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Abstract— The bug-fix time i.e. the time to fix a bug after the 

bug was introduced is an important factor for bug related 

analysis, such as measuring software quality or coordinating 

development effort during bug triaging. Previous  work has 

proposed  many bug-fix time prediction models that use various 

bug attributes (number of developers who participated in fixing 

the bug, bug severity, bug-opener’s reputation, number of 

patches) for predicting the fix time of a newly reported bug. In 

this paper, we have investigated the associations between bug 

attributes and the bug-fix time. We have proposed two 

approaches to apply association rule mining. In the first 

approach, we have used Apriori algorithm to predict the fix time 

of a newly coming bug based on the bug’s severity, priority 

summary terms and assignee. In second approach, we have used 

k-means clustering method to get groups of correlated variables

followed by association rule mining inside each cluster.  We have

collected 1,695 bug reports of three products namely

AddOnSDK, Thunderbird and Bugzilla of Mozilla open source

project to mine association rules. Results show that for given set

of bug attributes, we can predict the bug-fix time for newly

coming bugs which will help in software quality improvement. A 

large number of association rules having high confidence and

support with higher severity and priority as antecedents and

short bug-fix time as consequent show that more important bugs

are fixed without any delay. This information is useful in

determining software quality. We also observe that our approach

for bug-fix time prediction will be helpful in bug triaging by

assigning a bug to the most potential and experienced assignee

who will solve the bug in minimum time period. This will again

help in software quality improvement. In nutshell, we can say

that association rule mining based bug-fix time prediction can

help managers to improve the software development process.

Keywords—Bug-fix time; Apriori algorithm; Association rule 

mining; k-means Clustering  

I. INTRODUCTION 

Bug-fix time prediction is useful in software quality 
prediction [1] or in coordinating effort during bug triaging to 
maintain the software systems effectively [2]. In literature 
efforts have been made to construct many bug-fix time 
prediction models, based on machine learning algorithms, on 
both open source and commercial projects [3-5].  

A bug report is characterized by many attributes like 
summary, priority, severity and assignee. The textual 
description of a bug reported by users is known as its 
summary. Bug priority tells about the importance and order of 
bug fixing in comparison of other bugs with P1 as the highest 
and P5 as the lowest priority. The bug severity can be defined 
as: (i) the impact of bugs on the functionality of the software 
(business point of view) (ii) the impact of bugs on developer 
means how much time a bug will take in fixing. In this paper, 

we consider the bug severity from the business point of view. 
It is measured according to different levels from 1(blocker) to 
7(trivial). These levels are defined in repositories as 1 for 
highest and 7 for lowest. Assignee is a person to whom the 
bug is assigned to work on. 

To the best of our knowledge, no approach has been 
proposed till now to mine association rules among different 
bug attributes for bug-fix time prediction. In software 
development this can help the managers to improve the 
process in terms of cost and resources. We have proposed an 
approach for bug fix time prediction based on other bug 
attributes namely summary terms, priority, severity and 
assignee. We have applied association rule mining by using 
Apriori algorithm and k-means clustering followed by Apriori 
algorithm. For experiment of the proposed approach we have 
used 1,695 bug reports of AddOnSDK, Thunderbird and 
Bugzilla products of Mozilla open source project. Association 
rule mining was first explored by [7] which is the base of our 
prediction method.  

In a database, the interesting correlations, frequent 
patterns, associations or casual structures among the attributes 
can be discovered by using association rule mining. Let C is a 
database of transactions and each transaction T is a set of 
items. An association rule is an expression A⇒ D, where A is 
called antecedent and D  is called consequent. A⇒ D reveals 
that whenever a transaction T contains A, then T also contains 
D with a specified confidence and support. The confidence of 
a rule is defined as percentage/fraction of the number of 
transactions that contain A∪D to the total number of 
transactions that contain A. It is a measure of the rule’s 
strength or certainty [8]. Support of a rule is defined as the 
percentage/fraction of transactions that contain A∪D to the 
total number of transactions in the database. It corresponds to 
statistical significance or usefulness of the rule. Minimum 
support count is defined as the number of transactions required 
for an item set to satisfy minimum support. Association rule 
mining generates all association rules that have a support 
greater than minimum support min.Supp(A⇒D), in the 
database, i.e., the rules are frequent. The rules must also have 
confidence greater than minimum confidence min.Conf(A⇒ 
D), i.e., the rules are strong.  

In a wide range of science and business areas association 
rule mining can be applied successfully. Several performance 
studies have resulted in better accuracy for associative 
classification than state-of-the-art classification methods [9-
18].  
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Clustering is a partitioning method in which a group of 
data points is partitioned into a small number of clusters. In k-
means clustering algorithm, the function k-means partitions 
data into k mutually exclusive clusters, and returns the index 
of the cluster to which it has assigned each observation. 
Unlike hierarchical clustering, k-means clustering operates on 
actual observations (rather than the larger set of dissimilarity 
measures), and creates a single level of clusters. The 
distinctions mean that k-means clustering is often more 
suitable than hierarchical clustering for large amount of data.  

The successful use of association rule mining in various 
fields motivates us to apply it to the open source software bug 
data set [9-18].  

