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Preface

The ICCBR 2015 Workshop on Case-Based Agents aims to highlight the chal-
lenges autonomous agents encounter and how case-based reasoning (CBR) can be
used to overcome those challenges (e.g., complex environments, imperfect infor-
mation, interacting with both teammates and adversaries, unexpected events).
We believe a natural synergy exists between CBR and agents, and hope this
workshop will highlight the recent progress in both disciplines. This serves as a
sequel to the first Workshop on Case-Based Agents, which was held at ICCBR
2014 in Cork, Ireland.

The workshop program includes eight papers that explore various ways agents
can leverage case-based reasoning. Two of the papers examine agents that can
detect faults or discrepancies and identify their root cases. Reuss et al. explore
multi-agent fault diagnosis in an aircraft domain whereas Kann et al. discuss the
KRePE system, which identifies discrepancies while performing naval mine coun-
termeasure missions. Gabel and Godehardt use CBR to predict an opponents
low-level actions in simulated robotic soccer. Similarly, Frazer et al. present an
error-tolerant plan matching algorithm to improve the performance of case-based
plan recognition.

Fitzgerald and Goel describe their ongoing work in robotic learning by demon-
stration, with a specific focus on case storage and adaptation. Sánchez-Ruiz also
presents an agent that observes other agents, but instead of learning to perform
an observed behavior it learns to predict the outcome of battles in StarCraft.
Paul and Huellermeier describe an agent that plays the Angry Birds game. The
agent learns actions to perform using random exploration and stores cases con-
taining the best action for each encountered game state. Coman et al. propose an
agent that can potentially have conflicts between its own goals and motivations,
and the goals or plans supplied to it by a user. This can cause situations where
the agent might rebel rather than blindly follow user commands.

Overall, we believe these papers provide a good sampling of the ways in
which case-based reasoning has been used by agents and highlight recent research
trends in this area. We hope that this workshop will both provide a venue for
researchers in this area to meet and discuss their work, as well as provide an entry
point for researchers interested in learning about case-based agents. We would
like to thank everyone who contributed to the success of this workshop, including
the authors, program committee, reviewers, and the ICCBR 2015 conference
organizers.

September 2015
Frankfurt

David W. Aha
Michael W. Floyd
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I Know What You’re Doing:
A Case Study on Case-Based Opponent

Modeling and Low-Level Action Prediction

Thomas Gabel and Eicke Godehardt

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

60318 Frankfurt am Main, Germany
{tgabel|godehardt}@fb2.fra-uas.de

Abstract. This paper focuses on an investigation of case-based oppo-
nent player modeling in the domain of simulated robotic soccer. While in
previous and related work it has frequently been claimed that the predic-
tion of low-level actions of an opponent agent in this application domain
is infeasible, we show that – at least in certain settings – an online pre-
diction of the opponent’s actions can be made with high accuracy. We
also stress why the ability to know the opponent’s next low-level move
can be of enormous utility to one’s own playing strategy.

1 Introduction

Recognizing and predicting agent behavior is of crucial importance specifically
in adversary domains. The case study presented in this paper is concerned with
the prediction of the low-level behavior of agents in the highly dynamic, het-
erogeneous, and competitive domain of robotic soccer simulation (RoboCup).
Case-based reasoning represents one of the potentially useful methodologies for
accomplishing the analysis of the behavior of a single or a team of agents. In this
sense, the basic idea of our approach is to make a case-based agent observe its
opponent and, in an online fashion, i.e. during real game play, build up a case
base to be used for predicting the opponent’s future actions.

In Section 2, we introduce the opponent modeling problem, point to related
work, and argue why knowing an opponent’s next low-level actions can be ben-
eficial. The remainder of the paper then outlines our case-based methodology
(Section 3), reviews the experimental results we obtained (Section 4), and sum-
marizes and discusses our findings (Section 5).

2 Opponent Modeling in Robotic Soccer Simulation

RoboCup [12] is an international research initiative intending to expedite arti-
ficial intelligence and intelligent robotics research by defining a set of standard
problems where various technologies can and ought to be combined solving them.
Annually, there are championship tournaments in several leagues – ranging from
rescue tasks over real soccer-playing robots to simulated ones.

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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2.1 Robotic Soccer Simulation

The focus of the paper at hand is laid upon RoboCup’s 2D Simulation League,
where two teams of simulated soccer-playing agents compete against one another
using the Soccer Server [10], a real-time soccer simulation system.

The Soccer Server allows autonomous software agents written in an arbitrary
programming language to play soccer in a client/server-based style: The server
simulates the playing field, communication, the environment and its dynamics,
while the clients – eleven autonomous agents per team – connect to the server
and are permitted to send their intended actions (e.g. a parameterized kick or
dash command) once per simulation cycle to the server via UDP. Then, the
server takes all agents’ actions into account, computes the subsequent world
state and provides all agents with (partial) information about their environment
via appropriate messages over UDP.

So, decision making must be performed in real-time or, more precisely, in dis-
crete time steps: Every 100ms the agents can execute a low-level action and the
world-state will change based on the individual actions of all players. Speaking
about low-level actions, we should make clear that the actions themselves are
“parameterized basic actions” and the agent can execute only one of them per
time step:

– dash(x, α) – lets the agent accelerate along its current body orientation by
relative power x ∈ [0, 100] (if it does not accelerate, then its velocity decays)
into direction α ∈ (−180, 180] relative to its body orientation

– turn(α) – makes the agent turn its body by α ∈ (−180, 180] where, however,
the Soccer Server reduces α depending on the player’s current velocity in
order to simulate an inertia moment

– kick(x, α) – has an effect only, if the ball is within the player’s kick range
(1.085m around the player) and yields a kick of the ball by relative power
x ∈ [0, 100] into direction α ∈ (−180, 180]

– There exist a few further actions (like tackling1, playing foul, or, for the goal
keeper, catching the ball) whose exact description is beyond scope.

Given this short description of the most important low-level actions that can
be employed by the agent, it is clear that these basic actions must be combined
cleverly in consecutive time steps in order to create “higher-level actions” like
intercepting balls, playing passes, doing dribblings, or marking players. We will
call those higher-level actions skills in the remainder of this paper.

Robotic Soccer represents an excellent testbed for machine learning, includ-
ing approaches that involve case-based reasoning. For example, several research
groups have dealt with the task of learning parts of a soccer-playing agent’s
behavior autonomously (for instance [9, 8, 3]). In [6], as an other example, we
specifically addressed the issue of using CBR for the development of a player
agent skill for intercepting balls.

1 To tackle for the ball with a low-level action tackle(α) means to straddle for the ball
and thus changing its velocity, even if it is not in the player’s immediate kick range;
such an action succeeds only with limited probability which decreases the farther
the ball is away from the agent.
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2.2 Related Work on Opponent Modeling

Opponent modeling is an important factor that can contribute substantially to
a player’s capabilities in a game, since it enables the prediction of future actions
of the opponent. In doing so, it also allows for adapting one’s own behavior
accordingly. Case-based reasoning has been frequently used as a technique for
opponent modeling in multi-agent games [4], including the domain of robotic
soccer [13, 1].

Using CBR, in [13] the authors make their simulated soccer agents recognize
currently executed higher-lever behaviors of the currently ball leading opponent
player. These include passing, dribbling, goal-kicking and clearing. These higher-
level behaviors correspond to what we refer to as skills, i.e. action sequences that
are executed over a dozen or more time steps. This longer time horizon allows
the agent to take appropriate counter measures.

The authors of [11] also deal with the case-based recognition of skills (higher-
level behaviors, to be exact the shoot-on-goal skill) executed by an opponent
soccer player, focusing on the appropriate adjustment of the similarity measure
employed. While we do also think opponent modeling is useful for counteracting
adversary agents, we, however, disagree with these authors claiming that “in a
complex domain such as RoboCup it is infeasible to predict an agent’s behavior
in terms of primitive actions”. Instead we will show empirically that such a low-
level action prediction can be achieved during an on-going play using case-based
methods. To this end, the work presented in this paper is also related to the work
by Floyd et al. [5] whose goal is to mimic the overall behavior of entire soccer
simulation teams, be it for the purpose of analysis or for rapid prototyping when
developing one’s own team, without putting too much emphasis on whether the
imitators yield competitive behavior.

2.3 Related Previous Work

What is the use of knowing exactly whether an opponent is going to execute a
kick(40, 30◦) or a dash(80, 0◦) low-level action next? This piece of information
certainly does not reveal whether this opponent’s intention is to play a pass (and
to which teammate) in the near future or to dribble along. Clearly, for answering
questions like that the approaches listed in the previous section are potentially
more useful. But knowing the opposing agent’s next low-level actions is extremely
useful, when knowing the next state on the field is essential (cf. Figure 1 for an
illustration).

In [7], we considered a soccer simulation defense scenario of crucial impor-
tance: We focused on situations where one of our players had to interfere and
disturb an opponent ball leading player in order to scotch the opponent team’s
attack at an early stage and, even better, to eventually conquer the ball initiat-
ing a counter attack. We employed a reinforcement learning (RL) methodology
that enabled our agents to autonomously acquire such an aggressive duel behav-
ior, and we successfully embedded it into our soccer simulation team’s defensive
strategy. So, the goal was to learn a so-called “duelling skill” (i.e. a higher-level
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behavior which in the end yields a sequence of low-level actions) which made
our agent conquer the ball from the ball-leading opponent.

Opponent

Kick 
Range

Ball

Current
Ball Velocity

Current
Player
Velocity

Opponent

Kick 
Range

Ball

Current State

Successor State Assuming no Action

Opponent

Kick 
Range

Ball

Successor State after dash(100,0)

Opponent

Kick 
Range

Ball

Successor State after kick(50,-90)

Helper Arrows
(Vector
Addition)

Example 1Example 1

Fig. 1. In the top-left we see the current state of an opponent agent in ball possession.
If we assume, this agent does not take any low-level action, then the resulting successor
state looks like the one in the bottom left figure: Player and ball have moved according
to their recent velocities while the magnitude of the velocity vectors have decayed
according to the rules of the simulation. How different the successor state may look,
if the opponent, however, does take an action (which is most likely), is shown in the
right figures. In example 1 (top) the agent accelerates full power along its current body
orientation, while the ball is not affected. In example 2, the player kicks the ball with
50% power into -90◦ relative to its current body orientation which yields a resulting
ball velocity vector as shown in the bottom right.

An important feature of the soccer simulation domain is that the model of
the environment is known. This means given, for example, the current position
and velocity of the ball, it is possible for any agent to calculate the position of the
ball in the next time step (because the implementation of the physical simulation
by the Soccer Server is open source2). As a second example, when knowing one’s
own current position, velocity and body angle, and issuing a turn(68◦) low-level
action, the agent can precalculate the position, velocity and body orientation it
will have in the next step. Or, finally, when the agent knows the position and
velocity of the ball, it can precalculate the ball’s position and velocity in the
next step, for any kick(x, α) command that it might issue.

Knowing the model of the environment (formally, the transition function
p : S × A × S → R where p(s, a, s′) tells the probability to end up in the next
state s′ when executing action a in the current state s), is extremely advanta-
geous in reinforcement learning, since then model-based instead of model-free

2 In practice, the Soccer Server adds some noise to all low-level actions executed, but
this is of minor importance to our concerns.
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learning algorithms can be applied which typically comes along with a pleasant
simplification of the learning task.

So, in soccer simulation the transition function p (model of the environment)
is given since the way the Soccer Server simulates a soccer match is known. In
the above-mentioned “duelling task”, however, the situation is aggravated: Here,
we have to consider the influence of an opponent whose next actions cannot be
controlled. In [7], we stated that the opponent’s next (low-level) actions can
“hardly be predicted [which] makes it impossible to accurately anticipate the
successor state”, knowing which is, as pointed out, extremely useful in RL. In
the paper at hand, we will show that predicting the opponent’s next low-level
action might be easier than expected. As a consequence,

– in [7] we had to rely on a rough approximation of p, that merely takes into
account that part of the state that can be influenced directly by the learning
agent and which ignored the part of the future state which is under direct
control of the ball-leading opponent (e.g. the position of the ball in the next
state). This corresponded to the unrealistic assumption of an opponent that
never takes any action (cf. Figure 1, bottom left).

– in future work we can employ a much more accurate version of p based on
the case-based prediction of the opponent’s low-level actions described in the
next section.

3 Case-Based Prediction of Low-Level Actions

In what follows, we differentiate between an opponent (OPP) agent whose next
low-level actions are to be predicted as well as (our) case-based agent (CBA)
that essentially observes the opponent and that is going to build up a case base
to be used for the prediction of OPP’s actions.

When approaching the opponent modeling problem as a case-based reasoning
problem, the goal of the case-based agent is to correctly predict the next action of
its opponent given a characterization of the current situation. Stated differently,
the current state of the system (including the case-based agent itself, its opponent
as well as all other relevant objects) represents a new query q. CBA’s case base
C is made up of cases c = (p, s) whose problem parts p correspond to other,
older situations and corresponding solutions s which describe the action OPP
has taken in situation p. Next, the case-based agent will search its case base for
that case ĉ = (p̂, ŝ) ∈ C (or for a set of k such cases) whose problem part features
the highest similarity to the current problem q and employ its solution ŝ as the
current prediction of the opponent’s next action.

3.1 Problem Modeling

In the context of this case study we focus on dribbling opponents, i.e. the op-
ponent has the ball in its kick range and moves along while keeping the ball
within its kick range all the time. Stated differently, we focus on situations
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where OPP behaves according to some “dribble skill” (a higher-level dribbling
behavior). Consequently, OPP executes in each time step one of the three ac-
tions kick(x, α), dash(x, α), or turn(α). The standard rules of the simulation
allow x to be from [0, 100] and α from (−180◦, 180◦] for kicks and turns. For
dashes, α is allowed to take one out of eight values (multiples of 45◦). In almost
all cases occurring during normal play, however, a dribbling player is heading
more or less towards his opponent’s goal which is why the execution of low-level
turn actions represents an exceptional case. Therefore, for the time being, we
leave turn actions aside and focus on the correct prediction of dashes and kicks
including their parameters x and α.

Case Structure The state of the dribbling opponent (OPP) can be characterized
by the x and y position of the ball within its kick range (posb,x and posb,y)
relative to the center of OPP as well as the x and y components of the ball’s
velocity (velb,x and velb,y; of course, these values are also relative to OPP’s
body orientation). Moreover, OPP’s x and y velocities (velp,x and velp,y) are
of relevance, making six features in total. The seventh relevant feature, OPP’s
current body orientation θp can be skipped due to the arguments mentioned
in the preceding paragraph. Furthermore, the y component of OPP’s velocity
vector velp,y is, in general, zero since a dribbling player almost always dribbles
along its current body orientation. While this allows us to also skip the sixth
feature, we remove a redundancy in the remaining features (and thus arrive at
only four of them) by changing to a relative state description that incorporates
some background knowledge3 from the simulation. Hence, the problem part p of
a case c = (p, s) is a four-tuple p = (posbnx, posbny, velbnx, velbny) with

posbnx = posb,x + 0.94 · velb,x − 0.4 · velp,x
posbny = posb,y + 0.94 · velb,y − 0.4 · velp,y
velpnx = 0.94 · velb,x − 0.4 · velp,x
velpny = 0.94 · velb,y − 0.4 · velp,y

where all components characterize the next state as it would arise, if the agent
would not take any action (cf. Figure 1).

The solution s of a case c = (p, s) consists of a class label l (“dash” or “kick”)
as well as two accompanying real-valued attributes for the power x and angle α
parameters of the respective action. Thus, the solution is a triple s = (l, x, α).

3.2 Implementing the CBR Cycle

The case-based agent CBA observes his opponent OPP and, in doing so, builds
up its case base. Note that all agents in soccer simulation act on incomplete and
uncertain information. Their visual input consists of noisy information about
objects in their limited field of vision. However, if the observed opponents are

3 Knowledge about how the Soccer Server decays objects.
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near and constantly focused at, CBA is provided with sufficiently accurate vi-
sual state information. In order to fill the contents of the cases’ solution parts,
however, CBA must apply inverse dynamics of the soccer simulation. If CBA,
for example, observes that the velocity vector of the ball has been changed at
time t+1 as in the bottom right part of Figure 1, then it can conclude that OPP
has executed a kick(50,−90◦) action at time t and can use that information to
complete the case it created at time step t.

With ongoing observation of dribbling opponent players, CBA’s case base C
grows and becomes more and more competent. Therefore, after |C| exceeds some
threshold, CBA can utilize its case base and query it to find a prediction of the
action that OPP is going to take in the current time step.

Retrieval and Similarity Measures We model the problem similarity using the
local-global principle [2] with identical local similarity measures for all problem
attributes, simi(qi, ci) = ( qi−ci

maxi−mini
)2, where mini and maxi denote the mini-

mum and maximum value of the domain of the ith feature. The global similarity
is formed as a weighted average according to

Sim(q, c) =

∑n
i=1 wi · simi(qi, ci)∑n

i=1 wi

where attributes posbnx and posbny are weighted twice as much as velpnx and
velpny.

We perform standard k-nearest neighbor retrieval using a value of k = 3 in
our experiments. When predicting the class of the solution, i.e. the type of the
low-level action (dash or kick), we apply a majority voting, and for the prediction
of the action parameters (x and α) we calculate the average over all cases among
the k nearest neighbors whose class label matches the majority class.

4 Experimental Results

To evaluate our approach we selected a set of contemporary soccer simulation
team binaries (top teams from recent years) and made one of their agents (OPP)
dribble for up to 2000 simulated time steps4. Our case-based agent CBA was
allowed meanwhile to observe OPP and build up its case base. We evaluated
CBA’s performance in predicting OPP’s low-level actions for increasing case
base sizes.

Figure 2 visualizes the learning progress against an opponent agent from
team WrightEagle. As can be seen, compelling accuracies can be achieved for
both, the correctness of the type of the action (dash or kick) as well as for the
belonging action parameters. Interestingly, even the relative power / angle of
kicks can be predicted quite reliably with a remaining absolute error of less than
ten percent / ten degrees.

4 Duration of a regular match is 6000 time steps.

19



3 8 13 18 25 30 40 50 60 70 85 100 125 150 200 300 500 750 1000 1500

Number of Cases in Case Base

0

0,05

0,1

0,15

0,2

P
re

d
ic

ti
o
n
 E

rr
o
r 

(D
a
s
h
e
s
 v

s
. 

