
Software Quality and Life Cycles

Hannu Jaakkola1 and Bernhard Thalheim2

1 Tampere University of Technology, Pori
P.O.Box 300, FIN-28101 Pori, Finland

hannu.jaakkola@tut.fi
2 Kiel University, Computer Science and Applied Mathematics Institute,

 Olshausenstrasse 40, 24098 Kiel, Germany
 thalheim@is.informatik.uni-kiel.de

Abstract. Quality of software has growing role of the modern software engi-
neering work. Typical current trends in the development process are the domi-
nating role of quality systems, the use of “productivity tools” in the develop-
ment, fast time to market and the adoption of the practices of the software de-
velopment industrialization. Correspondingly the software product trends point
out the growth of software size, longer life time, the critical role of software in
services and products, increasing amount of client oriented variations of the
same base product, and standardized platforms under the product solutions it-
self. As a consequence the new paradigms are guiding the software develop-
ment: e.g. object oriented development culture is spreading fast and the role of
reuse in its different forms (component level, patterns, designs) is becoming
more important. Even the standard platforms, like Symbian, are giving guide-
lines to the developers restricting the freedom of solutions. The question on the
software quality – in principle a clear and simple concept – is becoming more
complex to specify and especially to teach for becoming software specialists.
The paper includes the discussion on software quality issues from different
points of view. The approach adopted classifies the quality based on software
life cycles pointing out that the importance of different factors is changing
along the development cycle.

1 Introduction

The goal of every software developer is to produce software having good high quality
– both in the personal and in the organizational level. The competitiveness of the
software company is also fully dependent on its working practices. Software Process
Improvement (SPI) of a company can be based on different models having very simi-
lar goals: to produce software that has good quality according to the plans and agree-
ments agreed between the client and producer. Widely adopted models for SPI are
ISO 9000-2000, SPICE (Software Process Improvement and Capability dEtermina-
tion) and CMMI (Capability Maturity Model Integration). Common to all these mod-
els is the aim to encourage the developer for continuous improvement. A common
approach is as well the main idea, that the well working and specified process is the
compulsory condition to be able to produce quality software (experiences in organiz-

208

 209

ing SPI activities are reported by Jaakkola [10]). However, or unfortunately, this may
not be enough. In addition we have to keep in mind also some properties of the good
product, that are not only process based but can be derived from the product itself.
The motivation of this paper comes from the academic world. In teaching both soft-
ware development (design and implementation) and engineering (the integrated proc-
ess) the question of the good software properties rises up. The starting point of this
discussion can be derived from the trends of modern software properties and devel-
opment practices. In the development process e.g. following trends can be noticed:

• dominating role of quality systems,
• use of “productivity tools” in the development,
• fast time to market and
• adoption of the practices implementing the idea software industrialization in

its many forms.
Correspondingly the software product trends point out e.g.

• growth of software size,
• long life time of products,
• critical role of software in services and products,
• increasing amount of client oriented variations of the same base product and
• standardized platforms under the product solutions itself.

The trends from one point of view increase the complexity of software development
but from another point of view are able to provide clear guidelines to follow at least
partially to solve the problem.
In the Software Engineering (SE) literature, conferences and journals the topic is
widely discussed from many different viewpoints. In spite of the publishing date
twenty years ago the article “There is No Silver Bullet” written by Fred Brooks
(1987) gives a good frame to analyze the question “What is software quality?” The
message of the article is that producing software is a difficult and complex task; the
complexity comes from the essence of the software and cannot be avoided at all. He
classifies the problems of software engineering into two groups: essential and acci-
dental. Essential problems are complexity, invisibility, adaptability, uniqueness, scal-
ability and discontinuity. We can take into account these problems, but not to avoid
and totally solve. The techniques and methods, that often are seen as a solution, focus
on and are able to avoid the consequences of accidental problems (caused by the
human behavior) only. Better tools, a high abstraction level in the programming tools
etc are means to this.
Generally, the solutions implemented as a part of modern software development cul-
ture, are object oriented development, reuse in its different forms (component level,
patterns, designs); see e.g. [9], the use of standard platforms, like Symbian, giving
guidelines and tools to the developers but restricting the freedom of an individual
organization and developer, and in general the availability of software and process
standards spreading and providing documented good practices widely available.
In general, it is question on the culture, where every individual developer and in the
inter-organizational projects even the organizations, are forced to follow tightly the
rules of predefined process and product architecture solutions. There is also critique
against this the approach, where an individual (engineer or organization) is tied to the
apron strings. The “Agile Software Development” methods can be seen as a manifes-