The organization of rest of the paper is as follows. Section 
2 gives the description and preprocessing of data. Section 3 
describes the model building. Section 4 presents the results. 
Section 5 discusses about related work. Section 6 tells about 
the threats to validity and finally section 7 concludes the paper 
with future research directions.  

II. DATA SETS DESCRIPTION AND DATA PREPROCESSING 

We collected bug reports from Bugzilla bug tracking 
system with status “verified”, “resolved” and “closed” and 
resolution “fixed” because only these types of bug reports 
contain the consistent information for the experiment. We 
have compared and validated the collected bug reports against 
general change data (i.e. CVS or SVN records). Number of 
bug reports collected in the observed period is given in table I.  

TABLE I. PRODUCTWISE NUMBER OF BUG REPORTS  

Product Bug reports Observation period 

Bugzilla 964 Sept. 1994-June 2013 

Thunderbird 115 Apr. 2000-Mar. 2013 

Add-on SDK 616 May 2009-Aug. 2013 

In order to apply association rule mining, we have 
quantified different bug attributes namely severity, priority, 
summary, assignee and fix time. 

We have preprocessed the bug summary attribute to 
extract terms in RapidMiner tool [19] with the help of 
following steps:  

Tokenization: the process of breaking a stream of text into 

words, phrases, symbols, or other meaningful elements called 

tokens is called ‘tokenization’. We have considered a word or 

a term as a token.  

Stop Word Removal: words which are commonly used in 

the text but do not carry useful meaning like prepositions, 

conjunctions, articles, verbs, nouns, pronouns, adverbs, 

adjectives are called stop words. We have removed all the stop 

words from bug summary.  

Stemming to base stem: the process of converting derived 

words to their base word (stem) is known as stemming. 

Standard Porter stemming algorithm can be utilized for 

stemming [20].  

Feature Reduction: tokens of minimum 3 and maximum 
40 occurrences have been considered because most of the data 
mining algorithm may not be able to handle large feature sets.  

Weight by Information Gain or InfoGain: it is helpful in 
determining the importance or relevance of the term. It helps 
in selection of top few terms in the data set.  

We have made a workflow in RapidMiner to extract a set 
of terms from bug summary attribute. We have taken tokenize 
mode as non-letters and in filter tokens parameter we have set 
min chars value as 3 and max chars value as 50. We used 
English dictionary to filter the stop words.  

III. MODEL BUILDING

Our study consists of following steps: 

1. Data Extraction

a. From CVS repository:
https://bugzilla.mozilla.org/, downloaded bug
reports for 3 products of Mozilla open source
project.

b. Store the downloaded bug reports in excel file
for further processing.

2. Data Pre-processing

a. In RapidMiner developed a workflow to extract
individual terms of bug summary.

3. Data Preparation

a. For different severity and preiority levels, we

have taken numeric values from 1 to 7 and from

8 to 12.

b. Assigned a numeric value from 13 to 43 to top

30 terms based on InfoGain.

c. For each assignee take a unique numeric value.

d. Filtered bug-fix time for 0 to 99 days as

maximum number of bugs has fix time in this

range only. Define three bug-fix time ranges: 0

to19 days, 20 to 64 days and 65 to 99 days.

Assign a numeric value from 1 to 3 to these three

ranges.

4. Association Rule Mining and Clustering

a. ARMADA (Association Rule Miner And

Deduction Analysis) is a Data Mining tool of

MATLAB software that extracts Association

Rules from numerical data files using a variety

of selectable techniques and criteria [21]. We

have applied Apriori algorithm by using

ARMADA tool. As a result we get association

rules for bug-fix time prediction with severity,

priority, summary terms and assignee as

antecedents.

b. We have applied k-means clustering algorithm in

SPSS(Statistical Package for Social Sciences)

software followed by Apriori algorithm for each

resulting cluster by using MATLAB software
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with minimum confidence 20% and minimum 

support 7%. 

5. Testing and Validation 

Assess the resulting association rules in terms of different 
performance measures namely support and confidence.  

IV. RESULTS AND DISCUSSION 

In this paper, we have proposed two approaches to apply 
association mining. In first approach, we have mined the 
association rules for bug-fix time prediction with bug severity, 
priority, summary terms and assignee as antecedents by 
applying Apriori algorithm of ARMADA tool in MATLAB 
software. We have considered association rules with minimum 
confidence 20% and minimum support 7% for AddOnSDK 
and Bugzilla products. In thunderbird product we have very 
less number of bug reports as a result of which we get 
association rules with minimum confidence 20% and support 
3%. All the 3 datasets have more than 100 rules. For this 
reason, we do not list them all, but instead we present top 5 
rules based on the highest confidence. In table II we have 
presented top five association rules of AddOnSDK product for 
three defined ranges. 