K
ic

k
s
)

0

10

20

30

40

P
re

d
ic

ti
o
n
 E

rr
o
r 

o
f 

A
c
ti

o
n
 P

a
ra

m
e
te

rs

Error in Predicting Dashes vs. Kicks (y1)

Error in Predicted Dash Power (y2)

Error in Predicted Kick Power (y2)

Error in Predicted Kick Angle (y2)

Fig. 2. Progress of CBA’s competence in predicting the next low-level actions of a
dribbling opponent agent from team WrightEagle. A case base of about 1500 cases was
created during the course of 2000 simulated time steps.

Figure 3 focuses on different opponent agents and highlights the fact that a
substantial improvement in action type prediction accuracy can be obtained with
as little as 100 collected cases. Baseline to all these classification experiments is
the error of the “trivial” classifier (black) that predicts each action type to be
of the majority class. The right part of Figure 3 presents the recall of both,
dash and kick actions. Apparently, dashes are somewhat easier to predict than
kicks where, however, the recall of the latter is still above 65% for each of the
opponent agents considered.
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Fig. 3. Left: Case-based prediction of the type (dash or kick) of the next low-level
action for opponents from different teams. Right: Recall, i.e. share of dashes that were
correctly predicted as dashes and kicks that were correctly predicted as kicks.

In Figure 4, we present aggregate numbers (averages over all opponents) that
emphasize how accurately the parameters of an action were predicted, given that
the type of the action could be identified correctly. To this end, dash angles
α are disregarded since more than 99.2% of all dash actions performed used
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α = 0, i.e. yielded a dash forward. Here, we compare (a) an “early” case base
with only 10 cases, (b) an intermediate one5 with |C| = 100 as well as (c)
one that has resulted from 2000 simulated time steps and contains circa 1500
cases. Interestingly, even in (a) comparatively low errors can be obtained. In (b)
and (c), however, the resulting average absolute prediction errors become really
competitive (±2.9 for dash powers x with x ∈ [0, 100], ±6.3 for kick powers x
with x ∈ [0, 100], and ±19.7◦ for kick angles α with α ∈ [0◦, 360◦]).
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Fig. 4. Exactness of the prediction of the action parameters for different stages during
ongoing learning (10, 100, and ≈1500 cases in the case base). Left: Average error of
the predicted angle of a kick action. Right: Average error of the predicted relative
power of a kick action and dash action (averages over agents from all opponent teams
considered).

5 Discussion and Conclusion

Clearly, dribbling opponents are very likely to behave differently when they are
disturbed, tackled, or attacked by a nearby opponent. Therefore, the approach
presented needs to be extended to “duelling situations” as they frequently arise
in real matches. For example, in scenarios like that the dribbler will presumably
not just dribble straight ahead, but also frequently execute turn actions (e.g. in
order to dribble around its disturber). This represents an aggravation of the
action type prediction problem since then three instead of two classes of actions
must be considered (dask, kick, turn).

While the case study presented focused solely on non-attacked dribbling op-
ponents, this approach can easily be transferred to related or similar situations
where knowing the opponent’s next move is crucial, too. This includes, but is
not limited to the behavior of an opponent striker when trying to perform a
shoot onto the goal (which typically requires a couple of time steps), the behav-
ior of the shooter as well as the goal keeper during penalty shoot-outs, or the
positioning behavior of the opponent goalie (anticipating which can be essential
for the striker).

As a next step, we plan to combine the presented case-based prediction of low-
level actions with the reinforcement learning-based acquisition of agent behaviors
as outlined in Section 2.3. This involves, first, solving the aggravated problem of

5 A case base of a size of about 100 to 500 cases can easily be created within the first
half of a match for most players.
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correctly recognizing three different classes of low-level actions mentioned at the
beginning of this section and, second, a proper utilization of the thereby obtained
improved model when learning a higher-level duelling skill using RL. Another
interesting direction for future work is the idea to let CBA start off with some
opponent model in form of a case-base acquired offline (against, for example,
an older version of the team to be faced) and, using appropriate techniques for
case base maintenance, to successively replace old experience by new experience
gained online during the current match.

References

1. Ahmadi, M., Keighobadi-Lamjiri, A., Nevisi, M., Habibi, J., Badie, K.: Using a
Two-Layered Case-Based Reasoning for Prediction in Soccer Coach. In: Proceed-
ings of the International Conference of Machine Learning; Models, Technologies
and Applications (MLMTA’03). pp. 181–185. CSREA Press (2003)

2. Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-Oriented
Matching: A New Research Direction for Case-Based Reasoning. In: Proceedings
of the 9th German Workshop on Case-Based Reasoning. pp. 264–274 (2001)

3. Carvalho, A., Cheriton, D.: Reinforcement Learning for the Soccer Dribbling Task.
In: Proceedings of IEEE Conference on Computational Intelligence and Games
(CIG). pp. 95–101. Seoul, South Korea (2011)

4. Denzinger, J., Hamdan, J.: Improving Modeling of Other Agents Using Stereotypes
and Compactification of Observations. In: Proceedings of Third International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). pp. 1414–
1415. New York, USA (2004)

5. Floyd, M., Esfandiari, B., Lam, K.: A Case-Based Reasoning Approach to Imitat-
ing RoboCup Players. In: Proceedings of the 21st International Florida Artificial
Intelligence Research Society Conference. pp. 251–256. Coconut Grove, USA (2008)

6. Gabel, T., Riedmiller, M.: CBR for State Value Function Approximation in Rein-
forcement Learning. In: Proceedings of the 6th International Conference on Case-
Based Reasoning (ICCBR 2005). pp. 206–221. Springer, Chicago, USA (2005)

7. Gabel, T., Riedmiller, M., Trost, F.: A Case Study on Improving Defense Behavior
in Soccer Simulation 2D: The NeuroHassle Approach. In: L. Iocchi, H. Matsubara,
A. Weitzenfeld, C. Zhou, editors, RoboCup 2008: Robot Soccer World Cup XII,
LNCS. pp. 61–72. Springer, Suzhou, China (2008)

8. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half Field Offense in RoboCup Soccer: A
Multiagent Reinforcement Learning Case Study. In: RoboCup-2006: Robot Soccer
World Cup X. pp. 72–85. Springer Verlag, Berlin (2007)

9. Kuhlmann, G., Stone, P.: Progress in Learning 3 vs. 2 Keepaway. In: RoboCup-
2003: Robot Soccer World Cup VII. pp. 694–702. Springer, Berlin (2004)

10. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer Server: A Tool for Research
on Multi-Agent Systems. Applied Artificial Intelligence 12(2-3), 233–250 (1998)

11. Steffens, T.: Similarity-Based Opponent Modelling Using Imperfect Domain The-
ories. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games (CIG05)

12. Veloso, M., Balch, T., Stone, P.: RoboCup 2001: The Fifth Robotic Soccer World
Championships. AI Magazine 1(23), 55–68 (2002)

13. Wendler, J., Bach, J.: Recognizing and Predicting Agent Behavior with Case-Based
Reasoning. In: D. Polani and A. Bonarini and B. Browning (editors), RoboCup
2003: Robot Soccer World Cup VII. pp. 729–728. Padova, Italy (2004)

22



Case-based Local and Global Percept Processing for 

Rebel Agents 

Alexandra Coman
1
, Kellen Gillespie 

2
, Héctor Muñoz-Avila 

3 

1 Department of Electrical and Computer Engineering and Computer Science,  

Ohio Northern University, Ada, OH 45810 
2 Knexus Research Corporation, Springfield, VA 22314 

3 Department of Computer Science and Engineering, 19 Memorial Drive West, 

Lehigh University, Bethlehem, PA 18015 

a-coman@onu.edu, kellen.gillespie@knexusresearch.com, hem4@lehigh.edu  

Abstract. Rebel Agents are goal-reasoning agents capable of “refusing” a user-

given goal, plan, or subplan that conflicts with the agent’s own internal motiva-

tion. Rebel Agents are intended to enhance character believability, a key aspect 

of creating engaging narratives in any medium, among other possible uses. We 

propose to implement and expand upon a Rebel Agent prototype in eBotworks, 

a cognitive agent framework and simulation platform. To do so, we will make 

use of (1) a case-based reasoning approach to motivation-discrepancy-percep-

tion, and (2) user input for creating the agents’ “emotional baggage” potentially 

sparking “rebellion”. 

Keywords: rebel agents, character believability, local and global perceptual 

processing 

1 Introduction 

Rebel Agents [6] are motivated, goal-reasoning agents capable of “refusing” a goal, 
plan, or subplan assigned by a human user or by another agent. This rejection is the 
result of a conflict arising between the given goal or plan and the agent’s own internal 
motivation. In our previous work, we made the assumption that this motivation is 
modeled for the purpose of creating character believability [1], a key aspect of engag-
ing narratives in any medium. However, different motivation models are also applica-
ble. In the context of rebel agents, the term “motivation discrepancies” refers to in-
congruities between a character’s motivation and the character’s assigned goal and/or 
course of action. When a motivation discrepancy occurs, depending on the perceived 
intensity of the incongruity, the Rebel Agent may generate a new goal that safeguards 
its motivations. While so far explored in the context of interactive storytelling and 
character believability, the potential applications of rebel agents are by no means 
limited to this. Such agents can also be useful, for example, in mixed-initiative situa-
tions in which the Rebel Agent may have access to information unavailable to its 
human collaborator, and use this information to decide when to reject a command 
received from the collaborator. 
  

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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 We are in the process of developing a conceptual framework for Rebel Agents and 
implementing a Rebel Agent prototype in eBotworks, a cognitive agent framework 
and simulation platform [15]. 
 In previous work [7], we explained that, for the purpose of detecting and reacting to 
“motivation discrepancies”, eBotworks agents should be made able to perceive and 
interpret their surroundings in “subjective” ways potentially eliciting “emotion” in-
tense enough to cause rebellion. We showed how eBotworks agent perception, which 
is by default omniscient and objective, needs to be modified to more closely mimic 
(or appear to mimic) human perception. We also described that this can be achieved 
using sensory filters informed by mechanisms of human perception. These mecha-
nisms include gradual perception differentiation, local and global percept processing 
and, perhaps most importantly for our purposes, the bidirectional connection between 
perception and emotion. That is, perception can elicit emotion and is, in turn, affected 
by emotion. 
 While relying on psychology literature to build these filters, we are ultimately aim-
ing for agents with believable observable behavior, but not based on complex models 
of cognition. 
 We aim to endow our prototype Rebel Agent with motivation based on emotional-
ly-charged autobiographical memories. For example, a bot that reaches a location at 
which something “traumatic” happened in the past might undergo a goal change ap-
propriate to the context. The retrieval of autobiographical memories is to initially 
occur based on location ecphory [14], that is, location-specific memory cues. They 
use exact physical locations (i.e. map coordinates) as memory cues. This choice is 
preferable from a practical standpoint, but does not accurately reflect the way location 
ecphory works in humans. The characteristics of a location that awaken memories and 
incite emotion tend to be the sights, sounds, smells, tastes, and tactile sensations per-
taining to it, not necessarily its map coordinates. However, while location coordinates 
are easy to retrieve and to compare, the same cannot be said about complex combina-
tions of percepts. 
 In previous work [7], we explained how the perception mechanisms of eBotworks 
can be modified in order to acquire percepts in a more “human-like” manner.  
 Herein, we approach the challenge of retrieving past percepts and comparing them 
to current ones using the case-based reasoning model, which is a natural match for 
this retrieval process. Case-based reasoning literature offers examples of complex 
case structures and associated similarity measures (e.g., [4][13][18]), allowing us to 
store and compare complex scene representations, thus taking location ecphory be-
yond mere map coordinates. 
 In building a case base consisting of “memories” of percepts and associated emo-
tions, one of the challenges is providing the basis upon which the agents associate 
emotions to percepts. While this could be accomplished by building a complex inner 
model of the agent, herein, we discuss a knowledge-engineering-light alternative. This 
new approach could leverage the chat-based interface of eBotworks, through which 
users can give agents commands. In our context, human users would be directing the 
agent how to “feel” in certain situations. That way, the agent, instead of being provid-
ed with a complex program dictating how it should behave in various contexts, picks 
up an "emotional baggage" derived from that human user's personality (or just a 
"role" that the human user chooses to play). By getting input from different human 
users, we can produce a range of bots roughly exemplifying various personalities. 
 Our two contributions herein are: 
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(1) Exploring a case-based reasoning context for motivation-discrepancy-per-
ception in eBotworks Rebel Agents. 

(2) Proposing the use of chat-based user input for creating the agents’ “emotional 
baggage”, potentially sparking “rebellion”. 
 

 Finally, it must be mentioned that, although we approach them in this specific con-
text, local and global percept processing are applicable not only to Rebel Agents, but 
to any intelligent agents endowed with perception capabilities. 

2 Local and Global Percept-Processing and Emotion 

Gradual perception differentiation and local and global percept processing have been 

shown, in psychology literature, to characterize human perception. Human perception 

has also been shown to stand in bidirectional connection with emotion; percepts of 

various types can elicit emotional responses [5], while perception can be influenced 

by emotion and motivation as explained below [9][12][22]. 

 Perception differentiation deals with the steps of the gradual formation of a percept. 
 Global-first percept processing begins with global features, with local ones be-
coming increasingly clear in later stages. It has been argued to be induced by positive 
emotions, such as happiness. Citing [17] and [20], Navon [16] sees perceptual differ-
entiation as always “proceeding from global structuring towards more and more fine-
grained analysis”. As to what makes a feature global, rather than local, Navon de-
scribes a visual scene as a hierarchical network, each node of which corresponds to a 
subscene. Global scenes are higher up in the hierarchy than local ones, and can be 
decomposed into local ones. More recently, it seems to be agreed upon that, while a 
widespread tendency towards global-first processing is observed, it cannot be estab-
lished as a general rule applying to all individuals at all times [22]. 
 Local-first percept processing begins from or focuses on local features. It has 

been argued to be more likely when under the influence of negative emotions, such as 

stress and sadness. However, strong motivation has also been shown to be capable of 

inducing local-first processing [11]. Individuals with certain personality disorders 

have been hypothesized to be inclined towards local precedence. Yovel, Revelle, and 

Mineka [21] state that obsessive-compulsive personality disorder has been connected 

to “excessive visual attention to small details”, as well as “local interference”: an 

excessive focus on small details interfering with the processing of global information. 

The same preference for local processing has been associated with autism spectrum 

disorders [10]. 
 The tendency towards global or local processing has also been theorized to be cul-
ture-specific: certain cultures have been shown to favor local precedence [8]. 
 Connections between perception, emotion, and motivation are discussed at length 
by Zadra and Clore [22]. Their survey covers the effects of emotion and mood on 
global vs. local perception, attention, and spatial perception. 
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3 Local and Global Percept Processing for Rebel Agents in eBot-

Works 

eBotworks [15] is a software platform for designing and evaluating communicative 

autonomous systems in simulated environments. “Communicative” autonomous sys-

tems are those that can interact with the environment, humans, and other agents in 

robust and meaningful ways, including the use of natural language. eBotworks tasks 

have so far been limited to path-finding and obstacle-avoidance-type tasks (Figure 1), 

and have not been concerned with character believability.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An eBotworks scene with an eBot performing obstacle avoidance. 

 

 In previous work [7], we designed scenarios showcasing emotion-influenced per-

ception for possible future implementation in eBotworks. We then discussed how the 

implementation of these scenarios might be achieved with existing components of the 

framework. 

 We will first reiterate these scenarios before we explain how the newly-proposed 

mechanisms can be used to achieve them. The scenarios are based on the following 

assumptions: (1) the agent is a Rebel Agent [6] endowed with an autobiographical 

memory model in which memories are connected to emotions, (2) default perception 

is global-first, (3) agents have current “moods” (emotional states) which can be neu-

tral, positive or negative, with the “neutral” mood being the default one, (4) moods 

can change as a result of perceiving scenes evoking autobiographical memories with 

emotional associations, (5) mood affects perception in the ways described in Section 

2, (6) all scenarios take place on the same map, (7) in all scenarios, the agent has been 

assigned a goal that involves movement to a target location on the map; based on its 

reaction to scenes perceived on its way to the target, the agent may or may not rebel; 

when a rebellion threshold is reached, the agent does rebel, (8) in all scenarios, the 

agent perceives two scenes on its way to the target; the perception of the first scene 
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may or may not affect the agent’s current mood, which, in turn, may influence how 

the second scene is perceived.  

 

-  Scenario 1: On the way to its target location, the agent perceives a box. This 

evokes no emotions, as there are no connections to the box in the autobio-

graphical memory of the agent. Then, the agent perceives the second scene: a 

traffic-cone-lined driving course, using global-precedence perception. The 

agent’s emotion changes to a slightly-positive one, as it “enjoys” driving 

through traffic-cone-lined driving courses. This does not elicit a goal change.  

-  Scenario 2: On the way to its target location, the agent perceives a box. In 

the agent’s autobiographical memory, the box has positive emotional associ-

ations. This changes the agent’s mood to a positive one. Positive moods fa-

vor global perception, so they do not change the agent’s default perception 

type. The agent perceives the traffic-cone-lined driving course using global-

precedence perception. The agent’s mood remains positive. This does not 

elicit a goal change. 

-  Scenario 3: On the way to its target location, the agent perceives a box. In 

the agent’s autobiographical memory, the box has negative emotional associ-

ations. Therefore, the agent’s current mood changes to a negative one. Soon 

afterwards, the agent perceives the traffic-cone-lined driving course. Due to 

the agent’s mood, local interference occurs, and the agent largely ignores the 

overall scene, while focusing on the color of the cones (which is similar to 

that of the box), which reminds it of a sad occurrence from the past, like a 

collision. This changes the agent’s mood to a more intensely negative one, 

which causes the rebellion threshold to be reached and the agent to “rebel”. 

4 Case-Based Reasoning for Location Ecphory  

Ecphory is the remembrance, caused by a memory trigger, of a past event. In the case 
of location ecphory, this trigger is a location with which the memory is associated. 
 Gomes, Martinho, and Paiva [14] use map coordinates as location-ecphory triggers. 
While this is easier from a practicality standpoint, the authors admit it does not accu-
rately reflect the way location ecphory works in humans. Location coordinates (unless 
physically perceived, with some emotional associations) are unlikely to awaken 
memories and incite strong emotion. Instead, it is the sights, sounds, smells, tastes, 
and tactile sensations pertaining to a place that work to achieve this recollection. 
Thus, if these traits change beyond recognition, the location’s function as a memory 
cue is invalidated. 
 Retrieving stored memories is a natural match for the case-based reasoning model, 
which was inspired by the psychological mechanisms underlying memory storage and 
recollection. Furthermore, case-based reasoning literature contains ample coverage of 
similarity measures between complex case structures that are not trivially comparable, 
including graphs, plans, and case structures based on object orientation, which is pre-
cisely what we need for implementing our Rebel Agent prototype in eBotworks. By 
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using case-based reasoning similarity measures, we intend to expand location ecphory 
beyond just map coordinates. 

