
Combining Rules and Ontologies Via Parametrized Logic Programs

Ricardo Gonçalves
NOVA LINCS

Faculdade de Ciências e Tecnologia
Universidade NOVA de Lisboa

Abstract
Parametrized logic programs are very expressive
logic programs that generalize normal logic pro-
grams under the stable model semantics, by allow-
ing complex formulas of a parameter logic to ap-
pear in the body and head of rules. In this paper we
explore the use of description logics as parameter
logics, and show the expressivity of this framework
for combining rules and ontologies.

Introduction
Parametrized logic programming [Gonçalves and Alferes,
2010] was introduced as an extension of answer set program-
ming [Gelfond and Lifschitz, 1988] with the motivation of
providing a meaning to theories combining both logic pro-
gramming connectives with other logical connectives, and al-
lowing complex formulas using these connectives to appear in
the head and body of a rule. The main idea is to fix a mono-
tonic logic L, called the parameter logic, and build up logic
programs using formulas of L instead of just atoms. The ob-
tained parametrized logic programs have, therefore, the same
structure of normal logic programs, being the only difference
the fact that atomic symbols are replaced by formulas of L.

When applying this framework, the choice of the pa-
rameter logic depends on the domain of the problem to
be modeled. As examples, [Gonçalves and Alferes, 2010]
shows how to obtain the answer-set semantics of logic pro-
grams with explicit negation, a paraconsistent version of it,
and also the semantics of MKNF hybrid knowledge bases
[Motik and Rosati, 2010], using an appropriate choice of
the parameter logic. In [Gonçalves and Alferes, 2012] de-
ontic logic programs are introduced using standard deontic
logic [von Wright, 1951] as the parameter logic. Moreover,
in [Gonçalves and Alferes, 2013] the decidability and imple-
mentation of parametrized logic was discussed.

Parametrized logic programming can thus be seen as a
framework which allows to add non-monotonic rule based
reasoning on top of an existing (monotonic) language. This
view is quite interesting, in particular in those cases where
we already have a monotonic logic to model a problem, but
we are still lacking some conditional or non-monotonic rea-
soning. In these situations, parametrized logic programming
offers a modular framework for adding such conditional and

non-monotonic reasoning, without having to give up of the
monotonic logic at hand.

In recent years, there has been a considerable amount of
effort devoted to combining Description Logics (DLs) with
logic programming non-monotonic rules – see, e.g., related
work in [Eiter et al., 2008; Motik and Rosati, 2010].

In this paper we explore precisely the use of description
logics as parameter logics, and show the expressivity of the
resulting framework for combining rules and ontologies.

Parametrized logic programs
Parametrized logic programs are very expressive logic pro-
grams that generalize normal logic programs under the sta-
ble model semantics, by allowing complex formulas of a pa-
rameter logic to appear in the body and head of rules. In
this section we introduce the syntax and semantics of normal
parametrized logic programs [Gonçalves and Alferes, 2010].

Language
The syntax of a normal parametrized logic program has
the same structure of that of a normal logic program. The
only difference is that the atomic symbols of a normal
parametrized logic program are replaced by formulas of a pa-
rameter logic, which is restricted to be a monotonic logic. Let
us start by introducing the necessary concepts related with the
notion of (monotonic) logic.

Definition 1 A (monotonic) logic is a pair L = 〈L,`L〉
where L is a set of formulas and `L is a Tarskian conse-
quence relation [Wójcicki, 1988] over L, i.e., satisfying the
following conditions, for every T ∪ Φ ∪ {ϕ} ⊆ L,

Reflexivity: if ϕ ∈ T then T `L ϕ;

Cut: if T `L ϕ for all ϕ ∈ Φ, and Φ `L ψ then T `L ψ;

Weakening: if T `L ϕ and T ⊆ Φ then Φ `L ϕ.