TABLE II.  TOP FIVE ASSOCIATION RULES FOR ADDONSDK 

Association Rules (minimum support=7%, minimum 

confidence=20%) 

Bug-fix time 0-19 days 

1. Priority {P1} ᴧ Assignee { Alexandre Poirot}  ᴧ Term {con} ᴧ 
Term {test} ᴧ Term {content} ᴧ Term{fail}  

⇒ Bug-fix time {0-19 days} @ (10%, 100%) 

2. Severity {Major}  ᴧ Priority {P1} ᴧ Term {con} ᴧ Term {test} ᴧ 

Term {content} ᴧ Term {fail} 

⇒ Bug-fix time {0-19 days} @ (8%, 100%) 

3. Severity {Major}  ᴧ Priority {P1} ᴧ Assignee {Alexandre Poirot}  

ᴧ Term {con} ᴧ Term{content} ᴧ Term{fail} 

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

4. Priority{P1} ᴧ Assignee { Alexandre Poirot }  ᴧ Term {con} ᴧ 
Term{content} ᴧ Term{fail} 

⇒ Bug-fix time {0-19 days} @ (11%, 100%) 

5. Severity{Major}  ᴧ Priority {P1} ᴧ Term{con} ᴧ Term {content} 

ᴧ Term {fail} 

⇒ Bug-fix time {0-19 days} @ (9%, 100%) 

Bug-fix time 20-64 days 

1. Severity {Major} ᴧ Priority {P1} ᴧ Term {win} ᴧ Term 
{window} ᴧ Term {updat} ᴧ Term {privat}  

⇒ Bug-fix time {20-64 days} @ (7%, 100%) 

2. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {doc} ᴧ 

Term {document} ᴧ Term {page}  

⇒ Bug-fix time {20-64 days} @ (7%, 100%) 

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod} ᴧ Term {modul} 

ᴧ Term {privat} 

⇒ Bug-fix time {20-64 days} @ (7%, 100%) 

4. Severity {Major} ᴧ Term {mod} ᴧ Term {modul} ᴧ Term 
{privat} 

⇒ Bug-fix time {20-64 days} @ (8%, 100%) 

5. Severity {Major} ᴧ Term {modul} ᴧ Term {privat} 

⇒ Bug-fix time {20-64 days} @ (8%, 100%) 

Bug-fix time 65-99 days 

1. Severity {Major} ᴧ Term {text}  

   ⇒ Bug-fix time {65-99 days} @ (9%, 31%) 

2. Term {text}  

   ⇒ Bug-fix time {65-99 days} @ (9%, 29%) 

3. Severity {Major} ᴧ Term {con} ᴧ Term {text} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 27%) 

4. Term {con} ᴧ Term {text} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 25%) 

5. Priority {P1} ᴧ Term {tab}  

   ⇒ Bug-fix time {65-99 days} @ (8%, 23%) 

 

The first association rule is a six antecedent rule, which 
reveals that a bug with priority P1, assignee Alexander Poirot 
and summary containing terms con, test, content and fail can 
have a fix time of 0 to 19 days with a significance of 10 
percent and a certainty of 100 percent. Second association rule 
means that a bug with severity Major, priority P1, and 
summary containing terms con, test, content and fail can have 
a fix time of 0 to 19 days with a significance of 8 percent and 
a certainty of 100 percent.  Third rule shows that a bug with 
severity Major, priority P1 and summary containing terms 
con, content and fail can have a fix time of 0 to 19 days with a 
significance of 7 percent and a certainty of 100 percent.  Rule 
four reveals that 11 percent of the bugs in the bug data set 
have priority P1, assignee Alexandre Poirot, summary 
containing terms con, content, fail and bug-fix time of 0 to 19 
days. 100 percent of the bugs in the bug data set that have 
priority P1, assignee Alexandre Poirot, summary containing 
terms con, content, fail also have bug-fix time of 0-19 days. 
The fifth rule shows that the bug having severity Major, 
priority P1 and summary containing terms con, content and 
fail can have bug-fix time of 0 to 19 days with a significance 
of 9 percent and a certainty of 100 percent. Similarly we have 
interpreted association rules of other bug-fix time ranges.  

We have shown top five association rules to predict bug-
fix time for Thunderbird product in table III. 

TABLE III.   TOP FIVE ASSOCIATION RULES FOR THUNDERBIRD 

Association Rules (minimum support=3%, minimum 

confidence=20%) 

Bug-fix time 0-19 days 

1. Severity {Major} ᴧ Term {add} ᴧ Term {icon} ᴧ Term 
{address} 

   ⇒ Bug-fix time {0-19 days} @ (3%, 100%) 

2. Severity {Major} ᴧ Priority {P3} ᴧ Term {text} ᴧ Term {box} 

   ⇒ Bug-fix time {0-19 days} @ (3%, 100%) 

3. Severity {Major} ᴧ Priority {P3} ᴧ Term {window} ᴧ Assignee 

{Andreas Nilsson} 

   ⇒ Bug-fix time {0-19 days} @ (3%, 100%) 

4. Term {tool} ᴧ Term {toolbar} ᴧ Assignee {Blake Winton} 

   ⇒ Bug-fix time {0-19 days} @ (3%, 100%) 

5. Term {config} ᴧ Term {auto} ᴧ Assignee {Blake Winton} 

   ⇒ Bug-fix time {0-19 days} @ (3%, 100%) 

Bug-fix time 20-64 days 

1. Severity {Major} ᴧ  Assignee {David} ᴧ Term {move} ᴧ Term 

{remov} 

   ⇒ Bug-fix time {20-64 days} @ (3%, 100%) 