 210

tation of this new trend (see e.g. [1]). Agile Software Development emphasizes the
role of team work and loosening the bindings to the predefined processes and specifi-
cations.
The balance in the software quality discussion is heavily weighted to the process side,
which undoubtedly has earned its position. However, the discussion on the topic
“what are the components of the software product quality?” is interested especially in
education and training. This discussion is able to give input to the process view, too.
Two important technologies supporting software developers of object oriented soft-
ware are available: the UML language (see e.g. [3]; the original standard is [13]) and
the development process applying it (Rational Unified Process – RUP; see e.g.
[8,12]). In spite of the fact that UML is still under development and improved ver-
sions of it are available, and that RUP itself is not very widely adopted in business,
the guidelines provided by them are very valuable. UPEdu, specified by Robillard
and Kruchten (2003), is a simplified application of RUP. It gives guidelines how to
apply RUP principles to a software project; in this application an iterative develop-
ment principle is highlighted.
This paper concentrates on the question of the software. The paper includes the dis-
cussion on software quality issues from different points of view: overall, specification
and design quality (chapters 3-5). As the basis a short introduction to the UPEdu
development process is given (Chapter 2). The purpose is to open discussion on the
problem caused by the different quality goals in different life cycle phases. As a con-
clusion (Chapter 6), some basic principles to avoid conflicts between these conflict-
ing goals are given.

2 Object oriented software development cycles

Object oriented software development process is two dimensional, iterative process,
in which time dimension (development phases) and development processes (disci-
plines; iterations) are combined (Fig. 2-1; [14], p. 39) to provide and useful practical
approach. The development phases are same as the traditional life cycle phases and
are based on the natural path in problem solving. The inception includes requirement
elicitation and analysis, the elaboration phase includes requirements analysis and
design, the construction phase concentrates on implementation and testing, and the
transition phase on system testing and adoption of the system developed. The vertical
dimension lists the character of the work done as described above. The message of
the figure is that development work is iterative (adding details to the solution phase
by phase) and cyclic (we have to return to same disciplines (processes) phase by
phase.
In addition the model includes some management disciplines (processes): Configura-
tion and Change Management, Project Management. From process category point of
view UPEdu is much simplier than the SPICE Model, which specifies tens of proc-
esses (disciplines).

 211

Fig. 2-1. UPEdu development cycles and disciplines (processes). [16]

Every Development phase has its own goals:
Inception phase is client oriented and the final result of it (requirements specification)
provides on the one hand a “natural” description to the client (real world aspects)
and on the other hand an exact (enough) specification to the designers continuing the
work towards the implemented solution.
Elaboration phase is designer oriented and the final result includes detailed require-
ments specification and architecture of the system under development; the result
combines the real world and the design world aspects in the result model.
Construction phase implements the plan and includes “implementation world” to the
system solution.
Transition phase starts the adoption process of the system implemented and returns
back to the concepts of the “real world” first in the form of system and user tests and
finally in the form of the usage.
The three “worlds”, real, design and implementation world, have different goals to
the deliverables. Theses partially conflicting and ambiguous goals are the source of
software quality factor discussion of this paper.

3 Overall quality

The quality factors of software are widely discussed in the literature. There is no
special reason to concentrate on this detail more widely than by giving one view to
the topic more or less as an example. Generally, independently on the source, all
discussion agrees the fact that the general quality goals given to the software are
conflicting and the final properties are more or less based on the compromise between

 212

the conflicting goals. The stakeholders of the system under development give the
boundary values.
One of the commonly accepted source specifying the properties of a good software is
the standard specified by ISO [4]. The standard classifies the quality attributes in four
classes: process quality, internal and external quality, and quality in use. The values
of these attributes influence each other. In addition, there must be metrics providing
bases for giving goal and controlling the level approached. From software quality
point of view the most important classes are internal and external quality attributes
and quality in use attributes (Fig. 3-1 a and b).

a. Internal and external quality

b. Quality in use

Fig. 3-1. Overall software quality ([4], p. 7 and 12)

Without going to the details, it I easy to notice that the goals specified above are in
some cases supporting each other but in some cases may be conflicting. In spite of
that the list (including detailed specification in the standard) are giving useful guide-
lines for software developers.
The ISO series of product quality standards has been extended by three new parts
(Technical Reports – TR) covering the metrics for external [5], internal [6] and qual-
ity in use [7] attributes. These standards are not in the focus of this paper.