When clear from the context we write ` instead of `L.
Let Th(L) be the set of logical theories of L, i.e. the set of
subsets of L closed under the relation `L. One fundamental
characteristic of the above definition of monotonic logic is
that it has as a consequence that, for every (monotonic) logic
L, the tuple 〈Th(L),⊆〉 is a complete lattice with smallest
element the set Theo = ∅` of theorems of L and the greatest
element the set L of all formulas of L. Given a subset A of



L we denote by A`L the smallest logical theory of L that
contains A. A`L is also called the logical theory generated
by A in L.

In what follows we consider fixed a (monotonic) logic
L = 〈L,`L〉 and call it the parameter logic. The formulas
of L are dubbed (parametrized) atoms and a (parametrized)
literal is either a parametrized atom ϕ or its negation not ϕ,
where as usual not denotes negation as failure. We dub de-
fault literal those of the form not ϕ.

Definition 2 A normal L parametrized logic program is a set
of rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm (1)

where ϕ,ψ1, . . . , ψn, δ1, . . . , δm ∈ L.
A definite L parametrized logic program is a set of rules

without negations as failure, i.e. of the form ϕ← ψ1, . . . , ψn

where ϕ,ψ1, . . . , ψn ∈ L.

As usual, the symbol ← represents rule implication, the
symbol “,” represents conjunction and the symbol not repre-
sents default negation. A rule as (1) has the usual reading that
ϕ should hold whenever ψ1, . . . , ψn hold and δ1, . . . , δm are
not known to hold. If n = 0 and m = 0 then we just write
ϕ←.

Given a rule r of the form (1), we define head(r) = ϕ,
body+(r) = {ψ1, . . . , ψn}, body−(r) = {δ1, . . . , δm} and
body(r) = body+(r) ∪ body−(r). Given a parametrized
logic program P we define form(P) to be the set of all
formulas of the parameter language L appearing in P , i.e.,
form(P) =

⋃
r∈P({head(r)} ∪ body(r)). We also define

the set head(P) = {head(r) : r ∈ P}.

Semantics
Given this general language of parametrized logic programs,
we define its stable model semantics, as generalization of the
stable model semantics [Gelfond and Lifschitz, 1988] of nor-
mal logic programs.

In the traditional approach an interpretation is just a set
of atoms. In a parametrized logic program, since we substi-
tute atoms by formulas of a parameter logic, the first idea is
to take sets of formulas of the parameter logic as interpreta-
tions. The problem is that, contrary to the case of atoms, the
parametrized atoms are not independent of each other. This
interdependence is governed by the consequence relation of
the parameter logic. For example, if we take classical propo-
sitional logic (CPL) as the parameter logic, we have that if the
parametrized atom p ∧ q is true then so are the parametrized
atoms p and q. If we take, for example, standard deontic logic
SDL [von Wright, 1951] as parameter, we have that, since
O(p ∨ q),O(¬p) `SDL O(q), any SDL logical theory con-
taining both O(p ∨ q) and O(¬p) also contains O(q).

To account for this interdependence, we use logical the-
ories (sets of formulas closed under the consequence of the
logic) as the generalization of interpretations, thus capturing
the above mentioned interdependence.

Definition 3 A (parametrized) interpretation is a logical the-
ory of L.

Definition 4 An interpretation T satisfies a rule

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

if ϕ ∈ T whenever ψi ∈ T for every i ∈ {1, . . . , n} and
δj /∈ T for every j ∈ {1, . . . ,m}.

An interpretation is a model of logic program P if it sat-
isfies every rule of P . We denote by ModL(P ) the set of
models of P .

The ordering over interpretations is the usual one: If T1
and T2 are two interpretations then we say that T1 ≤ T2 if
T1 ⊆ T2. Moreover, given such ordering, minimal and least
interpretations may be defined in the usual way.

As in the case of non parametrized programs, we start
by assigning semantics to definite parametrized programs.
Recall that the stable model of a definite logic program
is its least model. In order to generalize this definition to
the parametrized case we need to establish that the least
parametrized model exists for every definite L parametrized
logic program.