2. Term {add} ᴧ Term {pre} 

   ⇒ Bug-fix time {20-64 days} @ (3%, 100%) 

3. Term {mail} ᴧ Term {move} ᴧ Term {remov} 

   ⇒ Bug-fix time {20-64 days} @ (3%, 75%) 

4. Assignee {David} ᴧ Term {move} 

   ⇒ Bug-fix time {20-64 days} @ (3%, 75%) 
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5. Assignee {David} ᴧ Term {messag}

⇒ Bug-fix time {20-64 days} @ (3%, 75%) 

Bug-fix time 65-99 days 

1. Priority {P1} ᴧ Term {mail}

⇒ Bug-fix time {65-99 days} @ (5%, 63%) 

2. Severity {Major} ᴧ Term {thunderbird} ᴧ Assignee {Mark 

Banner}

⇒ Bug-fix time {65-99 days} @ (3%, 60%) 

3. Severity {Major}  ᴧ Assignee {Mark Banner}

⇒ Bug-fix time {65-99 days} @ (4%, 50%) 

4. Assignee {Mark Banner}

⇒ Bug-fix time {65-99 days} @ (5%, 38%) 

5. Severity {Major} ᴧ Term {mail}

⇒ Bug-fix time {65-99 days} @ (3%, 38%) 

The first association rule is a four antecedent rule, which 
reveals that a bug with severity Major, and summary 
containing terms add, icon and address can have a fix time of 
0 to 19 days with a significance of 3 percent and a certainty of 
100 percent. Second association rule means that a bug with 
severity Major, priority P3, and summary containing terms 
text and box can have a fix time of 0 to 19 days with a 
significance of 3 percent and a certainty of 100 percent.  Third 
rule shows that a bug with severity Major, priority P3 and 
summary containing terms window and assignee Andreas 
Nilssson can have a fix time of 0 to 19 days with a 
significance of 3 percent and a certainty of 100 percent.  Rule 
four reveals that 3 percent of the bugs in the bug data set have 
summary containing terms tool, toolbar, assignee Blake 
Winton and bug-fix time of 0 to 19 days. 100 percent of the 
bugs in the bug data set  that have  summary containing terms 
tool, toolbar and assignee Blake Winton also have bug-fix 
time of 0-19 days. The fifth rule shows that the bug with 
summary containing terms config, auto and assignee   Blake 
Winton can have bug-fix time of 0 to 19 days with a 
significance of 3 percent and a certainty of 100 percent. 
Similarly we have interpreted association rules of other bug-
fix time ranges.  

We have shown top five association rules to predict bug-
fix time for Bugzilla product in table IV. 

TABLE IV.  TOP FIVE ASSOCIATION RULES FOR BUGZILLA  

Association Rules (minimum support=7%, minimum 

confidence=20%) 

Bug-fix time 0-19 days 

1. Severity {Major} ᴧ  Priority {P1} ᴧ Term {check} ᴧ Term {set}

ᴧ Term { setup } ᴧ Term { checksetup}

⇒ Bug-fix time {0-19 days} @ (11%, 100%) 

2. Priority {P1} ᴧ  Term {ing} ᴧ Term {check} ᴧ Term {set} ᴧ 
Term {setup} ᴧ Term {checksetup}

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

3. Assignee {Daniel Buchner}  ᴧ Term{bug} ᴧ Term{hang} ᴧ 

Term{chang}

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

4. Priority{P3} ᴧ Term{bug} ᴧ Term{ing} ᴧ Term{bugzilla}

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

5. Priority{P3} ᴧ Assignee {Daniel Buchner} ᴧ Term{hang} ᴧ 

Term {chang}

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

Bug-fix time 20-64 days 

1. Priority {P3} ᴧ Term {cgi} ᴧ Term {edit}

⇒ Bug-fix time {20-64 days}   (8%, 100%) 

2. Priority {P3} ᴧ Term {edit}

 ⇒ Bug-fix time {20-64 days} @ (10%, 67%) 

3. Severity {Major} ᴧ Term {temp} ᴧ Term {templat}

⇒ Bug-fix time {20-64 days} @ (8%, 62%) 

4. Priority {P3} ᴧ Term {user}

⇒ Bug-fix time {20-64 days} @ (8%, 57%) 

5. Severity {Major} ᴧ Term {temp}

⇒ Bug-fix time {20-64 days} @ (8%, 57%) 

Bug-fix time 65-99 days 

1. Assignee {Gervase Markham} ᴧ Term{temp} ᴧ Term{templat}

⇒ Bug-fix time {65-99 days} @ (7%, 39%) 

2. Assignee {Gervase Markham} ᴧ Term{cgi}

⇒ Bug-fix time {65-99 days} @ (7%, 39%) 

3. Assignee {Matthew Barnson}

⇒ Bug-fix time {65-99 days} @ (10%, 38%) 

4. Assignee {Max Kanat-Alexander} ᴧ Term{ing}

⇒ Bug-fix time {65-99 days} @ (9%, 31%) 

5. Assignee {Dawn Endico}

⇒ Bug-fix time {65-99 days} @ (7%, 30%) 

