://dbpedia.org/
3http://www.biopax.org/
4http://www.vicodi.org/



Table 1: Average number of MinAs and average time (in seconds) for computing the probability of queries with the reasoners
TRILL, TRILLP and BUNDLE.

DATASET AVG. N. MINAS TRILL TIME (S) TRILLP TIME (S) BUNDLE TIME (S)
BRCA 6.49 27.87 4.74 6.96
DBPedia 16.32 51.56 4.67 3.79
Biopax level 3 3.92 0.12 0.12 1.85
Vicodi 1.02 0.19 0.19 1.12

reasoner for OWL written in Java and able to solve MIN-
A-ENUM. It computes ALL-MINAS(Q,K) by finding a sin-
gle MinA using the tableau algorithm and then applying the
hitting set algorithm to find all the other MinAs. Recently,
BUNDLE (Riguzzi et al. 2013a) was proposed for reasoning
over DISPONTE KBs. BUNDLE exploits Pellet for solving
MIN-A-ENUM and computes the probability of queries.

Reasoners written in Prolog can exploit its backtracking
facilities for performing the search. This has been observed
in various works. Beckert and Posegga (1995) proposed a
tableau reasoner in Prolog for FOL based on free-variable
semantic tableaux. However, the reasoner is not tailored to
DLs. Meissner (2004) presented the implementation of a
Prolog reasoner for the DL ALCN . This work was the ba-
sis of (Herchenröder 2006), that considered ALC and im-
proved (Meissner 2004) by implementing heuristic search
techniques to reduce the running time. Faizi (2011) added
to (Herchenröder 2006) the possibility of returning explana-
tions for queries but still handled only ALC.

Hustadt, Motik, and Sattler (2008) presented the KAON2
algorithm that exploits basic superposition, a refutational
theorem proving method for FOL with equality, and a new
inference rule, called decomposition, to reduce a SHIQKB
to a disjunctive datalog program.

DLog (Lukácsy and Szeredi 2009) is an ABox reasoning
algorithm for the SHIQ language that permits storing the
content of the ABox externally in a database and answers
instance check and instance retrieval queries by transform-
ing the KB into a Prolog program. TRILL differs from these
works for the considered DL and from DLog for the capa-
bility of answering general queries.

A different approach is shown in (Ricca et al. 2009), who
introduced a system for reasoning on a logic-based ontology
representation language, called OntoDLP, which is an exten-
sion of (disjunctive) ASP and can interoperate with OWL.
This system, called OntoDLV, rewrites the OWL KB into the
OntoDLP language, can retrieve information directly from
external OWL ontologies and answers queries by using ASP.
OntoDLV cannot find the set of explanations thus it is not ap-
plicable to DISPONTE KBs. All the presented systems are
not able to compute the probability of queries.

Bruynooghe et al. (2010) presented FOProbLog, an ex-
tension of ProbLog where a program contains a set of prob-
abilistic facts, i.e. facts annotated with probabilities, and a
set of general clauses which can have positive and negative
probabilistic facts in their body. Each fact is assumed to be
probabilistically independent. FOProbLog follows the dis-
tribution semantics and exploits BDDs to compute the prob-

ability of queries. FOProblog is a reasoner for FOL that is
not tailored to DLs, so the algorithm could be suboptimal for
them.

Calı̀ et al. (2009) combine DLs and logic programs in or-
der to integrate ontologies and rules. They use a tightly cou-
pled approach to (probabilistic) disjunctive description logic
programs. They define a description logic program as a pair
(L,P ), where L is a DL KB and P is a disjunctive logic
program which contains rules on concepts and roles of L.
P may contain probabilistic alternatives in the style of ICL
(Poole 1997). Interpretations assign a probability to ground
atoms, in the style of Nilsson probabilistic logic (Nilsson
1986). Queries can be answered by finding all answer sets.
Differently from (Calı̀ et al. 2009), in DISPONTE interpre-
tations are not probabilistic and they are assigned a probabil-
ity, instead of being a mapping from atoms to probabilities.

In (Gavanelli et al. 2015a) and (Gavanelli et al. 2015b),
we addressed representation and reasoning for Datalog±
ontologies in an Abductive Logic Programming frame-
work, with existential and universal variables, and Con-
straint Logic Programming constraints in rule heads. The un-
derlying abductive proof procedure can be directly exploited
as an ontological reasoner for query answering and consis-
tency check.

Conclusions
In this paper we have presented the algorithm TRILL for
reasoning on SHOIN KBs and the algorithm TRILLP for
reasoning on ALC KBs. The experiments performed show
that Prolog is a viable language for implementing DL rea-
soning algorithms and that their performances are compara-
ble with those of a state-of-art reasoner such as BUNDLE.

In the future we plan to apply various optimizations to
our systems in order to better manage the expansion of the
tableau. In particular, we plan to carefully choose the rule
and node application order. We are also studying an exten-
sion of our systems for managing KBs integrating rules and
DL axioms. Moreover, we plan to exploit TRILL for im-
plementing algorithms for learning the parameters of prob-
abilistic DISPONTE KBs, along the lines of (Bellodi and
Riguzzi 2012; 2013; Riguzzi et al. 2014).
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Baader, F., and Peñaloza, R. 2010a. Automata-based axiom
pinpointing. J. Autom. Reasoning 45(2):91–129.
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