Theorem 1 Every definiteL parametrized logic program has
a least model.

We denote by SLP the least model of a definite program P .
It is important to note that Theorem 1 holds for every

choice of the parameter logic L.
The stable model semantics of a normal L parametrized

logic program is defined using a Gelfond-Lifschitz like oper-
ator.

Definition 5 Let P be a normal L parametrized logic pro-
gram and T an interpretation. The GL-transformation of P
modulo T is the program P

T obtained from P by performing
the following operations:

• remove from P all rules which contain a literal not ϕ
such that T `L ϕ;

• remove from the remaining rules all default literals.

Since P
T is a definite L parametrized program, it has an

unique least model J . We define Γ(T ) = J .

Stable models of a parametrized logic program are then
defined as fixed points of this Γ operator.

Definition 6 An interpretation T of an L parametrized logic
program P is a stable model of P iff Γ(T ) = T . A formula ϕ
is true under the stable model semantics, denoted by P �SMS

ϕ iff it belongs to all stable models of P .

An important feature of parametrized logic programming
is that its stable model semantics is independent of the se-
mantics of the parameter logic, since the central concept is
the consequence relation of the parameter logic.

Let us now show an example of how parametrized logic
programs can be used to combine a monotonic formalism
with a non-monotonic one. We choose three different logics
over the same propositional language.

Example 1 (Propositional logic programs) Let us now
consider a full propositional language L built over a set
P of propositional symbols using the usual connectives
(¬,∨,∧,⇒). Many consequence relations can be defined



over this language. We present three interesting exam-
ples: classical logic, Belnap’s paraconsistent logic and
intuitionistic logic. Consider the following programs:

P1

{
p← ¬q
p← q

P2 { p← ¬q ∨ q

P3

{
q ←
(q ∨ s)⇒ p←
r ← p

P4


r ←
¬p←
(p ∨ q)← r
s← q

P5 { p← not q, not ¬q P6 { p← not (q ∨ ¬q)

Let L = 〈L,`CPL〉 be Classical Propositional Logic
(CPL) over the language L. Let us study the semantics of P1.
Note that every logical theory of CPL that does not contain
neither p nor ¬p satisfies P1. In particular, the set Taut of
tautologies of CPL is a model of P1. So, SCPL

P1
= Taut.

This means that p,¬p, q,¬q /∈ SCPL
P1

. We also have that
SCPL
P2

= {p}`. So, in the case of P2 we have that p ∈ SCPL
P2

.
Also, we have that r ∈ SCPL

P3
and s ∈ SCPL

P4
.

In the case of P5 its stable models are the theories of CPL
that contain p and do not contain q and ¬q. Therefore, we can
conclude that p ∈ SCPL

P5
. In the case of P6, since (p ∨ ¬p) ∈

T for every logical theory T of CPL we can conclude that
the only stable model of P6 is the set Theo of theorems of
CPL. Therefore p /∈ SCPL

P6
.

Consider now L = 〈L,`4〉 the 4-valued Belnap paracon-
sistent logic Four. Consider the program P4. Contrarily to
the case of CPL, in Four it is not the case that ¬p, (p∨ q) `4
q. Therefore we have that q, s /∈ SFour

P4
.

Let now L = 〈L,`IPL〉 be the propositional intuitionistic
logic IPL. It is well-known that q ∨ ¬q is not a theorem of
IPL. Therefore, considering program P2 we have SIPL

P2
=

∅`IPL . So, contrarily to the case of CPL, we have that p /∈
SIPL
P2

. Using the same idea for program P6 we can conclude,
contrarily to the case of CPL, that p ∈ SIPL

P6
.

Combining rules and ontologies
In this section we discuss the use of description logics as
parameter logic in the framework of parametrized logic pro-
gramming. We will then illustrate the expressivity of the re-
sulting framework to combine non-monotonic rules and on-
tologies.