4.1 Case Structure and Similarity Measures 

To achieve the emotional location-ecphory effect we are aiming for, each case should 
contain two essential pieces of information: (1) a past percept, and (2) an emotional 
reaction associated with that percept. 
 The ways in which we model these pieces of information can vary in complexity. 
The percept can be a complex scene or a very specific subscene, such as an individual 
object or something slightly more general such as a set of objects on a table. The emo-
tional reaction can consist of a simple, basic emotion (e.g. “joy”) or of a complex, 
layered conglomerate of emotions, each experienced at a different degree of intensity. 
 Due to the characteristics of our simulation platform, we are, for now, focusing on 
visual ecphory triggers, although triggers of a different nature (e.g. gustatory and 
olfactory) certainly function in the real world. 
 In choosing our case structure, we are influenced by the description that Navon 
[16] gives of a visual scene as a hierarchical network, each node of which corresponds 
to a subscene. Global scenes are higher up in the hierarchy than local ones, and can be 
decomposed into local ones. Global-first processing proceeds from global scenes, 
local-first processing from local ones. We do not, however, aim at matching any psy-
chological model of perception differentiation perfectly through our case representa-
tion. 
 To approximate this hierarchical structure, we propose a model inspired by object-
oriented ([3][2] - Section 4.4) and graph-based ([19][2] - Section 4.5) case structures.  
 A scene hierarchy is not equivalent to a class inheritance hierarchy, though there 
are clear similarities between the two. The reason is that in a class hierarchy, classes 
lower down in the hierarchy incorporate the attributes of classes higher up, whereas in 
the scene/subscene hierarchy, the inverse takes place: the root scene incorporates 
information from all lower nodes, because the complete scene is composed of all 
subscenes. 
 It is to be noted that the rather simple description above does not accurately capture 
human perception, in which a global scene is perceived as a general outline with 
vague details that become clear while travelling downwards in the hierarchy. There-
fore, the details in the lower nodes are then incorporated (potentially completely) into 
the higher nodes. If perception proceeds in a global-first manner and is not prolonged, 
these lower levels may not be reached. 
 The similarity methods of Bergmann and Stahl [3] allow objects at different levels 
in the class hierarchy to be compared. This is especially useful, as we have no guaran-
tees that two subscenes we are comparing are at similar hierarchical levels. 
 However, our situation is even more challenging: not only are the scenes that we 
are comparing different and at different hierarchical levels, but even their respective 
hierarchies can be different and correspond to varied scenes (unless the scenes that 
can be perceived are highly controlled and limited). Despite this challenge, we believe 
that the local and global similarity measures proposed by Bergmann and Stahl [3] can 
be adapted to be used for local and global perception, respectively. The perception 
setting of the agent at a given time (e.g. global after perceiving the box in Scenarios 1 
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and 2; local after perceiving the box in Scenario 3) will determine where in the hierar-
chy we look for the similarity. 
 For simplification, we can assume that the cases are collections of objects, and do 
not take into account the spatial positioning of the objects in a scene in relation to one 
another.  

4.2 Populating the Case Base 

In order to populate a case base consisting of “memories” of percepts and associated 
emotions, we must first provide a mechanism allowing agents’ percepts to be associ-
ated with emotions. 
 Truly human-like agents would be able to generate emotions themselves. This 
would be partially based on (1) the personality with which the agent would have been 
endowed (which could dictate, for example, that the agent is not easily frightened), 
and (2) general rules about ways in which people tend to react to certain situations 
(e.g. a gruesome scene tends to cause shock). Thus, making agents able to generate 
emotions in response to percepts would require providing them with at least one of 
these two models. 
 We are interested in exploring a knowledge-light alternative to this challenge. This 
approach can leverage the chat interface of eBotworks (or alternative eBotworks 
mechanisms) and is based on the idea of having human users direct the agent on how 
to “feel” in certain situations. Thus, the agent acquires an "emotional baggage" de-
rived from that human user's personality or a "role" that the human user chooses to 
play. Some bots, for instance, could be directed to be more “impressionable” than 
others. 
 Let us re-examine Scenario 3, where the agent perceives a box with negative emo-
tional associations. With this approach, this association would not exist because the 
bot previously got hurt in the vicinity of the box, but rather because the bot was pre-
viously told that the box should make it “feel sad”. 
 While we only propose this mechanism for the purpose of attaching specific emo-
tions to scenes, it could later be applied more broadly within the context of motivation 
discrepancies and Rebel Agents. For instance, it could also be used to assign meaning 
to scenes, so that the agent can match scenes similar in meaning (e.g. “a quarrel”) 
rather than just in their constitutive elements. With this ability, agents can then match 
emotion to meaning (e.g. witnessing a quarrel causes stress), rather than just to specif-
ic scenes and subscenes. 
 Currently, the chat interface of eBotworks is used to issue commands to agents in a 
simulated environment. For example, a user can enter “Go here” and click on a loca-
tion on the current map; if the command is successful, the agent reacts by moving to 
the specified location. 
 To explain how this system could be used for our purposes, let us first assume that 
the bot is facing a scene containing a box. One option would be for the user to simply 
say one of several words corresponding to several emotions “understood” by the sys-
tem, e.g. “sad”. In this case, the agent would take a “snapshot” of the scene it is facing 
and store it together with the associated emotion, sadness. 
 However, memories of strong emotions can be associated with very specific 
subscenes, rather than to an entire complex scene (e.g. excitement associated with a 
logo on the envelope containing a college acceptance letter). Moreover, the subscene 
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that attention ends up focusing on in such situations is not necessarily related to the 
emotion itself. Instead, it could contain items that just happen to be there when the 
emotionally charged event occurs (e.g., a cup that happens to be on a nearby table 
while a severe argument is taking place). 
 To handle this possibility, we can allow the user to specify an object in the scene to 
which to associate the emotion by clicking on the object first, then saying the word 
corresponding to the emotion. In Scenario 3, clicking on a box then saying “sad” can 
cause the agent to switch to a sad mood and experience local interference in percep-
tion. Another necessary addition to typical eBotworks usage will be to have the agent 
convey, through console messages, (and, later, possibly, through visual representa-
tions on the map) what objects it is currently focusing on and what moods it is experi-
encing. This will enhance believability by providing insight into the agent’s motiva-
tions and into the emotional justification behind its actions.  

5 Conclusions 

We have discussed using the case-based model for the purpose of creating location-
ecphory-based motivation-discrepancy mechanisms for Rebel Agents, addressing the 
challenge of retrieving emotionally-charged past percepts and comparing them to 
current ones. 
 Our two main contributions herein are: 

(1) Exploring a case-based reasoning context for motivation-discrepancy-
perception in eBotworks Rebel Agents. 

(2) Proposing the use of chat-based user input for creating the agents’ “emotional 
baggage”, potentially sparking “rebellion”. 
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Abstract. Real-Time Strategy (RTS) games are popular testbeds for
AI researchers. In this paper we compare different machine learning al-
gorithms to predict the outcome of small battles of marines in StarCraft,
a popular RTS game. The predictions are made from the perspective of
an external observer of the game and they are based only on the actions
that the different units perform in the battlefield. Our empirical results
show that case-based approaches based on k-Nearest Neighbor classifica-
tion outperform other standard classification algorithms like Linear and
Quadratic Discriminant Analysis or Support Vector Machines.

Keywords: Prediction, StarCraft, Linear and Quadratic Discriminant
Analysis, Support Vector Machines, k-Nearest Neighbors

1 Introduction

Real-Time Strategy (RTS) games are popular testbeds for AI researchers [4]
because they provide complex and controlled environments in which to carry
out different experiments. In this paper we assume the role of an external ob-
server of the game that tries to predict the outcome when the armies of two
different players engage in combat. As a spectator of the game, we can only
base the predictions on the actions of the different units in the battlefield. From
this perspective, we can consider each army as a group of agents working in a
coordinated manner to defeat the other army. We know that the units in the
game are not really agents because they are not autonomous (in fact they are
controlled by a human player or by the internal AI of the game), but from the
perspective of an external observer we only see several units performing actions
in a simulation, and we do not know whether those actions are consequence of
individual decisions or some superior intelligence. Therefore, our approach to
prediction in RTS games could be applied as well to multi-agent simulations.

The ability to predict the outcome of battles is interesting because it can be
used to dynamically modify the strategy of the player. For example, the player
could decide to change the composition of the army, to bring more troops into

∗ Supported by Spanish Ministry of Economy and Competitiveness under grant
TIN2014-55006-R
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Fig. 1: Screenshot of our custom map: Battle of Marines

the battlefield or deploy them differently, or even to flee if the prospects are
not good. In general, an agent able to make predictions (running an internal
simulation based on what he knows) might be able to adapt his behavior more
successfully than other agent without this ability.

In this work, we compare classical classification algorithms like Linear and
Quadratic Discriminant Analysis, Support Vector Machines, and two instance-
based classifiers based on the retrieval of the k-Nearest Neighbors (kNN). kNN
classifiers can be seen as simple Case-based Reasoning (CBR) systems that only
implement the retrieval phase of the CBR cycle. In this paper we study the
accuracy of the prediction during the course of the battle, the number of games
that each algorithm needs to learn, and the stability of the prediction over time.

The rest of the paper is organized as follows. Sections 2 and 3 describe the
scenario used in the experiments, the process to extract the data for the analysis
and the features chosen to represent the game state. Sections 4 and 5 explain the
different classification algorithms and the results obtained. The paper concludes
with the related work, and some conclusions and directions for future research.

2 Battles of Marines in StarCraft

StarCraft1 is a popular RTS game in which players have to harvest resources,
develop technology and build armies combining different types of units to defeat

1 http://us.blizzard.com/en-us/games/sc/
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game frame units1 life1 area1 units2 life2 area2 distance winner

1 0 6 40 2772 6 40 2520 1309.903 1
1 3 6 40 2772 6 40 2520 1309.903 1
1 6 6 40 2736 6 40 2925 1302.857 1
1 9 6 40 2964 6 40 2923 1282.317 1
1 12 6 40 3876 6 40 2905 1266.277 1
1 15 6 40 4332 6 40 3045 1246.241 1

Table 1: Examples of game states extracted from a Starcraft game trace.

the other players. The combination of different types of units and abilities, and
the dynamic nature of the game force players to develop strategies at different
levels. At the macro level, players have to decide the amount of resources in-
vested in map exploration, harvesting, technology development, troops, offensive
and defensive forces, among others. At the micro level players have to combine
different types of units, locate them in the map and use their abilities. In this
paper we focus on small battles, that is, at the micro level.

StarCraft also provides a map editor to create custom games. Using this tool,
we have created a simple combat scenario (Figure 1) in which each player controls
a small army of 6 terran marines (marines are basic ground combat units with
ranged attack). The game always begins with the same initial configuration,
each army located on opposite sides of the map, and the game ends when all the
units of one player are destroyed. In this type of scenario it is very important to
strategically locate the units on the map to take advantage of the range attack
and concentrate the fire on a few units to destroy them as soon as possible.

3 Data Collection and Feature Selection

In order to obtain the data to train the different classifiers, we played 200 games
collecting traces that describe the evolution of the games. We configured the
map so the internal game AI controls both players so (1) we can automatically
play as many games as required, and (2) we know that all the games are well
balanced (since the StarCraft AI is playing against itself). Finally, there is a
third player that only observes the game (it does not intervene) and extracts the
game traces to a file so they can be analyzed later2.

The data set contains traces of 200 games in which player 1 won 119 times
and player 2 the remaining 81. They are very fast games with an average duration
of 19.12 seconds. In each trace we store the game state 6 times per second, so
each game is described with approximately 114 games states or samples.

Each game state is stored using a vector of features (Table 1) that represents
the combat power of each army and the strategic deployment of the troops in the
map. The combat power is represented using the number of units alive in each

2 We use the BWAPI framework to extract information during the game
(https://github.com/bwapi/bwapi).
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Fig. 2: Average number of deaths during the game.

army and their average life. To represent the strategic distribution of troops in
the map we compute the area of the minimum axis aligned rectangle containing
the units of each player and the distance between the centers of both rectangles.
The rectangle area is a measure of the dispersion of the units, and the distance
between the centers indicates how close the two armies are. Each game state is
labeled later with the winner of that particular game. The table also shows the
game and the current frame for clarity (1 second is 18 game frames although we
only sample 6 of them), but we do not use those values in the prediction.

The features to describe the strategic distribution of the troops in the map
are especially important during the first seconds of the game. Figure 2 shows
the average number of dead units during the 200 games. As we can see, during
the first half of the game the armies are approaching each other and the fight
does not start until the second half. Thus, during the first seconds of the game
the predictions will depend only on the relative location of the units.

4 Classification algorithms

We will compare the following classification algorithms in the experiments:

– Linear Discriminant Analysis (LDA) [8] is classical classification algorithm
that uses a linear combination of features to separate the classes. It assumes
that the observations within each class are drawn from a Gaussian distribu-
tion with a class specific mean vector and a covariance matrix common to
all the classes.

– Quadratic Discriminant Analysis (QDA) [9] is quite similar to LDA but it
does not assume that the covariance matrix of each of the classes is identical,
resulting in a more flexible classifier.
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Classifier Accuracy Parameters

Base 0.5839
LDA 0.7297
QDA 0.7334
SVM 0.7627 kernel = radial, C = 1, sigma = 0.3089201
KNN 0.8430 k = 5

KKNN 0.9570 kernel = optimal, kmax = 9, distance = 2

Table 2: Classification algorithms, configuration parameters and global accuracy.

– Support Vector Machines (SVM) [7] have grown in popularity since they were
developed in the 1990s and they are often considered one of the best out-
of-the-box classifiers. SVM can efficiently perform non-linear classification
using different kernels that implicitly map their inputs into high-dimensional
feature spaces. In our experiments we tested 3 different kernels (lineal, poly-
nomial and radial basis) obtaining the best results with the radial basis.

– k-Nearest Neighbour (kNN) [2] is a type of instance-based learning, or lazy
learning, where the function to learn is only approximated locally and all
computation is deferred until classification. The kNN algorithm is among the
simplest of all machine learning algorithms and yet it has shown good results
in several different problems. The classification of a sample is performed
by looking for the k nearest (in Euclidean distance) training samples and
deciding by majority vote.

– Weighted K-Nearest Neighbor (kkNN) [10] is a generalization of kNN that
retrieves the nearest training samples according to Minkowski distance and
then classifies the new sample based on the maximum of summed kernel
densities. Different kernels can be used to weight the neighbors according to
their distances (for example, the rectangular kernel corresponds to standard
un-weighted kNN). We obtained the best results using the optimal kernel
[14] that uses the asymptotically optimal non-negative weights under some
assumptions about the underlying distributions of each class.

The three first algorithms use the training data (labeled game states in our
experiments) to infer a generalized model, and then they use that model to clas-
sify the test data (new unseen game states). The last two algorithms, however,
use the training data as cases and the classification is made based on the most
similar stored cases. All the experiments have been run using the R statisti-
cal software system [11] and the algorithms implemented in the packages caret,
MASS, e1071, class and kknn.

5 Analyzing the results

Table 2 shows the configuration parameters used in each classifier and its ac-
curacy computed as the ratio of samples (game states) correctly classified. The
optimal parameters for each classifier were selected using repeated 10-fold cross
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Fig. 3: Accuracy of the classifiers during the game.

validation over a wide set of different configurations. The accuracy value has
been calculated as the average of 32 executions using 80% of the samples as the
training set and the remaining 20% as the test set.

The base classifier predicts the winner based only on the proportion of sam-
ples belonging to each class (58.39% of the samples correspond to games won
by player 1) and it is useful only as a baseline to compare the other classifiers.
LDA, QDA and SVM obtain accuracy values ranging from 72% to 76%. The two
instance-based algorithms, on the other hand, obtain higher precision values. It
is especially impressive the result of kkNN that is able to predict the winner
95.70% of the times. These results seem to indicate that, in this particular sce-
nario, it is quite difficult to obtain a generalized model, and local based methods
perform much better.

The global accuracy value may not be informative enough because it does not
discriminate the time of the game when the prediction is made. It is reasonable
to expect the accuracy of the predictions to increase as the game evolves as it
is shown in Figure 3. The x-axis represents the percentage of elapsed time (so
we can uniformly represent games with different duration) and the y-axis the
average accuracy of each classifier for game states from that time interval.

Selecting a winner during the second half of the game is relatively easy since
we can see how the battle is progressing, but during the first half of the game
the prediction problem is much more difficult and interesting since we only see
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Fig. 4: Accuracy of the classifiers vs. the number of training games.

the formation of the armies (pre-battle vs. during battle prediction). LDA, QDA
and SVM do not reach 90% of accuracy until the last quarter of the game. kNN
is able to reach the same accuracy at 66% of the game. The results of kkNN
are spectacular again, classifying correctly 90% of the game states from the first
seconds. kkNN is the only algorithm able to effectively find useful patters in the
training data before the armies begin to fight. Our intuition is that the training
data is biased somehow, probably because the StarCraft AI is playing against
itself and it does not use so many different attack strategies. In any case, kkNN
seems to be the only algorithm to effectively predict the outcome of the battle
from the first moves of each army.

Another important aspect when choosing a classifier is the volume of training
data they need to perform well. Figure 4 shows the accuracy of each classifier
as we increase the number of games used during the training phase. In the first
20 games all the algorithms perform similarly but then only kNN and kkNN
keep improving fast. It makes sense for instance-based algorithms to require a
large number of samples to achieve their highest degree of accuracy in complex
domains, while algorithms that infer general models stabilize earlier but their
prediction is more biased.

Finally, Figure 5 shows the stability of the predictions. We divided the game
in 20 intervals of 5% of time. The y-axis represents the number of games for
which the classifier made a prediction in that time interval that remained stable
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Fig. 5: Number of games for which each classifier becomes stable at a given time.

for the rest of the game. For example, the y value for x “ 0 represents the
number of games in which the prediction became stable during the first time
interval (0-4.99% of the game). Most of the classifiers need to wait until the
last quarter of the game to be stable in 80% of the games, except kkNN that
is very stable from the beginning. There are a few games, however, in which all
the classifiers are wrong until the end of the game because the army that was
winning made bad decisions during the last seconds.

In conclusion, instance-based classifiers seems to perform better in our sce-
nario, and kkNN in particular is the only algorithm that is able to effectively
find useful patters in the training data before the armies begin to fight. It is
also the most stable and it only performs worst than the other algorithms where
there is a very small number of training games available.