 213

4 Specification quality

The goal of the requirements analysis and specification (in UPEdu model inception +
elaboration) is to provide analysed requirements elicitated from the clients (and other
stakeholders) to the designers to establish a basis for the design and further for the
implementation of the system. The final result of the requirements specification
analysis is the abstraction of the real world in the form of diagrams describing the
data contents and operations manipulating the data. In object oriented development
the most meaningful elements of the document are

• use cases as the documentation of the requirements (and providing cases for
the system tests),

• analysis class diagram including preliminary information about the attributes
and methods of the classes,

• potential communication diagrams describing the communication between
objects,

• potential state diagrams describing the internal behavior of the classes, and
• potential other processing descriptions providing information about the exe-

cution of the methods.
This description is fully based on the view of the real world having no elements com-
ing from design and implementation solutions. Good software quality in this phase is
a description having clear and close conceptual connection to the corresponding real
world concepts, describing the target system in such a level, that all the stakeholders
have an opportunity to understand “what is the system” under construction. Two
typical components of the system – data and handling – may be conflicting from the
software quality point of view: that what is a good database specification is maybe
not a good process specification. This conflict becomes more relevant in the design
work, however, and is discussed more detailed in chapter 5.

5 Design Quality

The purpose of the design work is to develop the result of the requirements work first
towards the architecture and after this to the level of module designs. In this phase,
the work is enriched by the agreed rules of the design paradigm and design decisions.
These are e.g.

• the rules coming from the object oriented approach,
• the attitude to reuse,
• the selected architecture style (if any), and
• the attitude to the product strategy.

Object oriented development culture itself gives a good base to create conceptually
clear and structurally good designs. The basic rules like

• simple solutions,
• local solutions,
• modularity,
• restricted service interfaces and

 214

• abstract data types
are in favour with the overall quality factors. However, the good object structure is
not in all cases in favour with the good database structure: which of the classes are
“database components” and which have some other purposes. The main question is
that a good database schema may not be a good solution from the point of view of the
good class structure – at least not natural in all cases. To be short – database quality
and software quality may be conflicting.

Application Frameworks

Classes

Applications

Designs

Fig. 5-1. Different abstraction levels of reusable assets.

Reuse is one solution to grow the productivity of software companies. Usually the
term reuse is connected to the reuse of code modules. Fig. 5-1 gives a wider approach
to reuse: in addition to the code reuse there are good examples on the reuse higher
level abstractions: designs and application frameworks
Reuse has two directions, which must be applied according to the company’s reuse
strategy (more detailed discussion in [9]). The effect of the reuse can be seen in the
structure of the software: instead of natural solutions and structures the needs of the
reuse are dominating the solutions. In the same time as a side effect, software struc-
ture becomes more standardized – i.e. will be based on predefined standardized solu-
tions filling the expectations of some stakeholders (designers, implementers, testers).
From client and end-user point of view the clarity and other good software properties
are lost in the same time.

 215

The effects of the selected architecture style have in a way a similar effect than reuse:
it dominates structural solutions instead of the natural structure. As an example of the
architecture style is MVC++ ([11] pp. 55-60). According to MVC++, three types of
objects are separated: model, view and controller. The model layer (M) corresponds
to a real world and “static” problem domain. The view layer (V) is the outer software
layer visible to the end user. Typically there is one view class for each dialog box and
window of the user interface. The controller layer (C) controls the interaction be-
tween the model and the view. The model layer objects usually appear in the analysis
class diagram and the view components are derived from the user interface specifica-
tion. Controller classes are needed to connect the “dynamic” view part of the system
to the “static” model part. According to the software life cycle model OMT++ the
analysis class diagram (model layer) is produced in the analysis phase. The analysis
object model is the basis of the design object model including classes closer to the
implementation level. In this phase the class diagram may be restructured, where
view components and respective controller objects are added to the model. Controller
objects can be seen as adapters that integrate the model and view objects in an appli-
cation specific way.
One of the ideas of using MVC++ architecture is to separate reusable classes of the
application from the classes that implement application-specific functionality or that
provide interfaces to the real world. The features of object technology – inheritance,
dynamic binding, association and aggregation – are used to implement reusability. As
in the case of reuse, the natural structure will be replaced by the rules supporting
good design culture.
Product strategy is one important way to affect the policy adopted for the product
releases, product variations and maintainability. A modern approach in this meaning
is based on the products that inherit similar features of the product line and applica-
tion platform (Fig. 5-2).
The common parts of the applications are organized into one independent high-level
subsystem of its own. This subsystem is called an application platform. Application
products depend on it (but not vice versa). Whereas application products provide
applications to users, the application platform provides reusable components, frame-
works and design guidelines to software designers. In addition, to manage reusable
assets, the application platform also enables a product line approach to help system
development in the future. The leading principle is to release a line of closely related
products and product variants cost effectively over time (short time to market). The
products are built on a common application platform that holds common software
assets. The motivation to collect reusable software assets in an application platform is
to make future variation easy and economical by using the results of projects in the
past when creating new products. The difference from the application framework
approach is that the new products are also created using the assets of the application
platform. Like in the case of the reuse and architecture style, instead of natural struc-
ture the design factors are dominating the solutions.