In what follows, and for simplicity, we use description
logic ALC [Schmidt-Schaubß and Smolka, 1991]. We start
by briefly recalling the syntax and semantics of ALC. For a
more general and thorough introduction to DLs we refer to
[Baader et al., 2010]. The language of ALC is defined over
countably infinite sets of concept names NC, role names NR,
and individual names NI as shown in the upper part of Table 1.
Building on these, complex concepts are introduced in the
middle part of Table 1, which, together with atomic concepts,
form the set of concepts. We conveniently denote individuals
by a and b, (atomic) roles by R and S, atomic concepts by A
andB, and concepts byC andD. All expressions in the lower

Table 1: Syntax and semantics of ALC.
Syntax Semantics

atomic concept A ∈ NC AI ⊆ ∆I

atomic role R ∈ NR RI ⊆ ∆I ×∆I

individual a ∈ NI aI ∈ ∆I

top > ∆I

bottom ⊥ ∅

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

complement ¬C ∆I \ CI

existential ∃R.C {x ∈ ∆I | ∃y ∈ ∆I :

restriction (x, y) ∈ RI ∧ y ∈ CI}
universal ∀R.C {x ∈ ∆I | ∀y ∈ ∆I :

restriction (x, y) ∈ RI ⇒ y ∈ CI}

concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

part of Table 1 are axioms. A concept equivalence C ≡ D is
an abbreviation for C v D and D v C. Concept and role as-
sertions are ABox axioms and all other axioms TBox axioms,
and an ontology is a finite set of axioms.

The semantics of ALC is defined in terms of interpreta-
tions I = (∆I , I), which consist of a non-empty domain
∆I and an interpretation function I . The latter is defined
for (arbitrary) concepts, roles, and individuals as in Table 1.
Moreover, an interpretation I satisfies an axiom α, written
I |= α, if the corresponding condition in Table 1 holds. If I
satisfies all axioms in an ontology O, then I is a model of O,
written I |= O. If O has at least one model, then it is called
consistent, otherwise inconsistent. Also, O entails axiom α,
written O |= α, if every model of O satisfies α.

Given the consequence relation of ALC we can now illus-
trate how ALC can be used as parameter logic.
Example 2 The following program (P1) is an adaptation of
an example taken from [Motik and Rosati, 2007], which uses
MKNF knowledge bases to combine rules and ontologies.
The scenario is about determining the car insurance premium
based on various information about the driver.

NotMarried ≡ ¬Married←
NotMarried v HighRisk ←
∃Spouse.> vMarried←

NotMarried(x)← p(x), not Married(x)

Discount(x)← Spouse(x, y), p(x), p(y)

p(Jonh)←



Note that in parametrized logic programming the combi-
nation of an ontology with a rule system can be done in a
natural way, simply by adding the ontology elements as facts
of the rule system. As usual in logic programming, variables
in rules stand for all their possible instantiations by individ-
uals appearing in the program.

Program P1 can be rewritten in order to remove its first
rule, which is nothing but an artificial tool to overcome the
impossibility of having complex DL formulas in the head of
MKNF rules (in this case, having the classical negation of
an atom in a head). Moreover, we may also add bodies to
the facts coming from the ontology. E.g. we can add a non-
monotonic condition to the second statement of P1 above, to
state that non married are only considered high-risk in non
exceptional periods, obtaining P2:

¬Married v HighRisk ← not exceptionalPeriod

∃Spouse.> vMarried←
¬Married(x)← p(x), not Married(x)

Discount(x)← Spouse(x, y), p(x), p(y)

p(Jonh)←
Let us now study the stable model semantics of this pro-

gram. We should again stress that such stable model seman-
tics does not depend on the semantics ofALC, but only on its
consequence relation. If I is a 2-valued interpretation such
that I(Married(Jonh)) = 1 then Γ(I) is the least model of
the following program P2

I :

¬Married v HighRisk ←
∃Spouse.> vMarried←

Discount(x)← Spouse(x, y), p(x), p(y)

p(Jonh)←

It is clear that the smallest model of P2

I does not con-
tain Married(Jonh), and so, such interpretation I cannot
be a stable model. Therefore, every stable model must satisfy
¬Married(Jonh) and consequently HighRisk(Jonh).