6 Related work

RTS games have captured the attention of AI researchers as testbeds because
they represent complex adversarial systems that can be divided into many inter-
esting subproblems [4]. Proof of this are the different international competitions
in AIIDE and CIG conferences. We recommend [12] for a complete overview of
the existing work on this domain, the specific AI challenges and the solutions
that have been explored so far.
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There are several papers regarding the combat aspect of RTS games. [6]
describes a fast Alpha-Beta search method that can defeat commonly used AI
scripts in small combat scenarios. It also presents evidence that commonly used
combat scripts are highly exploitable. A later paper [5] proposes new strategies
to deal with large StarCraft combat scenarios.

Several different approaches have been used to model opponents in RTS
games in order to predict the strategy of the opponents and then be able to
respond accordingly: decision trees, kNN, logistic regression [17], case-based rea-
soning [1, 3], bayesian models [16] and evolutionary learning [13] among others.

A paper very related to our work is [15], where authors present a Bayesian
model that can be used to predict the outcome of isolated battles, as well as to
predict what units are needed to defeat a given army. Our approach is different
in the sense that we try to predict the outcome as the game progresses and our
battles begin with 2 balanced armies (same number and type of units). We use
tactical information regarding the location of the troops and we use StarCraft
to run the experiments and not a battle simulator.

7 Conclusions and Future work

In this paper we compare different machine learning algorithms in order to pre-
dict the outcome when two small marine armies engage in combat in the Star-
Craft game. The predictions are made from the perspective of an external game
observer so they are based only on the actions of the individual units. The pro-
posed approach is not limited to RTS games and can be used in other domains
like multi-agent simulations, since it does not depend on whether the actions are
decided by each unit autonomously or by a global manager. Our results indicate
that, in this scenario, instance-based classifiers such as kNN and kkNN behave
much better than other classifiers that try to infer a general domain model in
terms of accuracy, size of the training set and stability.

There are several possible ways to extend our work. We have only considered
a small battle scenario with a limited number of units. As the number and
diversity of units increases, the number of possible combat strategies also grows
creating more challenging problems. Our map is also quite simple and flat, while
most of the StarCraft maps have obstacles, narrow corridors, wide open areas
and different heights providing locations with different tactical value. The high
accuracy values obtained by kkNN from the first seconds of the battle make us
suspicious about the diversity of the strategies in the recorded games. We plan
to run new experiments using human players to verify our results. Finally, our
predictions are based on static pictures of the current game state. It is reasonable
to think that we could improve the accuracy if we consider the evolution of the
game and not just the current state to predict the outcome of the battle.
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Abstract. Aircraft diagnosis is a highly complex topic. Many knowl-
edge sources are required and have to be integrated into a diagnosis
system. This paper describes the instantiation of a multi-agent system
for case-based aircraft diagnosis based on the SEASALT architecture.
This system will extend a existing rule-based diagnosis system, to make
use of the experience of occurred faults and their solutions. We describe
the agents within our diagnosis system, the planned diagnosis workflow
and the current status of the implementation. For the case-based agents,
we give an overview of the initial case structures and similarity measures.
In addition, we describe some challenges we have during the development
of the multi-agent system, especially during the knowledge modeling.

1 Introduction

An aircraft is a complex mechanism, consisting of many subsystems. Occurring
faults cannot be easily tracked to their root cause. A fault can be caused by
one system, by the interaction of several systems or by the communication line
between systems. Finding the root cause can be very time and resource con-
suming. Therefore the use of experience from successfully found and solved root
causes can be very helpful for aircraft diagnosis. This paper describes the in-
stantiation of a multi-agent system (MAS) based on the SEASALT architecture.
The MAS contains several Case-Based Reasoning (CBR) systems to store the
experience and provide this knowledge for diagnosis. In the next section, we
give an overview of the OMAHA project and the SEASALT architecture. Sec-
tion 2 contains related work with comparing our approach to other diagnosis
and multi-agent approaches. In Section 3 we describe the instantiation of the
SEASALT components for our MAS and describe the case-bases agents with the
case structure and similarity measures of the underlying CBR systems in more
detail. Section 4 gives a short summary of the paper and an outlook on future
work.

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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1.1 OMAHA project

The multi-agent system for case-based aircraft diagnosis is under development
in the context of the OMAHA research project. This project is supported by the
German Federal Ministry of Economy and Energy and tries to develop an Overall
Management Architecture for Health Analysis of civilian aircraft. Several top-
ics are addressed within the project like diagnosis and prognosis of flight control
systems, innovative maintenance concepts, and effective methods of data process-
ing and transmission. A special challenge of the OMAHA project is to integrate
not only the aircraft and its subsystems, but also systems and processes in the
ground segment like manufacturers, maintenance facilities, and service partners
into the maintenance process. Several enterprises and academic and industrial
research institutes take part in the OMAHA project: the aircraft manufacturer
Airbus, the system manufacturers Diehl Aerospace and Nord-Micro, the aviation
software solutions provider Linova and IT service provider Lufthansa Industrial
Solutions as well as the German Research Center for Artificial Intelligence and
the German Center for Aviation and Space. In addition, several universities are
included as subcontractors. The project started in 2014 and will last until the
end of March, 2017. 1

The OMAHA project has several different sub-projects. Our work focuses on
a sub-project to develop a so-called integrated system health monitoring (ISHM)
for aircraft systems. The main goal is to improve the existing diagnostic approach
to identify faults with root cause in more than a single subsystem (cross-system
faults). Therefore, a multi-agent system (MAS) with several case-based agents
will be implemented to integrate experience into the diagnostic process and
provide more precise diagnoses for given faults.

1.2 SEASALT architecture

The SEASALT (Shared Experience using an Agent-based System Architecture
LayouT) architecture is a domain-independent architecture for extracting, ana-
lyzing, sharing, and providing experiences [4]. The architecture is based on the
Collaborative Multi-Expert-System approach [1],[2] and combines several soft-
ware engineering and artificial intelligence technologies to identify relevant infor-
mation, process the experience and provide them via an interface. The knowledge
modularization allows the compilation of comprehensive solutions and offers the
ability of reusing partial case information in form of snippets.

The SEASALT architecture consists of five components: knowledge sources,
knowledge formalization, knowledge provision, knowledge representation, and
individualized knowledge. The knowledge sources component is responsible for
extracting knowledge from external knowledge sources like databases or web
pages and especially Web 2.0 platforms.

The knowledge formalization component is responsible for formalizing the ex-
tracted knowledge into a modular, structural representation. This formalization

1 www.dlr.de/lk/desktopdefault.aspx/tabid-4447/7274_read-39606
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is done by a knowledge engineer with the help of a so-called Apprentice Agent.
This agent is trained by the knowledge engineer and can reduce the workload
for the knowledge engineer.

The knowledge provision component contains the so-called Knowledge Line.
The basic idea is a modularization of knowledge analogous to the modularization
of software in product lines. The modularization is done among the individual
topics that are represented within the knowledge domain. In this component a
Coordination Agent is responsible for dividing a given query into several sub
queries and pass them to the according Topic Agents. The agent combines the
individual solutions to an overall solution, which is presented to the user. The
Topic Agents can be any kind of information system or service. If a Topic Agent
has a CBR system as knowledge source, the SEASALT architecture provides a
Case Factory for the individual case maintenance [4],[3],[9].

The knowledge representation component contains the underlying knowledge
models of the different agents and knowledge sources. The synchronization and
matching of the individualized knowledge models improves the knowledge main-
tenance and the interoperability between the components. The individualized
knowledge component contains the web-based user interfaces to enter a query
and present the solution to the user.

1.3 Application domain: aircraft diagnosis

An aircraft is a highly complex machine consisting of a large number of subsys-
tems that interact with each other, like hydraulic, cabin, ventilation, and landing
gear. Each subsystem has a large number of components. The smallest compo-
nent that can be replaced during maintenance is called Line Replacement Unit
(LRU). The challenge is to find the root cause of a fault, because there could be
more than one LRU causing the fault or a fault chain. In a fault chain, the first
fault causes additional faults, which could also cause additional faults again.
Faults are not limited to have their root cause in the subsystems that stated
the fault, but the root cause can be found in a different subsystem. Therefore,
a cross-system diagnosis is required to improve the precision of the diagnosis
process.

In the next section we give an overview of some related work. In Section 3 we
describe the multi-agent system concept and the instantiation of the SEASALT
architecture. Section 3.3 describes the current status of our implementation.
Finally a summary and outlook on future work is given.

2 Related Work

Decision support for diagnosis (and maintenance) in the aircraft domain means
that a lot of engineering knowledge is available to support this process. In the
past various diagnostic approaches tried to improve diagnosis and maintenance in
this domain: among others case-based reasoning, rule-based reasoning, model-
based reasoning, Bayesian belief networks, Fuzzy inference, neural networks,
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fault trees, trend analysis, and a lot of combinations. For OMAHA, that is
OMAHA work package 230, the exploitation of available experiences as supple-
mentation to other already used knowledge sources is of high priority. See also
the work from Reuss et al.[10] for relating our approach with a selection of re-
lated other experience reusing diagnostic approaches: the British research project
DAME [7] dealing with fault diagnosis and prognosis based on grid computing ,
Dynamic Case-Based Reasoning [13] learning also through statistic vectors con-
taining abstract knowledge condensed from groups of similar cases, and the hy-
brid approach of Ferret and Glasgow [6] combining model-based and case-based
reasoning.

For optimizing the relation between cost and benefit we decided to use the
various available textual knowledge sources (cf. also Section 3). A recent overview
of using textual sources for CBR is given in the textbook of Richter and We-
ber [12]. The paper of Reuss et al. [11] also gives an overview of some related
approaches in this direction.

In addition to other specific characteristics of our approach one property dif-
ferentiating it from many other (CBR) approaches is the fact that we develop
a multi-agent system that applies a lot of CBR agents (among other) ones.
The following approaches have in common that they also combine a multi-agent
system approach with CBR. Researchers also dealing with CBR from different
perspectives and trying to combine the specific insights to an improved overall
approach are [16]. Of course, what makes our approach different here is that we
are concerned with the development of concrete framework with existing appli-
cations. Corchado et al.[5] present in their work an architecture for integrating
multi-agent systems, distributed services, and application for constructing Am-
bient Intelligence environments. Besides addressing a different domain and task
this approach appears to be more open concerning the potential tasks agents
can take over, while our approach is more focused in applying software engi-
neering strategies for decomposing problems into sub-problems resulting in a
distributed knowledge-based system. Zouhaire and his colleagues[17] developed
a multi-agent system using dynamic case-based reasoning that learns from traces
and is applied for (intelligent) tutoring. Our approach does not learn from traces
but instead has to deal with a lot of technical knowledge and in addition has
to solve critical problems. Srinivasan, Singh and Kumar[14] share with our ap-
proach that they develop a conceptual framework for decision support systems
based on multi-agent systems and CBR systems. Our approach appears to be
more on the side of integrating software engineering and artificial intelligence
methods implementing concrete application systems, while the authors discuss
how their framework influences decision support system in general. Khelassi[8]
developed the IK-DCBRC system basing on a multi-agent architecture using a
CBR approach with fuzzy-enhanced similarity assessment and being able to ex-
plain the results for different users. Our approach is not explanation-aware with
respect to its current implementation status, however there is a conceptional
extension of the SEASALT architecture (together with Thomas Roth-Berghofer
and his research team) defined that includes explanation awareness. In addition,
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there are two PhD research projects ongoing focusing on explanation aware-
ness. What also makes us different from Khelassis work is that our approach is
embedded in an overall methodology resulting in a systematic process of how
to develop an instance of our architecture with applications in travel medicine,
technical diagnosis, and architectural design.

3 Multi-agent case-based diagnosis in the aircraft domain

In this section we describe the current version of our multi-agent system for
case-based diagnosis. Based on the SEASALT architecture we describe the in-
stantiation of the single components in context of our multi-agent system and
the diagnosis workflow. In addition, we give an overview over the case structures
and similarity measures of our case-based agents.

3.1 Multi-agent system for aircraft diagnosis

First we will describe the instantiation of our multi-agent system. The multi-
agent system is an additional component of the diagnosis mechanism. It will not
replace the existing rule-based diagnosis, but will extend the current diagnosis
mechanism. The main component for our multi-agent aircraft diagnosis is the
knowledge provision component. This component contains the Knowledge Line,
which is responsible for providing a diagnosis for a given fault situation. The
Knowledge Line consists of several topic agents with underlying CBR systems.
The topic agents use the knowledge of their CBR systems to provide a part of
the diagnosis. If only the knowledge of one topic agent is required, the topic
agents delivers the complete diagnosis. There are several homogeneous teams of
topic agents in the Knowledge Line, each responsible for diagnoses of an aircraft
type (e.g., A320, A350, or A380). Each team has an additional agent, called
solution agent to coordinate the topic agents and rank the individual solutions.
Because each individual solution represents a possible diagnosis, a combination
of solutions is not appropriate. The approach of separated agent teams for each
aircraft type is based on the idea to split the knowledge into several smaller CBR
systems. This way the number of cases for a retrieval and the maintenance effort
for each system can be reduced. Nevertheless, for a diagnosis more than one
agent team may be necessary. Therefore, a query can be distributed to several
agent teams, either by default or if a diagnosis from the primary agent team for
a query cannot provide a sufficient diagnosis. A coordination agent is responsi-
ble for coordinating the agent teams, distributing a query, and combining the
team’s solutions. The complete diagnosis process requires some more software
agents that do not belong to the Knowledge Line itself: an interface agent, a
composition agent, a knowledge map agent, and an output agent. The interface
agent receives the query either from a web interface and/or a data warehouse.
The main data source is a Post Flight Report (PFR) containing all the faults
having occurred during the last flight of an aircraft. This PFR is based on the
rule-based diagnosis in the aircraft. Each fault is represented as a so-called PFR
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item. Additional data like aircraft configuration, operational parameters (e.g.,
weather conditions, temperature, etc.), and logbook entries can be received, too.
The PFR data and the additional data have to be correlated to assign the addi-
tional data to the corresponding PFR item. This task is done by the correlation
agent. The extended PFR items are sent to the coordination agent. For each
PFR item, a request to one or more agent teams is performed. To determine
which topic agents of a team should be requested, a so-called Knowledge Map is
used. This Knowledge Map contains information about existing agents and their
dependencies and underlying CBR systems. The task to determine a so-called
retrieval path (the topic agents to be requested and the sequence of retrievals) is
done by a knowledge map agent. This agent has access to the general Knowledge
Map and a CBR system, which stores past successful retrieval paths for given
fault situations. The knowledge map agent uses the CBR system to retrieve the
most similar retrieval paths and adapt the path to the new situation if necessary.
Based on the determined retrieval path, the topic agents are requested and a
ranked list of diagnoses is generated. The list of diagnoses is sent to the output
agent. The output agent forwards the list to the web interface and the data
warehouse. One more agent is located in the knowledge provision component.
The so-called query analyzer takes each extended PFR item and checks for new
concepts, which are not yet part of the vocabulary of the CBR systems. If any
new concepts are found, a maintenance request is sent to the so-called Case Fac-
tory [9]. The Case Factory checks the maintenance request, derives appropriate
maintenance actions, and executes the actions after confirmation from a knowl-
edge engineer. The query analyzer is not part of the diagnosis process itself, but
provides some learning capabilities to the multi-agent system.

The user interface can be found in the individualized knowledge component.
The user interface is a web interface, which provides the options to send a query
to the multi-agent system and present the returned diagnoses. In addition, the
user can enter new cases, edit existing cases, and browse a entire selected case
base. In addition to the web interface, a connection to a data warehouse is part
of this component. The data warehouse contains PFRs and the additional data
and will be the main query source for the multi-agent systems. If additional
information is required that is not provided by the data warehouse, it can be
added via the web interface.

The knowledge formalization component transforms structured, semi struc-
tured, and unstructured data into a modular, structural knowledge representa-
tion used by all CBR systems. This way the knowledge is represented in the
same way all over the multi-agent system. Because a structural approach for
the CBR systems in the Knowledge Line was chosen, semi-structured and un-
structured data have to be transformed into attribute value pairs. This trans-
formation workflow is performed by a so-called case base input analyzer. The
workflow consists of several steps: At first, information extraction methods are
used to extract keywords and collocations and to find synonyms and hypernyms
for the extracted keywords. Then the input data is analyzed to find associations
within the allowed values of an attribute as well as across different attributes.
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This way want to generate completion rules for query expansion. The keywords,
synonyms, hypernyms, and collocations are added to the vocabulary and initial
similarity values for keywords and their synonyms are set. The keywords and
their hypernyms can be used to generate taxonomies for similarity measures.
After the vocabulary extension, cases are generated from the input data and
stored in the case bases. The last step is to perform a sensitivity analysis on the
stored cases to determine the weighting for the problem description attributes.
The workflow is presented in more detail in [11].

In the knowledge sources component a collector agent is responsible for find-
ing new data in the data warehouse, via web services or in existing knowledge
sources of Airbus. New data could be new configurations or operational param-
eters, new synonyms or hypernyms, or complete new cases.

The knowledge representation component contains the generated vocabulary,
similarity measures and taxonomies, completion rules, and constraints provided
for all agents and CBR systems.

3.2 Case-based agents

This section focuses on the case-based agents within our multi-agent diagnosis
system. We will describe the agents’ tasks and the underlying CBR systems with
their case structure and similarity modeling. In addition to the PFR, we have to
consider several different data structures like Service Information Letters (SIL),
In-Service Reports (ISR), elogbooks and aircraft configuration documents. While
a PFR contains only information about the problem description, SIL, ISR and
eLogbooks contain problem descriptions and solutions. Configuration documents
contain data about the latest system configuration of an aircraft with hard- and
software versions. We performed an analysis on these data to identify relevant
information for cases, relationships between these information and data anoma-
lies. Based on the result of this analysis we derived two case structures with
attribute-value pairs and their value ranges. One case structure is based on PFR
and SIL (CSIL) and the other case structure is based on PFR and ISR (CISR).
The case structures overlap to some degree, because attributes derived from the
PFRs are part of both structures, like ATA chapter, aircraft type, and fault
description. The CSIL structure contains 32 attributes, while the CISR structure
consists of 28 attributes. The attributes are distributed among problem descrip-
tion, diagnosis, quality information, and pointer to other cases. The problem
description contains attributes like ATA chapter, aircraft type (e.g., A380), air-
craft model (e.g., 380-641), fault code, displayed message, fault description and
affected Line Replacement Units (LRU). Attributes like recommendation, com-
ments, maintenance reference, corrective LRUs and root cause are part of the
solution. For quality assessments the number of positive (a retrieved diagnosis
was helpful) and negative (a retrieved diagnosis was not helpful) retrievals are
stored.