The first association rule is a six antecedent rule, which 
reveals that a bug with severity Major, priority P1and 
summary containing terms check, set, setup and checksetup 
can have a fix time of 0 to 19 days with a significance of 11 
percent and a certainty of 100 percent. Second association rule 
means that a bug with priority P1, and summary containing 
terms check, set, setup and checksetup can have a fix time of 0 
to 19 days with a significance of 7 percent and a certainty of 
100 percent.  Third rule shows that a bug with assignee Daniel 
Buchner and summary containing terms bug, hang and chang 
can have a fix time of 0 to 19 days with a significance of 7 
percent and a certainty of 100 percent.  Rule four reveals that 
7 percent of the bugs in the bug data set have priority P3, 
summary containing terms bug, ing, bugzilla and bug-fix time 
of 0 to 19 days. 100 percent of the bugs in the bug data set 
that have  priority P3 and  summary containing terms bug, ing 
and Bugzilla  also have bug-fix time of 0-19 days. The fifth 
rule shows that a bug with priority P3, assignee Daniel 
Buchner and summary containing terms hang and chang can 
have bug-fix time of 0 to 19 days with a significance of 7 
percent and a certainty of 100 percent. Similarly we have 
interpreted association rules of other bug-fix time ranges.  

In order to analyze the rule length (number of antecedents) 
of association rules, we draw the distribution of association 
rules across all the datasets (Fig. 1 to 3).   

Fig. 1. AddOnSdk association rules (min.supp=7% and min.conf=20%)with 

different rule length  
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Fig. 2. Thunderbird association rules (min.supp=3% and min.conf=20%)with 

different rule length  

Fig. 3. Bugzilla association rules (min.supp=7% and min.conf=20%)with 

different rule length  

Figure 1 to 3 show that we have maximum association 
rules with two antecedents (length 2) across all the datasets.  

We observe that in all products, we have some rules with 
same antecedents and consequent except assignee. These rules 
reveal that for different assignee we have same bug-fix time 
for same values of other attributes. In this case we will prefer 
an assignee with higher confidence value to whom we can 
assign the bug as he is more potential and experienced in 
fixing such type of bugs. In this way the proposed approach 
will help in bug triaging which will help in software quality 
improvement. 

We have observed following rules from AddOnSDK 
product. 

1. Severity {Major} ᴧ Term {test} ᴧ Assignee {Alexandre

Poirot}

⇒ Bug-fix time {0-19 days} @ (16%, 89%)

2. Severity {Major} ᴧ Term {test} ᴧ Assignee {Dave

Townsend}

⇒ Bug-fix time {0-19 days} @ (12%, 71%)

3. Severity {Major} ᴧ Term {test} ᴧ Assignee {Erik Vold}

⇒ Bug-fix time {0-19 days} @ (8%, 50%)

4. Severity {Major} ᴧ  Priority {P1} ᴧ Term {con} ᴧ

Assignee {Will Bamberg}

⇒ Bug-fix time {20-64 days} @ (11%, 65%)

5. Severity {Major} ᴧ  Priority {P1} ᴧ Term {con} ᴧ

Assignee {Alexandre Poirot}

⇒ Bug-fix time {20-64 days} @ (9%, 35%)
First three rules reveals that bugs with severity Major and

summary containing term test have three choices of assignee 

i.e. Alexandre Poirot  or Dave Townsend  or Erik Vold to get
fixed in 0 to 19 days with certainty of 89, 71 and 50 percent
respectively. We observe that the bug should be assigned to
Alexandre Poirot as the rule with this assignee gives highest
certainty. Similarly we can infer from last two rules that we
should assign the bug to Will Bamberg as the rule with this
assignee gives higher certainty. Similar inference we can draw
for other two datasets also.

We observe that in all products we have some rules with 
same antecedents except assignee. These rules reveal that 
different assignee will fix same bugs with same attributes with 
different bug-fix time. In this case, we will prefer an assignee 
with lower fix time in fixing such type of bugs. In this way the 
proposed approach will help in choosing assignee which can 
fix the bug in shortest time. 

We have observed following rules from Bugzilla product. 

1. Severity {Major} ᴧ Assignee {Terry Weissman}

⇒ Bug-fix time {0-19 days} @ (67%, 80%)

2. Severity {Major} ᴧ Assignee {Bradley Baetz}

⇒ Bug-fix time {20-64 days} @ (7%, 44%)

3. Severity {Major} ᴧ Assignee {Max Kanat-Alexander}

⇒ Bug-fix time {65-99 days} @ (8%, 22%)

4. Priority{P1} ᴧ Assignee {Dave Miller}

⇒ Bug-fix time {0-19 days} @ (7%, 78%)

5. Priority{P1} ᴧ Assignee {Max Kanat-Alexander}

⇒ Bug-fix time {20-64 days} @ (11%, 42%)
First three rules reveals that bugs with severity Major can

be assigned to three different assignee: Terry Weissman, 
Bradley Baetz and Max Kanat-Alexander. All the three 
assignee will fix the same bug with severity Major with 
different fix time ranges.  We will preferably assign the bug to 
an assignee who will fix it in minimum time and i.e. Terry 
Weissman. Similarly we can infer from last two rules that we 
should assign the bug to Dave Miller as he will solve the bug 
earliest. Similar inference we can draw for other two datasets 
also. 