 216

Application
Platform

Product
line

Product Product Product

Application
Platform

Product
line

Product Product Product

Fig. 5-2. Product line approach to the product development

As a consequence of the discussion above, the good design quality if the software can
be specified to include such components that are supporting standard approaches to
the solutions and support effective software development and maintenance practices.
The solutions may be natural to the designers and help them to move from a project to
another, because the design culture has established a common view for all designers.
In addition, the implementation of the software may be supported by the good design
solutions providing basis for the automation. Especially maintenance phase will get
support from good designs.

6 Conclusions

6.1 Different quality views – a life cycle approach

Software quality is not a clear term: first of all the good properties are not always in
favour and secondly the concept “good” has different meanings in different phases of
the work. The paper has concentrated in three quality categories

• overall quality,
• specification quality
• design quality

 217

The situation is clarified in Fig. 6-1.

General
properties

Specification
properties

Design
properties

Internal and
external quality
Quality in use

Natural structure
Object design,

Reuse,
Architecture Style
Product Strategy

Client
User

Research
Tool development

Analyst Analyst Designer Tester

(Test and)
Maintenance

properties

User

General
properties

Specification
properties

Design
properties

Internal and
external quality
Quality in use

Natural structure
Object design,

Reuse,
Architecture Style
Product Strategy

Client
User
Client
User

Research
Tool development
Research
Tool development

AnalystAnalyst AnalystAnalyst DesignerDesigner TesterTester

(Test and)
Maintenance

properties

UserUser

Fig. 6-1. Software quality aspects in different life cycle phases

In spite of having conflicting goals regarding the software quality in different phases,
the well specified software process, including exact rules for documentation, re-
quirements management, change management etc. have primary importance in ben-
eficing on the good properties of the software. The maintenance phase represents 2/3
of the software life cycle costs. Because of that a good strategy is to support espe-
cially all the activities included in the maintenance. In thinking more closely the three
different approaches to the concept “good software quality” it is easy to notice, that
actually, it is not question of the conflicting factors but different focus in the same
stock of properties. Making these different approaches to support each other is the
key to the better success. Traceability in the documentation provides practical means
to it. In the flow of different docus to the same design it is easy to notice, that the
central stakeholder groups in different phases are varying. That what is important for
the client is not important for the designer.

6.2 Further work – towards abstraction level maping

We outlined already that quality criteria are applicable on certain abstraction levels.
On others they are not applicable. The abstraction layer model for database design
has been introduced in [15]. This model consists of six layers.
Motivation layer: The stakeholder specification is the outcome of this layer. It coin-
cides with the Requirements elicitation phase in the SPICE framework. Within this

 218

layer, only some quality criteria such as suitability, learnabilty, attractiveness, and
understandability are of interest.
The business process layer is used for specification of the processes as they should be
seen by the owners of the enterprize. This layer contains the Requirements analysis
layer in the SPICE framework. The main document is the system specification in
which all properties of the software system are specified. The documents of this layer
are verified against the requirements collected in the motivation layer. The layer is
also used for the development of the systems architecture design and the distribution
and modularization within the distributed information system.
The business user layer has been introduced for explicit representation of the applica-
tion in the viewpoint of users in the operating departments. Within this layer, the data
views are displayed in a form which is used in reality.
The conceptual layer mainly coincides with the system design layer in the SPICE
framework. For information system applications The layer is used to describe the
database schema, the database functionality, the view generation and maintenance
mechanism and finally the story space with all possible discourses for utilizing the
information system within the broad variety of application scenarios.
The implementation layer is used for the description of the logical and physical meta-
information on the information system. It contains the engineering activities software
construction, software and system integration, software and system testing, and soft-
ware installation of the SPICE 2.0 framework.
The maintenance, evolution and utilization layer is not part of the conceptual design
framework. This layer can be, however, supported by development steps of the co-
design framework at the conceptual layer.
The first five layers have been discussed in detail in [15] where the co-design frame-
work is entirely characterized.