The configuration of an aircraft has great impact on the probability of fault
occurrence. If a certain system is not built in, corresponding faults will not
occur. The occurrence of faults depends also on the soft- and hardware version
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of built in systems. Therefore, the configuration of an aircraft can exclude faults
and root causes and have an impact on the similarity of cases. Because of the
complexity of the configuration data for an entire aircraft, we decided to consider
the configuration separate for each aircraft component. For each subsystem of
a component the so-called modification status (mod-status) is stored. With the
help of this mod-stati, cases could be excluded and similar configuration could
be compared.

Most of the attributes have a symbolic data type and a taxonomy as similar-
ity measure. The attributes ATA chapter, fault code and affected LRUs have a
natural hierarchical structure, that can be mapped to a taxonomy. A great chal-
lenge is the similarity measure for the fault description attribute. The symbolic
values of this attribute are extracted via a workflow in the knowledge formaliza-
tion component as described in [11]. During the automatic vocabulary expansion,
the values are added to a similarity table. Similarities between the automatically
added values are only set between values and their synonyms. The other values
have to be set manually. To reduce the effort, an automatic taxonomy generation
from the extracted values and their synonyms and hypernyms is planned.

The multi-agent system will contain several topic agents with the same case
structure to reduce the number of cases in one case base. Most faults can be
assigned to a specific ATA chapter. Therefore, for each ATA chapter an own topic
agent is generated. An agent team within our multi-agent system will consist of
agents discriminated by ATA chapter and data source (SIL, ISR, etc.).

Another case-based agent is the so-called knowledge map agent. This agent
is responsible for determining which topic agents have to be requested to find a
solution for a given request. For each request, a retrieval on the underlying CBR
system is performed. The cases will contain the characteristics of a request as the
problem description and a successfully used retrieval path. This way we try to
address the cross-system faults. Cross-system faults may have their root causes
in LRUs of different ATA chapters. Requesting only the topic agent of a single
ATA chapter may not give the correct root cause identification and diagnosis.
Based on experience from solved faults, the cases for the knowledge map agent
could contain information when the request of additional topic agents may be
useful to find the correct diagnosis.

There are several challenges to be met while modeling the case structures
and the similarity measures. One major challenge is based on the fact, that the
ATA chapter differs for the same subsystem in different aircraft types. The cabin
entertainment system is linked to two different ATA chapters in the A320 and the
A380. Therefore, a mapping between the different ATA chapters is required to
compare fault cases from different aircraft types. Another challenge is modeling
the fault description in the case structure. The description of a fault is mainly
given in free text provided by pilots or cabin personal. Unfortunately, there is no
standard description language for faults. Therefore, every person describes a fault
with slightly different words and technical terms. Extracting the key symptoms
from this fault descriptions and comparing two fault descriptions requires the
integration of natural language processing techniques in the modeling process
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and the diagnosis process of the multi-agent system. In addition, the amount of
knowledge that can be found in the fault descriptions is very high. Analyzing
3000 example fault descriptions, we found more than 21000 different keywords
and phrases describing the occurred faults. Modeling all these keywords and
phrases in one attribute is not practicable. While it is possible to add all keywords
automatically, setting the similarity between these keywords within a similarity
matrix or a taxonomy is not practicable. In addition, the maintenance effort for
such an attribute would be very high and in no relation the gained benefit.

The main challenge for the knowledge map agent is to identify the charac-
teristics of a request and the according knowledge sources to solve the request.

3.3 Status of implementation

We implemented a prototype to test some functionalities of the desired multi-
agent system. This application serves as a testing system for knowledge modeling
and diagnosis process. The prototype consists of two CBR systems and a user in-
terface to interact with the systems. We modeled the case structure, vocabulary
and similarity using the open source tool myCBR [15]. One CBR system con-
tains cases based on SIL documents, the other one on ISR documents. The SIL
case base contains 670 cases and the ISR case base 220 cases. The user interface
provides the functionalities to perform a retrieval, enter new cases, edit existing
cases, and browse the case base based on filter criteria. In addition, the workflow
of the knowledge extraction is partially implemented. The keyword extraction,
collocation extraction, synonym and hypernym identification, and automatic vo-
cabulary extension are implemented. For more detail on the implementation of
the knowledge extraction workflow see [11].

4 Summary and Outlook

In this paper we describe the instantiation of our multi-agent system for case-
based diagnosis. We give an overview of the individual components and describe
the case structure and similarity of our case-based agents. As Section 3.3 shows,
the multi-agent system is not fully implemented, yet. The next steps are the
implementation of the additional agents (interface, coordination, output, knowl-
edge map) and the refinement of the case structures and similarity measures. In
addition, the learning mechanism based on the knowledge extraction workflow
will be realized.
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Abstract. We address the problem of imitation learning in interactive
robots which learn from task demonstrations. Many current approaches
to interactive robot learning are performed over a set of demonstrations,
where the robot observes several demonstrations of the same task and
then creates a generalized model. In contrast, we aim to enable a robot
to learn from individual demonstrations, each of which are stored in the
robot’s memory as source cases. When the robot is later tasked with re-
peating a task in a new environment containing a di↵erent set of objects,
features, or a new object configuration, the robot would then use a case-
based reasoning framework to retrieve, adapt, and execute the source
case demonstration in the new environment. We describe our ongoing
work to implement this case-based framework for imitation learning in
robotic agents.

Keywords: Case-based agents, imitation learning, robotics

1 Introduction

Imitation is an essential process in human social learning and cognition [11, 10].
Imitation learning occurs when a learner observes a teacher demonstrating some
action, providing knowledge of (i) how the action was performed and (ii) the
resulting e↵ects of that action. This interaction-guided learning method allows us
to learn quickly and e↵ectively. As a result of its importance in human cognition,
it follows that imitation learning has become an area of increasing focus in
interactive robotics research as well.

The goal of Learning from Demonstration is to enable imitation learning in
robots through interactive demonstrations, provided through methods such as
teleoperation or kinesthetic teaching [1, 2]. Regardless of which demonstration
method is used, the following process is often used. First, the human teacher
provides several demonstrations of a skill. Between demonstrations, the teacher
may adjust the environment such that the skill is demonstrated in a variety of
initial configurations. The robot then creates an action model which general-
izes over the provided demonstrations. Lastly, the robot applies the generalized
action model to plan a trajectory which is executed in a new environment.

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
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However, a challenge of this process is that the resulting action model is de-
pendent on the number of demonstrations that were provided for that particular
task. We also assume that the robot has been exposed to enough variations of
the initial configuration such that its generalized model can be applied to a wide
range of related initial configurations. As such, the generalized model is restricted
to application in environments which are similar to those demonstrated.

We describe our preliminary work toward defining an alternate approach to
imitation learning in robotics, one which takes a case-based approach in which
the robot stores demonstrations individually in memory. We define a case-based
framework which enables the full imitation learning process, from observing a
task demonstration to transfer and execution. We also define a case representa-
tion which encodes task demonstrations for storage in source case memory.

2 Related Work

Case-based reasoning has been used to address the problem of transfer in robotics
domains. Floyd, Esfandiari & Lam [7] describe a CBR approach to learning
strategies for RoboCup soccer by observing spatially distributed soccer team
plays. Their approach represents each case as an encoding of a single agent’s
perception and resulting action at a given time. Thus, they transfer the behav-
ior of an agent when it perceives a situation similar to that of the observed
agent. More recently, Floyd & Esfandiari [6] describe an approach for case-based
learning by observation in which strategy-level domain-independent knowledge
is separated from low-level, domain-dependent information such as the sensors
and e↵ectors on a physical robot. Ontañón et al. [8] describe their approach to
observational learning for agents in real-time strategy games. They use a case-
based approach to online planning, in which agents adapt action plans which are
observed from game logs of expert demonstrations.

While these approaches do address knowledge transfer for robotic and sim-
ulated agents, they primarily operate over input and output represented at a
higher level of abstraction, such as actions at a strategic level. The goal of our
work is to enable transfer to generate action at a lower level of control and in
response to real-world perceptual input, where we transfer the demonstrated
action trajectory used to achieve a task. We expand on our previous work [3] de-
scribing a case-based approach to interpretation and imitation in robotic agents.
We discussed two separate processes: (i) interpreting new skill demonstrations
by comparing it to previously observed demonstrations using a case based pro-
cess (further described in [5]), and (ii) a related process for imitating a task
demonstration. This paper expands on the latter process, case-based imitation.

We previously provided a general outline for imitation in [3] in which four
steps occur: representation of the task demonstration at multiple levels of ab-
straction, retrieval of the most relevant source case from memory, adaptation
of the source case to address the target problem, and execution of the adapted
case in the target problem. In this paper, we describe our more recent work pro-
viding (i) a revised, complete process of imitation beginning with observation
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Fig. 1. Case-Based Process for Task Demonstration Transfer

of the task demonstration and ending with task transfer and execution, (ii) a
Mapping step which bridges the gap between the Retrieval and Transfer steps,
and (iii) a revised case representation for storing task demonstrations (iterating
on preliminary work introduced in [4]).

3 Approach Overview

We have revised our case-based approach to transfer (originally summarized
in [3]) to consist of two separate processes, as shown in Figure 1: the Case
Storage process in which the robot receives demonstrations of a task and stores
each demonstration as a case in source memory, and a Case Adaptation process
which is used at a later time when the robot is asked to repeat a task in a target
environment.

3.1 Why a CBR approach?

Our eventual goal is to enable transfer for imitation learning in scenarios such
as the following. A human teacher guides the robot to complete a task such as
scooping the contents of one container into another. During the demonstration,
the robot records the demonstrated trajectories and object features. At a later
time, the robot is asked to repeat the scooping task, but in a new, target environ-
ment. Thus, the robot must use a di↵erent set of object features to parameterize
and execute the scooping task than those observed in the original, source en-
vironment. Next, the robot transfers its representation of the scooping task to
accommodate for the di↵erences between the source and target environments.
The transferred task representation is then executed in the target environment.

Rather than generalize over a set of demonstrations as in current Learning
from Demonstration methods (surveyed in [1, 2]), using a case-based approach
allows us to: (1) operate under the assumption that the human teacher will
provide a limited number of demonstrations, (2) represent demonstrations as
individual experiences in the robot’s memory, and (3) utilize a complete frame-
work for transferring skill demonstrations, which includes the steps of retrieving,
analyzing, transferring, and executing a relevant source case demonstration in
an unfamiliar, target environment.

3.2 Case Storage Process

Demonstration and Learning We have implemented the first step in the
Case Storage process, where the robot records and stores each task demon-
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stration as a source case in memory. We define each case as the tuple C =
<L, D, T, O, Si, Sf>, where:

– L represents the label of the task which was demonstrated, e.g. ”scooping”.
– D represents the set of action models which encode the demonstrated motion,

represented as Dynamic Movement Primitives as defined in [9].
– T is the set of parameterization functions which relate the set of action

models to the locations of objects in the robot’s environment. For example,
a parameterization function may be used to represent how the robot’s hand
must be located above a bowl prior to completing a pouring action.

– O is the set of salient object IDs which are relevant to the task.
– Si and Sf are the initial and final states, respectively, which represent the

set of objects observed in an overhead view of the robot’s environment.

3.3 Case Adaptation Process

At a later time, the robot may be asked to repeat the task in a new, target
environment. We are currently implementing the Case Adaptation process shown
in Figure 1.

Observation will begin when the robot is asked to address a target problem.
We assume that the robot has been provided a relevant source case which it
can retrieve from memory to address the given target problem. The robot will
then observe the target environment by viewing the objects located in the table-
top environment using an overhead camera. This will provide it with the target
case’s initial state Si.

Retrieval must be performed to select a source case from memory containing
the demonstration that is most relevant to the current target problem. Case
retrieval will prioritize (i) similarity of task goals, (ii) similarity of salient objects,
and finally, (iii) similarity of initial states. Once a relevant source case has been
retrieved, the Mapping step must encode the di↵erences between the source and
target environments. This mapping will be later used to transfer the source case
such that di↵erences in the target environment are addressed.

Given a source case and mapping which encodes the di↵erences between the
source and target cases, the Transfer step adapts the source case. We take a
similarity-based approach to transfer, where we consider the similarity between
the source case and target environments when defining transfer processes. As we
encounter transfer problems in which the source and target problems become
less similar, the source case is transferred at a di↵erent level of abstraction, such
that only high-level features of that case are transferred. The adapted case is
then executed in the target environment.

We have implemented three methods which implement the Transfer step,
each of which operates by transferring the source case at a di↵erent level of
abstraction. Once the source case has been transferred, it is used to plan and
execute a new action trajectory. In preliminary experiments, we have evaluated
each method separately such that we selected the level of abstraction at which
transfer occurred in each target problem. These experiments have shown us that
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by changing the level of abstraction at which a case is transferred, a robot can
use a single source demonstration to address target environments of varying
similarity to the source environment.

4 Future Work

We have implemented the Case Storage process and the last two steps of the
Case Adaptation process, the Transfer and Execution steps. Currently, we man-
ually provide the robot with the most relevant source case demonstration and
a mapping between objects in the source and target environments. Thus, our
next steps are to identify a method for autonomously determining this object
mapping. Furthermore, future work will involve defining a process for identifying
and retrieving an appropriate source case demonstration that is most applicable
to a given transfer problem.
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Abstract. Mine Countermeasures Missions (MCM) take place in very complex 

and uncertain environments which poses complexity for planning and explana-

tion algorithms.  In order to keep a mission on target, constant disruption moni-

toring and frequent schedule adjustments are needed. To address this capability 

gap, we have developed the Case-Based Disruption Monitoring and Analyzing 

(CDMA) algorithm. The CDMA algorithm automatically detects disruptions 

within a mission and attempts to determine possible root causes. Once confirmed, 

our second developed algorithm, CLOSR modifies existing schedules to com-

pensate for these root causes. Evaluation of CDMA on simulated MCM opera-

tions demonstrates the effectiveness of case-based disruption monitoring. Both 

the CDMA and CLOSR algorithms, along with simulator, are enclosed with our 

KRePE system.  

1 Introduction 

Unforeseen disruptions occur when planning in the real world. When monitoring for 

such disruptions and providing an explanation as to why the disruption occurs, better 

insight is provided in order to fix the plan. Mine Countermeasure Missions (MCM) for 

example, uses planning constantly. MCM planning uses a variety of resources and each 

resource has its own set of capabilities and operational constraints, as well as charac-

teristic failure points.  

Mine Countermeasure Missions (MCM)  must respond to frequent disruptions, and 

recovering from these disruptions can be complex. MCM missions involve the location, 

identification, and neutralization of enemy explosive ordnance in a maritime context. 

This is key to naval power projection and sea control, two core capabilities of U.S. 

maritime power, as characterized by A Cooperative Strategy for 21st Century Seapower 

[4]. Due to high complexity and uncertainty when scheduling MCM missions, accurate 

plans must be created and frequently revised once a mission has started. Frequent dis-

ruptions in MCM operations can occur due to many types such as: changes in sea state, 

visibility, weather, equipment failure, etc. Situations like these interfere with resource 

availability and/or readiness. Therefore, schedules for MCM operations require fre-

quent changes and updates where the disruptions are monitored in order to keep the 

success of the mission. Current practice calls for manually observing all incoming data 

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
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for detection of issues that could cause a mission to fail. The manual process of moni-

toring for disruptions can be tedious and prone to error.  

To meet this need, we are developing a system for MCM operation decision making 

and planning support called KRePE. KRePE builds upon a foundation of cognitive ar-

chitecture components, algorithms and simulations. Housed within the KRePE archi-

tecture the Case-Based Disruption Monitoring and Analyzing (CDMA) algorithm per-

forms monitoring and analysis of disruptions and Case-Based Local Schedule Repair 

(CLOSR) reschedules tasks that MCM planner operators perform on a frequent basis. 

Both the CDMA and CLOSR algorithms fall in a problem solving paradigm known as 

Case-based reasoning (CBR) by relying on general and specific knowledge of MCM 

operations, how operations might be disrupted, and how to fix these interruptions.  

In this paper, we discuss the challenges of continuous situation monitoring, and root 

cause analysis of mission disruptions through case-based reasoning. We close with an 

empirical study that demonstrates this effective anomaly detection in order to generate 

schedule modifications that achieve mission success.   

2 Mine Countermeasures Mission Scheduling & Operations 

MCM operations involve the location, identification, and neutralization of sea mines 

[5]. These operations employ surface vehicles, aircraft, divers, and unmanned surface 

and underwater vehicles, and can take weeks to plan and execute. While the operations 

are taking place, they are disrupted early and often by events such as unforeseen 

weather conditions, technological failures, and incorrect enemy course of action esti-

mations. While technology exists to automatically create an initial schedule, distribute 

tasks, and track task completion, the critical monitoring and rescheduling tasks have 

been, to date, poorly supported [6].  

MCM operations involve a unique set of specialized tasks that must be scheduled to 

minimize the risk to ships from sea mines. What follows is a brief description of the 

tasks in an MCM operation and their characteristics. The schedule for an MCM opera-

tion tasks multiple vehicles to repeatedly hunt and/or sweep subsections of a specified 

threat area where mines are expected, slowly transiting back and forth in a lawnmower-

like search pattern, until the risk of remaining mines is reduced to an acceptably low 

level. The paths followed by these search vehicles are referred to as tracks.  

Hunting is a search and destroy activity that encompasses use of specialized sensors 

to find underwater objects that are mine-like, identification of mine-like objects as 

mines or non-mines, and neutralization of all discovered mines. The probability of de-

tection describes the equipment’s sensitivity within that range to the size and reflectiv-

ity of mine casings. Because mines may be missed, missions are commonly evaluated 

according to a percent clearance objective. Percent clearance is defined as the proba-

bility that a mine at any given position in the search area will be detected.  

Sweeping is an activity that uses specialized apparatus to destroy all mines present 

in a given area either by cutting the chains that connect them to the ocean floor or 

employing signal generators which mimic the magnetic and acoustic signatures, of 

ships, to trigger mines that are activated by those signatures. 
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The operation schedule, which may consist of hundreds of tasks of heterogeneous 

types, must be repeatedly adjusted over the course of the operation in response to un-

expected events which invalidate it. The task of keeping the schedule up to date despite 

hundreds of interrelated tasks is complex, difficult, and laborious, particularly given the 

constant time pressure of typical operations. Modifications to schedules are kept to a 

minimum, in order to reduce expense and opportunities for error; we refer to this char-

acteristic as minimal operational disruption. However, modified schedules must also 

fulfill operational requirements such as percent clearance, time limits, and risk to equip-

ment. These difficult tasks (i.e., monitoring, response, and rescheduling) can be greatly 

aided by new computational tools. 