In second approach, we have presented clustering based 
association rule mining for bug-fix time prediction. We have 
partitioned the AddOnSDK dataset into 5 clusters using k-
means clustering method. In cluster 1, there is only one data. 
Cluster 2 contains 93 data, cluster 3 contains 379 data, cluster 
4 contains 115 data and cluster 5 contains 28 data. After 
portioning, we have applied Apriori algorithm on each cluster 
with minimum confidence 20% and minimum support 2%.  

Table V presents top five association rules from five 
clusters formed by k-means clustering for AddOnSDK 
product. 

TABLE V. TOP FIVE ASSOCIATION RULES FOR ADDONSDK  

Association Rules (minimum support=2%, minimum 

confidence=20%) 

Bug-fix time 0-19 days 

Cluster 2 

1. Term {con} ᴧ Term {test} ᴧ  Term{fail}

⇒ Bug-fix time {0-19 days} @ (5%, 100%) 

2. Priority {P1} ᴧ Term {con} ᴧ Term {test}

⇒ Bug-fix time {0-19 days} @ (5%, 100%) 
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3. Assignee {Alexandre Poirot}  ᴧ Term {test}  ᴧ Term{fail}  

⇒ Bug-fix time {0-19 days}  @ (5%, 100%) 

4. Priority{P1} ᴧ Assignee { Alexandre Poirot }  ᴧ Term {test}  

   ⇒ Bug-fix time {0-19 days} @ (5%, 100%) 

5. Priority {P1} ᴧ Term{con} ᴧ Term {test} ᴧ Term {fail} 

   ⇒ Bug-fix time {0-19 days} @ (5%, 100%) 

Cluster 3 

1. Priority {P1} ᴧ Term {fire} ᴧ Term {test} ᴧ  Term{firefox}  

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

2. Priority {P1} ᴧ Assignee {Alexandre Poirot}  ᴧ  Term {fail} ᴧ 

Term {test} 

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {test} ᴧ  
Term{firefox} 

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {test} ᴧ Term {fire} 

   ⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

5. Severity {Major} ᴧ Priority{P1} ᴧ  Term {test} ᴧ Term {fire} 

ᴧ  Term{firefox} 

⇒ Bug-fix time {0-19 days} @ (7%, 100%) 

Cluster 4 

1. Severity {Major} ᴧ Priority{P2} ᴧ Term {cfx}  

⇒ Bug-fix time {0-19 days} @ (2%, 100%) 

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {get}  

⇒ Bug-fix time {0-19 days} @ (2%, 100%) 

3. Severity {Major} ᴧ Priority{P2} ᴧ Term {get}  

⇒ Bug-fix time {0-19 days} @ (2%, 100%) 

4. Severity {Major} ᴧ Priority{P2} ᴧ Assignee {Alexandre 
Poirot} ᴧ Term {get} 

⇒ Bug-fix time {0-19 days} @ (2%, 100%) 

5. Severity {Major} ᴧ Priority{P3} ᴧ  Term {fail} 

⇒ Bug-fix time {0-19 days} @ (2%, 100%) 

Cluster 5 

1. Severity {Major} ᴧ  Assignee {Alexandre Poirot} ᴧ  Term 

{con}  ᴧ  Term {content} 

⇒ Bug-fix time {0-19 days} @ (5%, 83%) 

2. Severity {Major} ᴧ  Term {con}  ᴧ  Term {content} 

⇒ Bug-fix time {0-19 days} @ (5%, 71%) 

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {fail}  

⇒ Bug-fix time {0-19 days} @ (6%, 67%) 

4. Priority{P1} ᴧ Term {fail} ᴧ Term {win} ᴧ Term {window} 

⇒ Bug-fix time {0-19 days} @ (5%, 63%) 

5. Severity {Major} ᴧ Priority{P1} ᴧ  Term {fail} ᴧ Term {test} 

⇒ Bug-fix time {0-19 days} @ (5%, 63%) 

Bug-fix time 20-64 days 

Cluster 2 

1. Severity {Major} ᴧ Priority {P4} ᴧ  Assignee {Will Bamberg} 

ᴧ Term {con} ᴧ Term {doc}  

⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

2. Severity {Major} ᴧ Priority {P3} ᴧ  Assignee {Will Bamberg} 

ᴧ Term {updat} ᴧ Term {doc}  

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

3. Severity {Major} ᴧ Priority {P1} ᴧ  Assignee {Will Bamberg} 
ᴧ Term {document} ᴧ Term {doc}  

   ⇒ Bug-fix time {20-64 days} @ (6%, 100%) 

4. Severity {Major} ᴧ  Assignee {Will Bamberg} ᴧ Term {con} 

ᴧ Term {doc}  

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

5. Priority {P3} ᴧ  Assignee {Will Bamberg} ᴧ Term {con} ᴧ 

Term {doc}  

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

Cluster 3 

1. Severity {Major} ᴧ Priority {P1} ᴧ  Assignee {Will Bamberg} 

ᴧ  Term {doc} ᴧ Term {document}  

⇒ Bug-fix time {20-64 days} @ (8%, 62%) 

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {page}  

   ⇒ Bug-fix time {20-64 days} @ (9%, 60%) 

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {tab} 

   ⇒ Bug-fix time {20-64 days} @ (10%, 59%) 