Consider now program P3 obtained by adding to P2

the following facts: p(Bill) ←, ∃Spouse.>(Bill) ←,
and exceptionalPeriod ←. Note that, although ev-
ery stable model now contains ¬Married(John), we
no longer conclude HighRisk(Jonh) since we have
exceptionalPeriod. Every stable model of P3 contains
Married(Bill). So, the Stable Model Semantics of P3 does
not entail ¬Married(Bill) nor HighRisk(Bill).

Consider now program P4 obtained by adding to P2 the
facts: Spouse(Bob,Ann) ←, p(Bob) ←, and p(Ann) ←.
Every stable model of P4 contains Discount(Bob), and so it
entails Discount(Bob).

Conclusions
In this paper we have discussed the use of the frame-
work of parametrized logic programming for combining non-
monotonic rules and ontologies. This approach is quite ex-
pressive since it allows complex DL axioms to appear both in
the body and in the head of non-monotonic rules.

In [Gonçalves and Alferes, 2010] the authors show how
parametrized logic programming can capture the semantics
of MKNF hybrid knowledge bases [Motik and Rosati, 2010]
by an appropriate choice of the parameter logic. As future
work we aim to study the relation between parametrized logic
programs and other frameworks for combining rules and on-
tologies, e.g., the DL-programs of [Eiter et al., 2008].

Aknowledgments
Ricardo Gonçalves was supported by FCT under project
ERRO (PTDC/EIA-CCO/121823/2010).

References
[Baader et al., 2010] Franz Baader, Diego Calvanese, Deb-

orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The description logic handbook, theory, im-
plementation, and applications (2nd edition). Cambridge
University Press, 2010.

[Eiter et al., 2008] Thomas Eiter, Giovambattista Ianni,
Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with
description logics for the semantic web. Artif. Intell.,
172(12-13):1495–1539, 2008.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. pages 1070–1080. MIT Press, 1988.

[Gonçalves and Alferes, 2013] Ricardo Gonçalves and
José Júlio Alferes. Decidability and implementation
of parametrized logic programs. In Pedro Cabalar and
Tran Cao Son, editors, LPNMR, volume 8148 of LNCS,
pages 361–373. Springer, 2013.

[Gonçalves and Alferes, 2010] R. Gonçalves and J. J.
Alferes. Parametrized logic programming. In T. Janhunen
and I. Niemelä, editors, JELIA, volume 6341 of LNCS,
pages 182–194. Springer, 2010.

[Gonçalves and Alferes, 2012] Ricardo Gonçalves and
José Júlio Alferes. An embedding of input-output logic
in deontic logic programs. In Thomas Ågotnes, Jan
Broersen, and Dag Elgesem, editors, DEON, volume 7393
of LNCS, pages 61–75. Springer, 2012.

[Motik and Rosati, 2007] Boris Motik and Riccardo Rosati.
A faithful integration of description logics with logic pro-
gramming. In IJCAI, pages 477–482, 2007.

[Motik and Rosati, 2010] B. Motik and R. Rosati. Reconcil-
ing description logics and rules. J. ACM, 57(5), 2010.

[Schmidt-Schaubß and Smolka, 1991] Manfred Schmidt-
Schaubß and Gert Smolka. Attributive concept de-
scriptions with complements. Artif. Intell., 48(1):1–26,
1991.

[von Wright, 1951] G. H. von Wright. Deontic logic. Mind,
60:1–15, 1951.

[Wójcicki, 1988] R. Wójcicki. Theory of Logical Calculi.
Synthese Library. Kluwer Academic Publishers, 1988.