3 CDMA 

One way to reduce the burden on MCM human operators is to help with constant mon-

itoring of disruptions that will impact the mission. Constant monitoring of a vast array 

of disruption types can be quite difficult. In addition to detecting the disruption, diag-

nosing the root cause of the problem can be daunting, or easily overlooked. Case-Based 

Disruption Monitoring and Analyzing (CDMA) within the KRePE architecture handles 

both disruption monitoring and providing possible root causes.  

Case-based reasoning (CBR) is a problem solving paradigm that relies on general 

cases of a problem domain along with specific domain cases. These cases consist of a 

mapping between problems and a solution. When a new problem is introduced, gener-

ally CBR systems map and provides this new problem to the most similar problem 

already stored in its case base and provides a solution associated with the known prob-

lem. We describe the case representation and the CDMA algorithm in detail in the fol-

lowing subsections.  

3.1  CDMA Representation 

CDMA uses case-based reasoning for monitoring and analysis of disruptions that will 

impact an ongoing operation. Based on limited information of the world state, the 

CDMA algorithm determines if a disruption has occurred. A disruption case in our sys-

tem are generated manually and consists of five parts: violated expectations, parame-

ters, root cause likelihood, root cause questions and new assumptions. 

The case applies when all of the violated expectations are met; and the parameters 

indicate which variables are applied to a specific problem instance. An example prob-

lem representation is shown in Table 1. In this example, there is a disruption where the 

operator has not heard from the unit within the past 15 minutes while it was out in the 

field performing a task.  

The likelihood and list of root cause questions provide information that can be ac-

cessed by an operator through an interactive decision making process. The likelihood 

provides an apriori probability of how likely a particular root cause is for a given dis-

ruption. The root cause tests constitute a set of questions that can help the operator 
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deduce what is causing the disruption. The parameters defined by the violated expecta-

tions populate the variables within the questions, detailing the questions to a specific 

unit, piece of equipment, etc. If these questions are answered, the likelihoods for the 

root causes adjust to this information. Using the example from above, Table 1 provides 

the entire case representation. The new assumptions are a set of suppositions or beliefs 

as to which root cause explains the disruption. The parameters defined from the violated 

expectations instantiate the problem information into these new assumptions.  

 

 

Table 1. Case Representation for CDMA algorithm. 

With the use of a standard relational database called the Integrated Rule Inference 

System (IRIS) [8], CDMA can reuse case(s) in the problem space without having to 

generate new cases for each set of parameter values. Therefore similarity metrics are 

not being used. From the example, we do not need to create new cases for each type of 

equipment or unit, as it can handle all of the parameters. When monitoring detects a 

disruption, it alerts human operators with a message. The operator then decides the root 

cause of a given disruption. CDMA adds this confirmed root cause assumptions to the 

case base providing more information to its case base. These new assumptions trigger 

schedule repair to occur because the disruption affects the mission.  

 

 

Fig. 1. Workflow for CDMA algorithm. 

3.2 CDMA Algorithm 

CDMA performs the following steps for disruption monitoring and analysis as shown 

in Figure 1: 
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1. Find Relevant Case: To find a possible disruption, CDMA searches through the list 

of cases to find a relevant case that matches a violated expectation. Each case that 

matches provides a possible root cause for the disruption. 

2. Construct Analysis Using Case Solution: To analyze a disruption, the parameter 

values indicated by a specific violated expectation are substituted for the parameters 

specified by an individual case problem.  

3. Return Analyses: Each possible disruption is provided on screen for the user to re-

view, detailing the types of root causes for the disruption, along with additional in-

formation such as root cause tests and likelihood for each cause.  

4. Adapt Analyses Based on Responses: Users can answer these root cause test ques-

tions in order for the system to better understand the disruption for future root causes.  

5. Return Analyses: The system returns updated likelihoods, sorted with highest like-

lihood first, along with clearing out infeasible causes.  

6. Add New Assumptions about World State: After user selection of the root cause for 

a disruption, the system creates new assumptions about the world and why the dis-

ruption occurred. These new assumptions are added into the case base, providing 

new information that can be used to generate schedule repair if necessary.  

4 CLOSR  

To repair schedules that don’t meet the criterion of minimal operation disruption, we 

use the Case-Based Local Schedule Repair (CLOSR) algorithm [10]. This Case base 

reasoning algorithm in the KRePE architecture creates new assumptions and generates 

repairs. These repairs strive for “minimal disruption” meaning changes to the schedule 

should be kept at a minimum while rescheduling to fix a disruption. For example, in 

MCM operations, repairing a vehicle communication disruption might try to resolve 

the problem without leaving its search area to minimize transiting time and fuel. Sub-

sequent to case reuse, an adaptation process examines and resolves conflicts created by 

the schedule repair procedure which is useful for its flexibility. For more detail, please 

see [10]. 

5 Evaluation  

We hypothesize that the discrepancy monitoring and analysis capabilities of CDMA 

outperforms ablations that ignore alerts or acts on randomly-selected root causes. To 

demonstrate this, we ran the CDMA algorithm in an automated manner on a series of 

simulated MCM operations. For each operation, we measured and compared the per-

formances of three decision makers that: (1) ignores all alerts from CDMA and keeps 

the original schedule, (2) acknowledges CDMA found disruptions and chooses a ran-

dom root cause from those suggested therefore rescheduling randomly and (3) acknowl-

edges CDMA found disruptions and chooses the root cause with the highest likelihood. 

Difference between decision makers indicate the performance improvement that can be 

achieved by adopting the recommendations made by the CDMA algorithm.  
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Our study examines an MCM mission with a mine clearing objective. As it is im-

possible to ensure that 100% of mines are removed in the real world, missions are 

planned to achieve a high level of percent clearance. This means that there is a high 

chance that a mine at any given point in the search area would be observed if it existed. 

The operations conducted in our study are intended to achieve a 95% clearance level; 

in other words, we would expect 95% of the mines present to be removed. We hypoth-

esize that the decision maker using KRePE’s case base will achieve these performance 

objectives, and that the decision maker that ignores the disruptions will not. This will 

demonstrate both that monitoring and analyzing disruptions is necessary to achieve an 

acceptable level of performance under simulated conditions, and that the system is suf-

ficient to achieve that performance. 

5.1 Experimental Framework 

A simulator for MCM operations, Search and Coverage Simulator (SCSim), another 

component of KRePE, supports rapid and repeated evaluation and testing of MCM de-

cision support systems and component algorithms. SCSim simulates search missions 

involving multiple heterogeneous search units, including ships and helicopters, each 

with different available equipment configurations. Mines and mine-like objects are dis-

tributed randomly by SCSim in fields and lines according to pre-set distributions with 

variable density and object counts. This facilitates evaluation of algorithm performance 

under varying operating conditions. As a benchmark, automated testing of a two month 

operation takes less than one minute. 

SCSim simulates the assignment of parameterized tasks to units according to a 

schedule, including transit, sweep, and hunt tasks. Task parameters include, for exam-

ple, the equipment to use for sweeping, and sensor depth for hunting. To simulate a 

mission, SCSim automatically generates appropriate tracks for each task and simulta-

neously changes the position of each vehicle along its assigned tracks. Observations 

(e.g., contacts) are generated based on vehicles’ positions and the sensor equipment in 

use. Interactions of deployed sweeping equipment is also simulated, and changes the 

internally represented status of mines. In addition to the scheduled tasks, SCSim is re-

sponsible for simulating random events the unexpected difficulties that invalidate an 

existing schedule (e.g., equipment failure, bad weather, operator errors).  

An individual mission test using SCSim is controlled by a scenario description. Sce-

nario descriptions include, at a minimum, the vehicles and equipment available for use, 

threat areas to be cleared of sea mines, and task areas where vehicles will operate. Other 

elements of the scenario specify random distributions for mine like objects, mine line 

placements, and events that may occur. To mimic the real world as closely as possible, 

SCSim provides only partial observations for the purposes of rescheduling. For exam-

ple, when a helicopter’s communications system fails, its position is no longer reported 

to the system. As a result, the helicopter appears not to move. 

Experiments are driven by a test harness that integrates with SCSim as shown in 

Figure 2. The test harness generates scenarios defining: the area of operations, available 

assets, and the ranges of random experimental variables, such as what mine types will 

be deployed and when events will trigger. The Test Generator applies an appropriate 
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decision maker that acts as a user of the system. Each decision maker encodes different 

responses to situations, such as alerts, that arise during the mission simulation. After all 

simulated missions are complete, the Performance Evaluator tabulates and summarizes 

these results in a human readable form. 

 

 

 

Fig. 2. KRePE simulation driven evaluation 

5.2 Experiment Setup 

Our experiments used three decision makers and ten randomly generated test scenarios. 

The first decision maker, “KRePE DM”, confirms the correct root cause with the high-

est disruption likelihoods and selects a new schedule from those generated to activate. 

The second decision maker, “Random DM”, randomly chooses a root cause and selects 

a new schedule from that root cause. The third decision maker, our baseline, “Ignore 

DM”, ignores KRePE’s recommendations, never changing its schedule when 

prompted. Comparing performance of these three decision makers allows us to measure 

the efficacy and correctness of schedules generated by case-base disruption monitoring 

system.  

The performance of each decision maker was evaluated in each of ten randomly 

generated scenarios, generated. (See Table 2). Scenarios differ primarily in the thirty 

random events that occur and the positions of mines and mine-like objects. Each event 

was additionally parameterized with a trigger time (chosen randomly over the first six-

hundred hours of the mission) and target unit (chosen randomly among the six tasked 

assets). The times were chosen in this fashion because events that occur when a unit 

has already performed all its tasks cause no problems, and therefore are uninteresting 

to our study. Four mine lines, each with a mine count between ten and thirty, at various 

depths and mine types were placed randomly in each scenario.  

The fixed parameters used in all scenarios included the area searched, and seven 

assets, consisting of four helicopters, two MCM ships, and one support ship that could 
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assist in tasks if necessary. Each ship and helicopter has available equipment for hunt-

ing mines, contact sweeping, detection, and mine neutralization.  

5.3 KRePE Metrics 

We evaluated KRePE DM, Random DM, and Ignore DM using the following three 

metrics: (1) percent contacts detected: This measures the percentage of mines detected 

by a unit; (2) percent mines neutralized: Percentage all mines are neutralized by a unit 

and (3) operation duration: Total simulation time required to complete the operation. 

The first two metrics are calculated based on the true number of mines and mine-

like objects generated in the scenario. These summarize the plan’s effectiveness in 

terms of how well the MCM mission goal of searching for and eliminating mines was 

achieved. Each scenario generated includes a large number of non-mine mine-like ob-

jects uniformly spread throughout the threat area, so the percent contacts detected value 

is an approximation of the percent clearance, or probability that a mine would be de-

tected at any given location. The third metric, operation duration, illustrates a plan’s 

efficiency by measuring the total simulation time required to complete all tasks. 

5.4 KRePE Results 

Experiments were run on an i7 processor laptop, taking one hour to complete. Figure 3 

shows a scatter plot that displays the percentage of existing contacts that were classified 

correctly and duration of each mission operation measured in simulation hours. The 

duration of an operation performed by Ignore DM varies little, as the original schedule 

is never updated, whereas the duration of KRePE DM and Random DM missions can 

vary greatly. A schedule can be lengthened dramatically when new mine types have 

been discovered; to ensure safety, many new hunt and/or sweep tasks must be intro-

duced to clear the additional mines. Similarly, if vehicles are damaged beyond repair, 

the diminished resources can greatly increase mission length. The increased time and 

repaired schedules allow KRePE DM to outperform Ignore DM by classifying between 

95 and 100% of the mine like objects in every mission. Random DM, like KRePE DM, 

responds to disruptions, but because it does not choose the most likely cause, its task 

performance is not as high as KRePE DM's. Note that neither Ignore DM nor Random 

DM represents any real human decision maker; rather these results should be inter-

preted to show the difficulty of the task and that CDMA’s suggestions are benefitting 

mission performance.  

Table 2 shows one-tailed t-test with paired examples. The results include the average 

and standard deviation for each metric and decision maker. Note: indicate the (small) 

likelihood that Ignore DM might on average achieve higher values than KRePE DM if 

many more experiments were undertaken.  
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Fig. 3. Scatter Plot of Operation Duration to Percent Contacts Classified Correctly 

Table 2. KRePE Results 

 

6 Related Work 

Case-based reasoning [1] is a problem solving process based on the adaptation and ap-

plication of known solutions to new problems. It has been applied to many different 

domains and problems besides disruption detection.  

DISCOVERHISTORY [9] looks for explanations of observations through abductive rea-

soning, where it maps an observation to a hypothesis that accounts for the observation. 

DISCOVERHISTORY has been shown to be effective over a large problem space, but is 

slow with determining disruptions. This is not sufficient for quick detection of imme-

diate issues required by mine countermeasures operations.  

A case-based reasoning system, CHEF [7] creates food recipes and explains its own 

failures. The system tries strategies to see which one can be used to fix the recipe plan. 

CHEF uses causal rules to explain why its own plan fails. However, the system does 

not handle constrained resources present in a typical scheduling problem.  

The system described in [3] is a CBR system that focuses on wartime equipment 

maintenance by analyzing feature sets of equipment for maintenance. The system au-

tomates the process of deciding the quality of the equipment. CDMA, in contrast,  sup-

ports a “man-in-the-loop” in order to allow operators to have control over what should 

be done about disruptions. 
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7 Conclusion 

We presented the CDMA algorithm within the KRePE system that supports monitoring 

for disruptions and disruption analysis in mine countermeasures operations. Scheduling 

in this domain is challenging due to the complexities resulting from a large number of 

tasks that must be allocated over numerous resources. CDMA includes components that 

assist operation planners by constantly monitoring the environment for changes and 

providing analysis of discrepancies. Once disruption detection occurred CDMA made 

it possible for the CLOSR algorithm to reschedule without the need to replan by rec-

ommending alternative schedules. We introduced the requirement of minimally disrup-

tive repair as a key operational requirement for automatic schedule repair algorithms in 

MCM applications. 

Our results indicate the efficacy of a case-based strategy; schedule repair was rapid, 

and created new schedules on demand that ensured the elimination of all mines and 

increased clearance to a reasonable level. This presents a novel and measurable increase 

in automated MCM rescheduling capabilities. In the future, we want to apply our sys-

tem to Unmanned Combat Logistic missions in order to demonstrate effective case-

base disruption monitoring with other domains.  
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Abstract. In this paper, we present a CBR approach for implement-
ing an agent playing the well-known Angry Birds game. We adopt a
preference-based procedure for constructing the case base, collecting ex-
perience from a random agent that continually explores the problem-
solution space and improves the quality of already found solutions. As
the retrieve phase involves finding a game scene similar to a given one, we
develop a measure to assess the dissimilarity between two game scenes,
which is based on solving appropriate linear assignment problems. A
comparison of our agent with state-of-the-art computer programs shows
promising results.

1 Introduction

Angry Birds is a popular video game, in which the player has to shoot birds
from a slingshot at pigs that are protected with objects from different types of
materials, including wood, stone, and ice. Some birds have specific capabilities
that allow them to explode, split into several birds, pick up speed, etc. The game
has different levels, each level coming with its specific representation of pigs and
objects hiding them. A level is solved when all the pigs are destroyed, and the
goal of a player is to solve all the levels, keeping the number of shot birds as low
as possible.

Since the first edition of the Angry Birds AI competition in 2012, different
approaches, ranging from qualitative representation and reasoning over simula-
tion of game scenes to classical supervised machine learning algorithms, have
been leveraged to build agents playing the game. In this paper, we develop an
Angry Birds agent on the basis of the case-based reasoning (CBR) paradigm.
To the best of our knowledge, this is the first CBR approach to Angry Birds.
One of the main components of our Angry Birds agent is a case base that stores
problem-solution pairs, i.e., game scenes and appropriate best shots. We use
a preference-based approach to build the case base, which compares different
solutions for a given problem and maintains the better one.

The rest of the paper is organized as follows. In the next section, we briefly
review some of the existing approaches for agents playing the Angry Birds game.
In Section 3, we present our approach, and in Section 4, we analyze its perfor-
mance experimentally. We conclude our work and outline possible directions for
future work in Section 5.

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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2 Existing Approaches

Most of the work so far has been concerned with the representation of the dif-
ferent types of objects in Angry Birds. Lin et al. [7] classify the objects into
dynamic, which are mainly convex polygons, and static ones, which comprise
concave polygons, and use bounding convex polygons (BCPs) to represent the
former and edge detection and Hough transform to detect the latter. Zhang and
Renz [12, 13] also make use of the spatial representation of objects and, more-
over, reason about their stability. They build on an extension of the rectangle
algebra to assess the stability of blocks of objects, upon which they can decide
where to hit a block so as to affect it maximally.

In [11], the authors assign a numerical score to each reachable object, based
on its physical properties. The score is supposed to reflect the extent of damage
it suffers if being hit, and shoots at objects with low stability but high influence
on pigs or shelters of pigs. Ferreira et al. [3] also assign a utility value to the
objects based on spatial properties, but because of the lack of certainty in the
position of the objects, they incorporate concepts of probability and uncertainty
to determine the chance of a bird to hit a given target.

Simulation-based approaches include the work by Polceanu and Buche [9],
who build their decision making based on the theory of mental simulation. More
precisely, their agent observes the effects of performing multiple simulations of
different shots in a given game scene and selects the optimal solution based on
these results.

The remaining category of approaches encompasses agents that leverage
different machine learning algorithms. In order to learn how to judge shots,
Narayan-Chen et al. [8] train a weighted majority and a Naive Bayes algorithm
on a data set consisting of good and bad shots in different states of the game.
Tziortziotis and Buche [10] use a tree structure to represent the objects in a
game scene, and formulate the problem of selecting an object for shooting as a
regression problem. They associate with each pair of object material and bird
a Bayesian linear regression model, building a competitive ensemble of models,
whose parameters are estimated in an online fashion. The decision is then made
according to the best prediction of the ensemble model.

3 A Case-based Angry Birds Agent

We employ the CBR approach [1] to build an agent that plays the Angry Birds
game. The experience-oriented learning and reasoning paradigm of CBR first of
all requires the creation of a case base that stores problem-solution pairs. As the
problem space in the domain of Angry Birds is infinite, and no exact character-
ization of an optimal solution (the best shot) for a problem (a description of a
game scene) exists, a way of gathering expressive pairs of problems and approx-
imate solutions (game scenes together with reasonably good shots) is needed.
Further, a game scene in Angry Birds comprises objects with different shapes,
which should be represented and stored appropriately. Thus, a representation
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that reflects the spatial properties of the different objects involved in the game
is another concern. Lastly, once the case base is built and appropriately stored,
the problem of retrieving cases similar to a given query case needs to be ad-
dressed, which in turn necessitates assessing the similarity between two game
scenes. In the following, we elaborate on each of these issues.