4. Severity {Major} ᴧ  Priority {P2}  Term {mod} 

⇒ Bug-fix time {20-64 days} @ (7%, 54%) 

5. Assignee {Will Bamberg} ᴧ Term {document}   

⇒ Bug-fix time {20-64 days} @ (16%, 53%) 

Cluster 4 

1. Severity {Major} ᴧ Priority{P1} ᴧ Assignee {Will Bamberg} 

ᴧ Term {doc} 

   ⇒ Bug-fix time {20-64 days} @ (2%, 100%) 

2. Severity {Major}  ᴧ Assignee {Will Bamberg} ᴧ Term {doc} 

   ⇒ Bug-fix time {20-64 days} @ (3%, 100%) 

3. Severity {Major} ᴧ Priority {P1} ᴧ Term {doc} 

⇒ Bug-fix time {20-64 days} @ (3%, 100%) 

4. Priority {P1} ᴧ Assignee {Will Bamberg} ᴧ Term {doc}  

   ⇒ Bug-fix time {20-64 days} @ (2%, 100%) 

5. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {updat} 

   ⇒ Bug-fix time {20-64 days} @ (2%, 100%) 

Cluster 5 

1. Severity {Major} ᴧ Term {win} ᴧ Term {window} ᴧ Term 
{updat} ᴧ Term {private} 

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {window} ᴧ Term 

{updat} ᴧ Term {private} 

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {win} ᴧ Term 

{updat} ᴧ Term {private} 

⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod} ᴧ Term 
{modul} ᴧ Term {private} 

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

5. Severity {Major} ᴧ Priority{P1}  ᴧ Term {win} ᴧ Term 

{window} ᴧ Term {updat} ᴧ Term {private} 

   ⇒ Bug-fix time {20-64 days} @ (5%, 100%) 

Bug-fix time 65-99 days 

Cluster 2 

1. Severity {Major} ᴧ Term {tab }  

   ⇒ Bug-fix time {65-99 days} @ (6%, 35%) 

2. Term {tab}  

   ⇒ Bug-fix time {65-99 days} @ (6%, 33%) 

3. Severity {Major} ᴧ Term {window}  

   ⇒ Bug-fix time {65-99 days} @ (5%, 25%) 

4. Severity {Major} ᴧ Term {win}  ᴧ Term {window} 

   ⇒ Bug-fix time {65-99 days} @ (5%, 25%) 

5. Term {window}  

   ⇒ Bug-fix time {65-99 days} @ (5%, 24%) 

Cluster 3 

1. Priority{P1}  ᴧ Term {modul} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 25%) 

2. Severity {Major} ᴧ Priority{P1}  ᴧ Term {modul} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 27%) 

3. Priority{P1}  ᴧ Term {mod} ᴧ Term {modul} 

        ⇒ Bug-fix time {65-99 days} @ (7%, 25%) 

4. Severity {Major} ᴧ Priority{P1}  ᴧ Term {mod} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 21%) 

5. Severity {Major} ᴧ Priority{P1}  ᴧ Term {mod} ᴧ Term 

{modul} 

   ⇒ Bug-fix time {65-99 days} @ (7%, 27%) 

Cluster 4 

1. Severity {Enhancement} ᴧ Priority{P3}  

   ⇒ Bug-fix time {65-99 days} @ (2%, 67%) 

2. Severity {Major}  ᴧ Term {text} 

   ⇒ Bug-fix time {65-99 days} @ (2%, 67%) 

3. Severity {Major} ᴧ Term {sdk} 

   ⇒ Bug-fix time {65-99 days} @ (2%, 40%) 

4. Severity {Major} ᴧ Priority{P1}  ᴧ Term {text} 

   ⇒ Bug-fix time {65-99 days} @ (2%, 67%) 

5. Priority{P1}  ᴧ Term {text}  

⇒ Bug-fix time {65-99 days} @ (2%, 67%) 

Cluster 5 

1. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend 

} ᴧ Term {con} ᴧ Term {add} ᴧ Term {text} 
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⇒ Bug-fix time {65-99 days} @ (2%, 100%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend 

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {text}

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend 

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {add} 

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

4. Priority{P1} ᴧ Term {test} ᴧ Term {add} ᴧ Term {fail} ᴧ 
Term {error} ᴧ Term {addon} 

⇒ Bug-fix time {65-99 days} @ (2%, 67%) 

5. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend 

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {add} ᴧ Term {text}

⇒ Bug-fix time {65-99 days} @ (2%, 100%) 

We observe that, if we apply association mining after 
clustering, we get different association rules. As we are 
partitioning the datasets into clusters, we get association rules 
with decreased support count i.e. 2%. Results also show that, 
the confidence count lies in the range of 21 to 100%.  

We get the similar results for other datasets. 