We observe now that the other quality criteria can be classified similar to the motiva-
tion layer. Quality criteria such as suitability are mapped to either development obli-
gations for the information systems development process or to quality criteria of the
succeeding abstraction layers. Learnability is one of the very fuzzy criteria. It can be
mapped, however, to appropriateness at the business user layer. Appropriateness
directly leads to a number of implementation obligations that must be fulfilled during
corresponding development steps at the implementation layer in the co-design
framework. This approach has already been intentionally and implicitly used for the
development of websites.

Learnability means in this case comprehensibility, i.e. easy to use, to remember, to
capture and to forecast (In the Cottbus website development team this requirement set
is characterized as "grand-mother simplicity".). It incorporates clarity of the visual
representation, predictability, directness and intuitiveness. These properties allow the
user to concentrate on the task. The work-flows and the discourse structure corre-
spond to the expectations of the users and do not lead to surprising situations. They
can be based on metaphors and motives taken from the application domain.

 219

Fig. 6-2. Quality criteria abstraction levels

In the same way other quality criteria can be mapped to quality criteria or develop-
ment obligations. Finally, the quality criteria are either entirely satisfied and the de-
velopment obligations are fulfilled. This feedback cycle is also displayed in the mind
map in Fig. 6-2. The reverse mappings direct directly to either the implementation or
to the maintenance, evolution and utilization layers.

 220

We are currently working out the mappings of quality criteria to other quality criteria
and development obligations. These obligations rule the termination of development
steps in the co-design framework. A step is considered to be successfully completed
if all obligations for this step are worked off and the necessary documents have been
completed.

References

1. Abrahamson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development meth-
ods. Review and analysis (2002) http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

2. Brooks, F.: There is No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer 20,4 (1987) 10-19

3. Fowler, M.: UML Distilled. 3rd Edition. Addison Wesley Publishing (2004)
4. ISO/IEC. IS 9126-1 Software Engineering - Product quality - Part 1: Quality model. ISO

(2001)
5. ISO/IEC. TR 9126-2:2003, Product quality -- Part 2: External metrics. ISO (2003)
6. ISO/IEC. TR 9126-3:2003, Software engineering -- Product quality -- Part 3: Internal

metrics. ISO (2003)
7. ISO/IEC. TR 9126-4:2004, Software engineering -- Product quality -- Part 4: Quality in

use metrics. ISO (2004)
8. Jacobson, I.: Booch Grady, Rumbaugh James, The Unified Software Development Proc-

ess, Addison Wesley Publishing (1999)
9. Jaakkola, H., Kukkonen, J., Varkoi, T.: Best Practices as Reuse Infrastructure. In

Koloumdjian J., Mayr H., Erkollar A (editors), Proceedings of the ReTIS'2001 - Data and
Document Re-engineering for the Web. Osterreichische Computer Gesellschaft, Vienna
(2001) 9-31

10. Jaakkola, H. et al.: Experiences in Software Process Improvement with Small Organiza-
tions. In Hamza M.H. (ed.), Proc. of the International Symposium on Software Engineer-
ing, Databases and Applications. Innsbruck. IASTED (2002) 13-17

11. Jaaksi, A., Aalto, J-M., Aalto, A., Vättö, K.: Tried & True Object Development. Industry
Proven Approach with UML. Cambridge University Press (1999)

12. Kruchten, P.: The Rational Unified Process: An Introduction (2nd Edition). Addison
Wesley Publishing (2001)

13. Object Management Group (OMG), The Unified Modelling language Specification, V 2.0
(2005) http://www.uml.org/#UML2.0

14. Robillard, P. N., Kruchten P.: Software Engineering Processes: With the UPEDU. Addi-
son Wesley Publishing (2003) http://www.upedu.org/uped

15. Thalheim, B.: Entity-Relationship Modeling - Fundamentals of Database Technology.
Springer, Berlin (2000).

16. Upedu. Unified Process for Education. Overview. École Polytechnique de Montréal
(2005) http://www.upedu.org/upedu/index.asp?TruY=861184239958042

	5Design Quality