3.1 Case Base Construction

The core of a CBR system is a case base that stores previously encountered
problems and associated solutions. In the context of Angry Birds, a single case
should enclose a problem description part, with a representation of a game scene,
covering the slingshot and all objects and pigs, and a solution part, containing
the best shot one can execute in the given scene. The notion of an optimal
solution in a given game scene, i.e., the shot that will lead to the highest change
in score, is actually not well-defined. Therefore, we need a procedure to find
solutions of at least close-to-optimal quality.

Inspired by the general framework of preference-based CBR [5], we construct
a case base by comparing the quality of solutions that have been tried so far.
The basic principle of the approach consists of randomly trying different solutions
for a problem and maintaining the best one. The advantages of this approach
are two-fold. First, because of its self-adaptive nature, it does not rely on any
external domain expert to provide solutions for the potentially infinite number
of problems. Second, as the problem and solution space are explored more and
more, the extent of the case base is enlarged and its quality is improved over
time.

In the context of Angry Birds, we concretise the approach as follows. We let
arbitrary agents play in different game scenes and record the game scene along
with the shot executed by the agent and the change in score. Once we encounter
a game scene which is similar to another one already contained in the case base,
and where the agent performs better, we replace the solution part of the old
case (i.e., the shot) with the new one. The steps of the process of case base
construction are outlined in Figure 1 as a flowchart diagram.

3.2 Case Representation

The Angry Birds game involves different types of objects: a sling, hills, pigs,
blocks of stone, wood or ice, TNTs and birds with different capabilities ex-
pressed in terms of colours, including red, yellow, blue, black, and white. The
Angry Birds Basic Game Playing Software [4] provides two possibilities of rep-
resenting theses objects: the Minimum Bounding Rectangle (MBR) and the real
shape representation. While the MBR segmentation of an object consists solely
of finding a rectangle with minimal area, which completely covers it, the real
shape segmentation represents the objects more precisely using circles, rectan-
gles and polygons, and distinguishes between hollow and solid objects. As such,
the latter is more precise but also more costly to compute. In this paper, we
confine ourselves to the MBR representation of objects.
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Start 

Fig. 1. The steps of the case base construction process.

For describing the rectangles, we adopt the interval-based representation,
where a rectangle in the 2-dimensional space R2 has the following form: R =
[l, u] = [l1, u1]× [l2, u2] , where l = (l1, l2) and u = (u1, u2) are the coordinates of
the lower left and upper right vertex of R, respectively. A complete game scene
is represented through the set of the MBRs of all objects, together with their
type when an object and colour when a bird.

Besides the game scene, collecting the cases also involves recording shots,
which constitute the solution part of a case. In the Angry Birds Basic Game
Playing Software, a shot is represented in the form of a 6-dimensional vector
s = (x, y, dx, dy, tshot, ttap), where (x, y) and (x+ dx, y + dy) are the coordinates
of the focus and release point, respectively, tshot specifies the releasing and ttap
the tapping time of the bird in milliseconds.

To illustrate how a case is constructed, we consider the situation shown in
Figure 2. The start game scene is shown in the picture on the left. The resulting
scene after performing the shot with the trajectory indicated by the red line is
shown in the picture on the right, where the change in score is seen as well.
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Fig. 2. The game scene before (left) and after (right) performing the shot indicated
by the red line in the figure on the right. The MBRs of all objects in both scenes are
marked. The change in score after performing the shot is shown on the top right of the
figure on the right.

The case extracted from this scenario will contain the original scene, the
performed shot and the achieved score, which we represent as follows:

Sling: l1 = 200, u1 = 305, l2 = 216, u2 = 363.
BirdType: RedBird.
Hills:

Hill 1 : l1 = 471, u1 = 237, l2 = 839, u2 = 384.
Pigs:

Pig 1 : l1 = 645, u1 = 290, l2 = 659, u2 = 300.
Pig 2 : l1 = 504, u1 = 314, l2 = 514, u2 = 321.
Pig 3 : l1 = 543, u1 = 313, l2 = 353, u2 = 323.
Pig 4 : l1 = 584, u1 = 313, l2 = 595, u2 = 323.
TNTs: -

Blocks:

Block 1: l1 = 651, u1 = 309, l2 = 654, u2 = 352.
Block 2: l1 = 509, u1 = 330, l2 = 513, u2 = 351.
Block 3: l1 = 548, u1 = 330, l2 = 552, u2 = 351.
Block 4: l1 = 588, u1 = 330, l2 = 591, u2 = 350.
Block 5: l1 = 643, u1 = 302, l2 = 663, u2 = 304.
Block 6: l1 = 500, u1 = 325, l2 = 520, u2 = 327.
Block 7: l1 = 540, u1 = 325, l2 = 560, u2 = 327.
Block 8: l1 = 579, u1 = 325, l2 = 599, u2 = 327.
Shot: x = 208, y = 315, dx = 35, dy = 868, tshot = 0, ttap = 0.
Score: 6100.

3.3 Case Retrieval

When the agent is playing, it gets a representation of the current game scene,
searches the case base for the case with the most similar game scene and adopts
its shot. Therefore, an appropriate measure to assess the similarity respectively
dissimilarity between two game scenes is a key prerequisite for a successful agent.
We compute the overall dissimilarity between two game scenes as the sum of the
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dissimilarities between their individual components:

diss(scene1, scene2) = diss(scene1.Sling, scene2.Sling)

+ diss(scene1.BirdType, scene2.BirdType)

+ diss(scene1.Hills, scene2.Hills

+ diss(scene1.P igs, scene2.P igs)

+ diss(scene1.TNTs, scene2.TNTs)

+ diss(scene1.BlocksS , scene2.BlocksS)

+ diss(scene1.BlocksW , scene2.BlocksW )

+ diss(scene1.BlocksI , scene2.BlocksI) ,

where BlocksS , BlocksW and BlocksI denote blocks of stone, wood and ice,
respectively.

The dissimilarity of two slings is just the dissimilarity between their MBRs.
For the bird type, we compute the dissimilarity as follows:

diss(scene1.BirdType, scene2.BirdType) =

{
0, if the types are equal,

constant, otherwise.

Measuring the dissimilarity between two game scenes in each of the remaining
components (hills, pigs, TNTs, and blocks) reduces to measuring the dissimi-
larity between the two sets of rectangles, with potentially different cardinality,
corresponding to the MBRs surrounding them. This requires building pairs from
the elements of the two sets, between which the dissimilarity is to be computed.
The overall dissimilarity between the two sets is then the sum of the dissimi-
larities between all pairs. We formulate the task of computing the dissimilarity
between two sets of rectangles as a (potentially unbalanced) linear assignment
problem, where the agents are the elements of one set, tasks are the elements
of the other set and the total cost of an assignment is the overall sum of the
dissimilarities between all built pairs.

In the following, we proceed with the description of the measure we use
for assessing the dissimilarity between two rectangles, prior to detailing our
approach to computing the dissimilarity between two game scenes in the above-
mentioned components through solving appropriate assignment problems.

Dissimilarity Between Two Rectangles. Different measures exists to assess
the dissimilarity between two rectangles in a p-dimensional space. We use the
vertex-type distance dv [2], which is defined for two 2-dimensional rectangles

R1 =
[
l(1), u(1)

]
=
[
l
(1)
1 , u

(1)
1

]
×
[
l
(1)
2 , u

(1)
2

]
and R2 =

[
l(2), u(2)

]
=
[
l
(2)
1 , u

(2)
1

]
×[

l
(2)
2 , u

(2)
2

]
, as follows:

dv (R1, R2) =
(
l
(1)
1 − l

(2)
1

)2
+
(
u
(1)
1 − u

(2)
1

)2
+
(
l
(1)
2 − l

(2)
2

)2
+
(
u
(1)
2 − u

(2)
2

)2
.
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Dissimilarity Between Two Sets of Rectangles. As stated above, we build
on solving an assignment problem to compute the dissimilarity between two sets
of rectangles, which represent the MBRs of objects of specific material in two
game scenes to be compared.

The linear assignment problem consists of mutually assigning objects of two
sets A = {a1, . . . , an} and B = {b1, . . . , bn} in a cost-optimal manner. Formally,
assignment costs are defined in terms of a matrix C = (cij), where cij denotes
the cost of assigning ai to bj (and vice versa), i.j ∈ [N ] = {1, . . . , N}. The goal,
then, is to find an assignment that minimizes the total cost∑

i∈[N ]

∑
j∈[N ]

cijxij

with

xij =

{
1, if ai and bj are mutually assigned,

0, otherwise.
,

subject to the following constraints:∑
j∈[N ]

xij = 1 for all i ∈ [N ],

∑
i∈[N ]

xij = 1 for all j ∈ [N ],

The Hungarian algorithm [6] is one of the best-known methods for solving the
assignment problem. It is mainly based on the observation that adding or sub-
tracting a constant from all the entries of a row or a column of the cost matrix
does not change the optimal solution of the underlying assignment problem.
Thus, the algorithm proceeds iteratively, subtracting and adding constants in
each step to specific rows and columns of the cost matrix, in such a way that
more and more zero-cost pairs are built, until an optimal solution can be found.
We refer to [6] for a detailed description of the Hungarian algorithm.

In the simplest form of the assignment problem, the number of objects in
A and B are equal. For the problem at hand, this assumption does not hold;
instead, we are dealing with an unbalanced assignment problem. To handle such
problems, one usually introduces dummy rows or columns in the cost matrix,
depending on which number exceeds the other. Normally, the introduced entries
are filled with zeros, but this does not fit our purpose, because the addition or
removal of objects will normally influence the best shot in a scene. We overcome
this issue by associating a penalty with objects that remain unassigned. The
penalty term for an unassigned rectangle is its distance to the zero-perimeter
rectangle located at the origin, i.e., R = [0, 0]× [0, 0] .

4 Experimental Results

We begin our experimental analysis with the construction of the case base, in
which we proceed as follows. We run a random agent that chooses the coordinates
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of the shot to be executed fully at random, and we restrict ourself to the first 21
levels of the “Poached Eggs” episode of Angry Birds. The agent plays each level
several times and the cases from each level are first collected in separate files. The
distribution of the number of cases we gathered over the different levels of the
game, shown in Table 1, was not uniform. That is, we dedicate more examples
to harder levels than to easier ones. At the end, we combine all cases in one file,
ending up with a case base of total size of 11, 703, which serves as the main case
base for our agent.

Table 1. The number of cases we collected in each of the 21 levels of the game.

Level # cases

1 50
2 50
3 50
4 130
5 50
6 100
7 50

Level # cases

8 50
9 100
10 647
11 50
12 50
13 182
14 100

Level # cases

15 50
16 50
17 50
18 400
19 200
20 100
21 100

After the case base was constructed, we first tested the performance of our
agent on the above-mentioned levels. To this end, we let the agent play 10 games
and report the minimal, maximal, and average score for each level, together with
the standard deviation, in Table 2.

To get an idea of how our agent performs in comparison to others, Figure 3
plots the average score of our agent from Table 2 together with the scores of
the naive agent, the top-3 agents of the 2013 and 2014 participants of the AI
competition, and the average scores of all 30 participants, on all 21 levels, based
on the 2014 benchmarks provided on the aibirds.org website. This comparison
shows that our agent clearly outperforms both the naive and the average agent
in both per-level and total scores, and is even competitive to the top-3 agents.

5 Conclusion and Future Work

We made use of CBR to build an Angry Birds playing agent. The results of an
experimental study, in which we compared our agent with others, including the
top-3 systems of previous AI competitions, are very promising, especially in light
of the rather simple implementation of our agent so far. In fact, we are convinced
that our agent’s performance can be further enhanced through the collection of
more cases and the refinement of the different steps of the CBR cycle.

More concretely, this work can be extended along the following directions.
First, the real shape instead of the MBR representation can be used to represent
the objects involved in the game. Second, a weighted version of the distance
measure between game scenes can be learnt. Third, cases from levels of the
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Table 2. The minimal, maximal, and average score, and the standard deviation of our
agent in 10 games on the first 21 levels of the “Poached Eggs” episode of Angry Birds.

Level Min. score Max. score Mean score Standard deviation

1 28950 30790 29735 704.955
2 60950 61520 61293 188.388
3 42510 42540 42529 11.005
4 10660 36810 22500 9174.102
5 59680 67760 65301 2302.744
6 18020 35620 32096 6115.800
7 31180 46200 42486 5777.303
8 54110 54120 54111 3.162
9 32130 50020 44525 5874.565
10 32650 59920 46980 9294.536
11 54130 57390 55634 910.668
12 53010 54880 54248 550.713
13 21530 48090 33036 8987.933
14 49250 73760 65553 6858.706
15 37760 48540 46486 3166.492
16 54410 64790 61646 3073.714
17 46290 49900 48492 1224.444
18 39710 60830 49888 7150.137
19 31710 38550 33127 1999.445
20 34030 59140 46527 10113.806
21 59720 96880 70332 11020.633

Level
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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Fig. 3. The cumulative scores of our agent, the top 3 agents of the 2013 and 2014
participants of the AI competition, the naive agent, and the average agent, on the first
21 levels of the “Poached Eggs” episode of Angry Birds.
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game other than the ones of the “Poached Eggs” episode can be extracted to
increase the size and coverage of the case base. Fourth, since our agent does not
realize any adaptation of the retrieved solutions so far, a sophisticated adaptation
strategy could be another means to improve performance.

Acknowledgments. This work has been supported by the German Research
Foundation (DFG).
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Abstract. Plan-subplan matching is an important step in case-based plan recognition. 

We present RelaxedVF2, an algorithm for plan-subplan matching for plans encoded 

using the Action Sequence Graph representation. RelaxedVF2 is a subgraph 

monomorphism algorithm that affords flexibility and error tolerance for plan-subplan 

matching. We present a study comparing RelaxedVF2 with an alternate degree-

sequence matcher that we used in our prior work and found that RelaxedVF2 attains 

higher plan recognition accuracy on a paradigmatic domain. 

Keywords: Plan Recognition, Case-Based Reasoning, Action-Sequence Graph, 

Relaxed Graph Matching, Error-Tolerant 

1. Introduction 

An agent on a team must cooperate and coordinate its actions with its teammates, requiring 

the ability to recognize its teammates’ plans. Plan recognition refers to the task of observing 

a teammate’s current actions, inferring the plan governing those actions, and predicting that 

teammate’s future actions. A plan recognizer takes as input the observed portion of a plan 

(subplan) and outputs a (predicted) full plan. A case-based plan recognizer matches its input 

subplan to a set of plans in its case base and retrieves a most similar plan to the given subplan. 

We assume that the most similar plan best explains the observed subplan. Plan-subplan 

matching is therefore a key component of case-based plan recognition (CBPR). 

The algorithm used for plan-subplan matching depends on the representation of plans. 

Typically plans are represented as (a sequence of) propositions in first-order predicate logic. 

We instead use an Action Sequence Graph (ASG) representation (Vattam et al., 2014; 2015), 

which has some nice properties: (1) it captures the topology of the propositional plans using 

graphs, (2) better lends itself to vectorization and approximate matching, (3) and makes the 

matching process more robust to input errors (Vattam et al., 2015). ASG represents a plan as 

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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a labeled directed multigraph. Plan-subplan matching using ASGs reduces to graph-subgraph 

matching. 

We introduce the RelaxedVF2 algorithm for graph-subgraph matching that is tailored to 

matching plans represented as ASGs. RelaxedVF2 is an extension of the popular VF2 

algorithm (Cordella et al., 2004) for subgraph isomorphism. The extensions to VF2 we 

propose transform it into a subgraph monomorphism matching algorithm, which makes 

RelaxedVF2 better suited for additional edges that arise between the nodes of states and 

actions as a plan’s observed execution progresses. 

In §2 we present related work on CBPR and graph matching techniques. In §3 we present 

the ASG representation for plans. In §4 we present our plan-subplan matching approach, 

including the RelaxedVF2 algorithm and the scoring function. In §5 we present an initial 

empirical study comparing the performance of RelaxedVF2 to an alternative degree-

sequence matching algorithm that we used in our prior work (Vattam et al., 2015). Our results 

show that RelaxedVF2 compares favorably to the alternative approach. We conclude and 

discuss future research plans in §6. 

2. Related Research  

Several approaches has been proposed to address the problem of plan recognition 

(Sukthankar et al., 2014), including consistency-based (e.g., Hong, 2001; Kautz & Allen, 

1986; Kumaran, 2007; Lau et al., 2003; Lesh & Etzioni, 1996), and probabilistic approaches 

(e.g., Bui, 2003; Charniak & Goldman, 1991; 1993; Geib & Goldman, 2009; Goldman et al., 

1999; Pynadath & Wellman, 2000). Both types are “model-heavy”, requiring accurate 

models of an actor’s possible actions and how they interact to accomplish different goals. 

Engineering these models is difficult and time consuming. Furthermore, these plan 

recognizers perform poorly when confronted with novel situations and are brittle when the 

operating conditions deviate from model parameters.  

CBPR is a model-lite, less studied approach to plan recognition. Existing CBPR 

approaches (e.g., Cox & Kerkez, 2006; Tecuci & Porter, 2009) eschew generalized models 

for plan libraries that contain plan instances which can be gathered from experience. CBPR 

algorithms can respond to novel inputs outside the scope of their plan library by using plan 

adaptation techniques. However, earlier CBPR approaches were not error-tolerant. 

In contrast, our work on SET-PR focuses on error-tolerant CBPR (Vattam et al., 2014; 

2015). We showed that SET-PR is robust to three kinds of inputs errors (missing, mislabeled, 

and extraneous actions). One of the factors contributing to its robustness is that SET-PR uses 

an ASG plan representation and the degree sequence similarity function for plan-subplan 

matching. Although we previously showed that SET-PR was robust to input errors, there is 

room for improvement. 

VF2 (Cordella et al., 2004) is an exact graph matching algorithm for finding node-induced 

subgraph isomorphisms. It is one of the few such algorithms applicable to directed 

multigraphs. Our extension, RelaxedVF2, transforms VF2 from finding node-induced 
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subgraph isomorphisms to subgraph monomorphisms (see Figure 1 for an illustration on how 

these differ) and by modifying it to return partial mappings from graph to subgraph when no 

complete match is available. 

 

 
Figure 1: Graph B is a node-induced isomorphism of Graph A because it is missing a node (1) but 

preserves all edges between nodes shared in both Graphs A and B. Graph C is a monomorphism of A 

because it is missing a node (1) and an edge (between 4 and 5). Definitions are provided in Section 4.1. 