V. RELATED WORK

In last few years, a number of valuable studies have been 
conducted to address the problem of bug-fix time prediction. 
A study on 72,482 bug reports from nine versions of Linux 
software named Ubuntu has been conducted by [3]. Results 
show that people participating in groups of size ranging from 
1 to 8 users fixed 95% bug reports. The study results in 92% 
linear relationship between the number of people participating 
in fixing a bug report and bug-fix time. The applied linear 
regression model resulted in R

2
 up to 0.98. At attempt has 

been made on 512,474 bug reports of five open source projects 
–Eclipse, Chrome and three products of Mozilla project –
Thunderbird, Firefox and Seamonkey to test the prediction
performance of existing models by using multivariate and
univariate regression [4]. As a result it was found that existing
models have predictive power between 30% and 49% and
more independent attributes can be included. No correlation
was found between bug-fix likelihood, bug-opener’s
reputation and the time it takes to fix a bug.  A model has been
proposed for six projects: Eclipse JDT, Eclipse Platform,
Mozilla Core, Mozilla Firefox, Gnome GStreamer and Gnome
Evolution to predict that how promptly a new bug report will
receive attention [5]. Results show  an improvement in bug-fix
time prediction accuracy if number of developers and number
of comments are included. An attempt has been made to show
the bug-fix time trends in Mozilla and Apache projects [22].
It was found that on average resolution time for bugs of
priority levels 4 and 5 exceeds 100 days, bugs of the priority
level 2 are resolved in 80 days or less and bugs of the priority
level 1 or 3 are resolved in 30 days or less. An attempt has
been made to focus on the delays incurred by developers
during bug fixing [25]. A study has been conducted to filter
out the data sets by identifying the potential outliers in the
distribution of the fix-time attribute. Results showed that
filtering these outliers can improve the accuracy of the
prediction models [26].

An attempt has been made to present an application of 
association rule mining to predict software defect associations 
and defect correction effort with SEL defect data [23]. The 

results show that for the defect association prediction, the 
minimum accuracy is 95.38 percent, and the false negative 
rate is just 2.84 percent; and for the defect correction effort 
prediction, the accuracy is 93.80 percent for defect isolation 
effort prediction and 94.69 percent for defect correction effort 
prediction. Recently, a study discussed the application of 
association mining in bug triaging. Authors have used Apriori 
algorithm to predict the right developer to work on the bug by 
taking bug’s severity, priority and summary terms as the 
antecedents [24]  

To best of our knowledge, no approach has been proposed 
till now to mine association rules among different bug 
attributes to predict bug-fix time. Managers can use 
association rules to improve development process by doing a 
bug-fix time prediction for a given set of bug attributes. 
Several performance studies have resulted in better accuracy 
for associative classification than state-of-the-art classification 
methods [9-18]. Our work has been motivated by the 
successful application of association rule mining in various 
fields.  

VI. THREATS TO VALIDITY

Factors that can affect the validity of our study are as 
follow: 

Construct Validity: We have not empirically validated the 
independent attributes taken in our study.  

Internal Validity: Except the four attributes namely severity, 
priority, summary terms and assignee taken in our study, 
developer’s reputation can also be considered as it is an 
important attribute which can contribute in bug-fix time 
prediction.  

External Validity: We have considered only open source 
Mozilla products. The study can be extended for other open 
source and closed source software.  

Reliability: RapidMiner, SPSS and MATLAB software have 
been used in this paper for model building and testing. The 
increasing use of these software confirms the reliability of the 
experiments. Errors in performance measures such as accuracy 
of these tools has not been considered and handled.  

VII. CONCLUSION

The time to fix a bug after the bug was introduced is called 
bug-fix time. It is an important factor for bug related analysis, 
such as measuring software quality or coordinating 
development effort during bug triaging. Prior  work has 
proposed  many bug-fix time prediction models based on 
various bug attributes (number of developers who participated 
in fixing the bug, bug severity, bug-opener’s reputation, 
number of patches) for predicting the fix time of a newly 
reported bug. Several studies have been conducted by using 
classification and regression models. We have proposed an 
approach for bug-fix time prediction based on other bug 
attributes namely summary terms, priority, severity and 
assignee by using Apriori algorithm and k-means clustering 
followed by Apriori algorithm. We have also used k-means 
clustering method to get groups of correlated variables 
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followed by association rules mining inside each cluster. We 
have validated our results on 1,695 bug reports of 
AddOnSDK, Thunderbird and Bugzilla products of Mozilla 
open source project. We have presented top five association 
rules for 20% minimum confidence and 3% and 7% minimum 
support. We observe that, if we apply association mining after 
clustering, we get different association rules. As we are 
partitioning the datasets into clusters, we get association rules 
with decreased support count i.e. 2%. Results show that, the 
confidence count lies in the range of 21 to 100%.  

By using these rules we can predict the bug-fix time for a 
newly coming bug. We also observe that our approach for 
bug-fix time prediction will be helpful in bug triaging by 
assigning a bug to the most potential and experienced assignee 
that will solve the bug in minimum time period. Prediction of 
bug-fix time will help the managers in measuring software 
quality and in software development process. From results, we 
can observe the number of association rules having high 
confidence and support with higher severity and priority as 
antecedents and short bug-fix time as consequent. A large 
number for such rules show that more important bugs are 
fixed with out any delay. This information is useful in 
determining software quality during software evolution 
process. Further, for bugs with long predicted fix time we 
need to pay more attention to the related source files to make 
sure that the files remain stable during fixing process. This 
will again help in determining software quality. We will 
extend our work with other association mining algorithms to 
empirically validate the results.  
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