3. Plan Representation: Action Sequence Graphs 

Suppose a plan is modeled as an action state sequence 𝕤 = 〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉, where 

each action 𝒂𝒊 is a ground operator in the planning domain, and 𝒔𝒊 is a ground state obtained 

by executing 𝒂𝒊 in 𝒔𝒊−𝟏, with the caveat that 𝒔𝟎 is an initial state, 𝒂𝟎 is null, and 𝒔𝒏 is a goal 

state. An action 𝒂 in (𝒂, 𝐬) ∈ 𝕤 is a ground literal 𝒑 = 𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛), where 𝑝 ∈ 𝑷 (a 

finite set of predicate symbols), 𝑜𝑖 ∈ 𝑶 (a finite set of object types), and 𝑡𝑖 is an instance of 

𝑜𝑖  (e.g., stack(block:A, block:B)). A state 𝒔 in (𝒂, 𝐬) ∈ 𝕤 is a set of ground literals (e.g., 

{on(block:A,block:B), on(block:B,substrate:TABLE)}). 

An Action Sequence Graph (ASG) is a graphical representation of a plan that preserves its 

topology (including the order of the propositions and their arguments). Vattam et al. (2014; 

2015) provide a detailed definition of ASGs and their generation. An ASG is automatically 

generated by transforming individual propositions in a plan into predicate encoding graphs, 

and by taking the union of all the individual predicate encoding graphs so as to maintain the 

total order of the plan. Figure 2 shows an example proposition and its corresponding 

predicate encoding graph. Figure 3 shows an example full plan and its corresponding ASG. 

An ASG is a labeled directed multigraph, which constrains the set of graph matching 

algorithms that can manipulate them. 

Figure 2: A predicate encoding graph corresponding to 𝒑 =  𝑝𝑢𝑡(𝑏𝑙𝑜𝑐𝑘: 𝑎, 𝑏𝑙𝑜𝑐𝑘: 𝑏, 𝑡𝑎𝑏𝑙𝑒: 𝑡) 
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4. Robust Plan-Subplan Matching 

As our goal is error-tolerant plan recognition, our approach requires plan-subplan matching 

that is robust to input errors. Plan-subplan matching requires a measure of similarity. As we 

encode our plans in the case library and the input subplans as graphs, we utilize maximum 

common subgraph monomorphism as a measure of similarity between them rather than the 

more conventional maximum common subgraph isomorphism measure. 

Let 𝐺1, 𝐺2 be graphs composed of sets of vertices and edges 𝑉1, 𝑉2 and 𝐸1, 𝐸2 respectively. 

𝐺2 is isomorphic to a subgraph of 𝐺1 if there exists a one-to-one mapping between each 

vertex of 𝑉2 and a vertex in 𝑉1 and the number of edges between nodes in the mapping are 

maintained. 𝐺2 is instead monomorphic if it consists of any subset of the vertices and edges 

of 𝐺1. Monomorphism must be utilized over isomorphism when matching incomplete 

subplans to complete plans in the case library because as plans are observed new edges are 

often added relating existing action and state vertices. 

RelaxedVF2 (§4.1), an exact graph matching algorithm, does not return a similarity score. 

It instead returns a one-to-one mapping of nodes between the subplan and plans in the case 

library. While the length of the maximum common subgraph is often used to score matches, 

we instead developed a more nuanced candidate scoring algorithm (§4.2) to increase 

matching accuracy. 

4.1 RelaxedVF2 

RelaxedVF2 (Algorithm 1) computes the maximum common subgraph monomorphism 

between two labeled directed multigraphs. Here we refer to node-induced isomorphism as a 

subset of the nodes with all corresponding edges between them. 

VF2 matches two graphs, 𝐺1 and 𝐺2, using semantic and syntactic feasibility functions to 

iteratively add compatible nodes of the graphs to an internal mapping, 𝑀, which is expressed 

as a set of pairs (𝑛, 𝑚) that represent the mapping of a node 𝑛 ∈  𝐺1 with a node 𝑚 ∈ 𝐺2. 

Therefore, a mapping 𝑀 is a graph isomorphism if it is a bijective function that preserves 

Figure 3: An example of a plan with three action-state sequences and its corresponding ASG 
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the branching structure of the two graphs, and 𝑀 is a subgraph isomorphism if the mapping 

is an isomorphism between 𝐺2 and a subgraph of 𝐺1. 

The original VF2 algorithm uses five syntactic feasibility rules to check if a pair (𝑛, 𝑚) 

can be included in 𝑀. These rules are listed in Table 1. 

Table 1: Syntactic feasibility rules for VF2 and RelaxedVF2 

VF2 RelaxedVF2 

𝑅𝑝𝑟𝑒𝑑(𝑠, 𝑛, 𝑚) ⟺ 

(∀𝑛′ ∈ 𝑀1(𝑠) ∩ 𝑃𝑟𝑒𝑑(𝐺1, 𝑛)∃𝑚′ ∈

𝑃𝑟𝑒𝑑(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))  ∧  (∀𝑛′ ∈

𝑀2(𝑠) ∩ 𝑃𝑟𝑒𝑑(𝐺2, 𝑛)∃𝑚′ ∈

𝑃𝑟𝑒𝑑(𝐺1, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))   

𝑅𝑝𝑟𝑒𝑑(𝑠, 𝑛, 𝑚) ⟺ 

(
∀𝑛′ ∈ 𝑀2(𝑠) ∩ 𝑃𝑟𝑒𝑑(𝐺2, 𝑛)

∃𝑚′ ∈ 𝑃𝑟𝑒𝑑(𝐺1, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)
)  

 

𝑅𝑠𝑢𝑐𝑐(𝑠, 𝑛, 𝑚) ⟺ 

(∀𝑛′ ∈ 𝑀1(𝑠) ∩ 𝑆𝑢𝑐𝑐(𝐺1, 𝑛)∃𝑚′ ∈

𝑆𝑢𝑐𝑐(𝐺2, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))  ∧  (∀𝑛′ ∈

𝑀2(𝑠) ∩ 𝑆𝑢𝑐𝑐(𝐺2, 𝑛)∃𝑚′ ∈

𝑆𝑢𝑐𝑐(𝐺1, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠))  

𝑅𝑠𝑢𝑐𝑐(𝑠, 𝑛, 𝑚) ⟺ 

(
∀𝑛′ ∈ 𝑀2(𝑠) ∩ 𝑆𝑢𝑐𝑐(𝐺2, 𝑛)

∃𝑚′ ∈ 𝑆𝑢𝑐𝑐(𝐺1, 𝑚)|(𝑛′, 𝑚′) ∈ 𝑀(𝑠)
)  

 

𝑅𝑖𝑛(𝑠, 𝑛, 𝑚) ⟺ 

(𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_1, 𝑛) ∩ 𝑇_1^𝑖𝑛 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_2, 𝑛) ∩ 𝑇_2^𝑖𝑛 (𝑠))) ∧
 (𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_1, 𝑛) ∩ 𝑇_1^𝑖𝑛 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_2, 𝑛) ∩ 𝑇_2^𝑖𝑛 (𝑠)))  

𝑅𝑖𝑛(𝑠, 𝑛, 𝑚) ⟺ 

(𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_1, 𝑛) ∩ 𝑇_1^𝑖𝑛 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_2, 𝑛) ∩ 𝑇_2^𝑖𝑛 (𝑠))) ∧
 (𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_1, 𝑛) ∩ 𝑇_1^𝑖𝑛 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_2, 𝑛) ∩ 𝑇_2^𝑖𝑛 (𝑠)))  

𝑅𝑜𝑢𝑡(𝑠, 𝑛, 𝑚) ⟺ 

(𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_1, 𝑛) ∩ 𝑇_1^𝑜𝑢𝑡 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_2, 𝑛) ∩ 𝑇_2^𝑜𝑢𝑡 (𝑠))) ∧
 (𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_1, 𝑛) ∩ 𝑇_1^𝑜𝑢𝑡 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_2, 𝑛) ∩ 𝑇_2^𝑜𝑢𝑡 (𝑠)))  

𝑅𝑜𝑢𝑡(𝑠, 𝑛, 𝑚) ⟺ 

(𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_1, 𝑛) ∩ 𝑇_1^𝑜𝑢𝑡 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑆𝑢𝑐𝑐(𝐺_2, 𝑛) ∩ 𝑇_2^𝑜𝑢𝑡 (𝑠))) ∧
 (𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_1, 𝑛) ∩ 𝑇_1^𝑜𝑢𝑡 (𝑠)) ≥
𝐶𝑎𝑟𝑑(𝑃𝑟𝑒𝑑(𝐺_2, 𝑛) ∩ 𝑇_2^𝑜𝑢𝑡 (𝑠)))  

𝑅𝑜𝑢𝑡(𝑠, 𝑛, 𝑚) ⟺ 

(𝐶𝑎𝑟𝑑(𝑁 ̃_1 (𝑠) ∩ 𝑃𝑟𝑒𝑑(𝐺_1, 𝑛)) ≥ 

 𝐶𝑎𝑟𝑑(𝑁 ̃_2 (𝑠) ∩ 𝑃𝑟𝑒𝑑(𝐺_2, 𝑛))) ∧  

(𝐶𝑎𝑟𝑑(𝑁 ̃_1 (𝑠) ∩ 𝑆𝑢𝑐𝑐(𝐺_1, 𝑛)) ≥  

𝐶𝑎𝑟𝑑(𝑁 ̃_2 (𝑠) ∩ 𝑆𝑢𝑐𝑐(𝐺_2, 𝑛))) 

 

The first two rules determine match compatibility based on an equivalent number of 

incoming and outgoing edges per node. The final three rules look ahead to adjacent nodes to 

prune the search tree. We adapted VF2 to relax its enforcement of graph/subgraph edge 

counts while maintaining rules disqualifying additional edges in the subgraph not present in 

the graph. We removed the fifth rule because strict lookahead rules run counter to our goal 

of increased error tolerance. We also made modifications to enable returning partial matches, 

removing the rule that matches must be equal in length to the subgraph. 

We optimized RelaxedVF2 for graph recognition, and thus primarily rely on the semantic 

similarity of node labels to restrict our search space. Our simple semantic feasibility function 

uses an exact string match of the node labels. Any plan recognizer using this algorithm would 

need to provide as input its own domain-specific semantic similarity measure. RelaxedVF2 
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uses a depth-first search through all possible nodes that can be added based on semantic and 

structural similarity. It then progresses to nodes matching on only semantic similarity before 

finally adding nodes matching using only structural similarity. 

Algorithm 1: RelaxedVF2 

PROCEDURE RelaxedVF2(𝑠, 𝐺1, 𝐺2) 

    INPUT:       An intermediate state 𝑠 (the initial state 𝑠0 has 𝑀(𝑠0) = ∅) and two graphs 

    OUTPUT:   the mappings between 𝐺1 and  𝐺2 

    IF 𝑀(𝑠) covers all the nodes of 𝐺2 THEN 

        OUTPUT 𝑀(𝑠)    //The function 𝑀 returns the mappings between nodes of 𝐺1, 𝐺2 in state 𝑠 

    ELSE 

        L = [ ]     //Sorted list of feasible pairs 

        mappingFound = False     

        𝑃(𝑠)  candidate pairs for inclusion in 𝑀(𝑠)     //Used candidate pairs function from VF2 

        FOREACH (𝑛, 𝑚) ∈ 𝑃(𝑠) 

            IF 𝐹(𝑠, 𝑛, 𝑚) THEN 

                L  L ∪  (𝑛, 𝑚) 

        WHILE NOT mappingFound    //Loop until match is found or no more candidates 

            𝑠′  𝑀(𝑠) ∪ L.pop(𝑛, 𝑚)    //Get the top feasible pair from list 

           mappingFound = RelaxedVF2(𝑠′, 𝐺1, 𝐺2)     //Recursive call 

        IF NOT mappingFound     //Output partial match if no match found 

            OUTPUT 𝑀(𝑠) 

        Restore data structures 

4.2 Scoring 

The size of the largest common subgraph can be used as a similarity measure (Bergmann, 

2002). VF2 is error tolerant and will return matches even if they are of lower quality. 

Therefore, we designed a metric that is a function of both match size and quality. The match 

algorithm scores 1 point for every full match based on both semantics and structure (0.7 per 

semantic match and 0.3 per structural match, based on previous weights used in SET-PR 

(Vattam et al., 2015)). After retrieving all matches of the subgraph against the case library 

this score is then used to sort and find the best match. 

5. Empirical Study  

In this study, we compare plan-subplan matching using two similarity measures on ASGs: 

(1) RelaxedVF2, and (2) DSQ (degree-sequence matcher) (Vattam et al., 2014; 2015). Our 

claim is that RelaxedVF2 offers better performance compared to DSQ. 

The default plan representation consists of action-state sequences 

(〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉). We also evaluated a plan representation consisting of only action 

sequences (〈(𝒂𝟎), … , (𝒂𝒏)〉) because state information is not always available in all planning 

domains and it presents a more difficult challenge for DSQ. This yields four conditions: 

RelaxedVF2ActionStates, DSQActionStates, RelaxedVF2ActionsOnly, and DSQActionsOnly. 
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We empirically test whether, for error tolerant CBPR, using RelaxedVF2 outperforms 

DSQ for both the ActionStates and ActionsOnly conditions. We use plan recognition 

accuracy as our performance metric, where accuracy is defined as the ratio of queries that 

resulted in correct plan retrieval to the total number of queries. 

5.1 Empirical method 

We conducted our experiments in the Blocks World domain, which is simple and allows us 

to quickly generate a plan library 𝐿 with desired characteristics. We used SHOP2 (Nau et al., 

2003) to generate 𝐿’s plans as follows. We generated 20 random initial states and paired each 

with 5 randomly generated goal states to obtain 100 planning problems. Each was given as 

input to SHOP2 to obtain a plan. We fixed plan length to 20 by discarding any whose length 

was not 20 and generating a new one (with a different goal state) in its place. This distribution 

was chosen because it is challenging for plan recognition.  

We evaluated plan recognition accuracy using a leave-one-in strategy (Aha & Breslow, 

1997). For each compared condition:  

1. We randomly selected a plan 𝜋 in 𝐿 (𝜋 is not deleted from 𝐿). 

2. We introduced a fixed percentage of error into 𝜋 consisting of a uniform distribution of 

missing, mislabeled, and extraneous actions and random distortions of states associated 

with those actions. The error levels that we tested were {0%,10%,20%,30%,40%,50%}. 

3. The error-𝜋 plan was then used to incrementally query 𝐿 to retrieve a plan. For example, 

if error-𝜋 had 20 steps, the evaluator performed 11 queries at the following plan lengths: 

0% (initial state only, no actions are observed), 10% (first two actions and states are 

observed), and so on until 100% (full plan is observed). 

4. Each query derived from error-𝜋 was used to retrieve the top matching plan π𝑠𝑜𝑙 . If 𝜋 was 

equal to π𝑠𝑜𝑙 , it was considered a success and a failure otherwise. 

5. We repeated steps 1-4 for all 100 plans in 𝐿 in each of 20 trials.  

This yields 1100 queries per error percent level per trial, yielding 132,000 queries (1100 

queries  6 error levels  20 trials). We computed average accuracy over 20 trials. 

5.2 Results and discussion 

We computed mean accuracy for each percentError (in [0.0,0.5] with increments of 0.1) 

and each percentAction (in [0.0,1.0] with increments of 0.1) for RelaxedVF2 and DSQ. The 

results are shown in Figures 4 and 5 for ActionStates and ActionsOnly, respectively. Our 

results show that for all error levels and percent actions RelaxedVF2’s mean accuracy was 

higher than DSQ’s. In ActionStates, RelaxedVF2 achieves 50% accuracy by 20% actions at 

all error levels, but DSQ only achieves 50% accuracy at 100% actions at only 0% and 10% 

error. In ActionsOnly, RelaxedVF2 achieves 50% accuracy by 40% actions at all error levels, 

but DSQ only approaches 50% accuracy at 100% actions with 0% error.  
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We conducted a one-way ANOVA test to compare the effects of percent Actions (0%-

100%), percent Error (0%-50%) and the matching algorithms (RelaxedVF2, DSQ) on 

accuracy. There was a significant effect on accuracy at p < 0.05 with respect to the matching 

algorithms (F(1,17)=18687550.204, p=0.0). This analysis shows that RelaxedVF2 

significantly outperformed DSQ, which lends support to our claim. 

DSQ performs considerably worse without state information because the ASGs become 

much smaller. The degree sequences across the partitions of the smaller graphs will yield 

similar values, preventing DSQ from disambiguating the different plans. 

Figure 4: Mean plan recognition accuracy for the ActionStates conditions 

Figure 5: Mean plan recognition accuracy for the ActionsOnly conditions 
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Surprisingly, accuracy decreased around 80% actions in RelaxedVF2 in the ActionStates 

condition (Figure 4). As the error level increases this dip occurs earlier. We hypothesize that 

the more densely connected graphs resulting from additional action-state information causes 

these graphs to more closely resemble each other, thus reducing recognition accuracy. We 

plan to investigate this in future work. 

Given that RelaxedVF2 is an exact graph matching algorithm and DSQ is an approximate 

algorithm, DSQ should have a significantly shorter runtime. In this study, RelaxedVF2 had 

a mean runtime (in seconds) of 0.121 and 0.045 in the ActionStates and ActionsOnly 

conditions, respectively. DSQ mean runtime was 0.020 and 0.019 in these conditions. We 

subjected the mean runtimes to a t-test and found the differences in the runtimes to be 

significant at p < 0.05 for both conditions. 

6. Summary 

CBPR under imperfect observability requires error tolerant plan-subplan matching, which 

requires flexible representation and matching algorithms. In earlier work we introduced the 

ASG representation for plan recognition and degree-sequence plan matching (Vattam et al., 

2014; 2015). Although this matching algorithm worked reasonably well, there remained 

room for improvement. Here we presented RelaxedVF2, an alternative plan-subplan 

matching algorithm. It is a subgraph monomorphism algorithm, and thus affords flexibility 

and error tolerance in matching compared to VF2. In our empirical study we found support 

for our claim that, for error-tolerant CBPR, RelaxedVF2 can outperform the degree-sequence 

matcher, at least for the paradigmatic domain we studied. 

In future work, we will investigate whether the same result occurs when using datasets 

from additional domains to address the single dataset limitation of our current study. We also 

plan to integrate RelaxedVF2 into our plan recognition architecture to complement the 

existing methods. We also plan to do a comparative study with other state-of-the-art plan 

recognizers. 
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