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Preface

The community working on health sciences applications of case-based reasoning
(CBR) meets again at the International Conference on Case-based Reasoning
(ICCBR) this year to share ideas and system descriptions collected in the pro-
ceedings of this workshop. This event is the tenth in a series of successful work-
shops, co- located with different ICCBR/ECCBR conferences. The first nine were
held at ICCBR-03, in Trondheim, Norway, at ECCBR-04, in Madrid, Spain, at
ICCBR-05, in Chicago, USA, at ECCBR-06 in Olüdeniz, Turkey, at ICCBR-07
in Belfast, Northern Ireland , at ECCBR-08 in Trier, Germany, at ICCBR-09 in
Seattle, USA, at ICCBR- 2012 in Lyon, France, and at ICCBR-2013 in Saratoga
Springs, USA.

Three papers and one invited speaker summary have been selected this year
for presentation during the ICCBR workshops and inclusion in the Workshops
Proceedings. The first paper in these proceedings deals with medical process
management and presents a tool capable of predicting the evolution of a current
process based on previous traces, which can be very useful to ensure compliance
with clinical guidelines [Bottrighi et al.]. The second paper highlights how a
case-based approach to data analysis can aid in integrating new fitness band
data into machine learning models for blood glucose prediction [Marling et al.].
The third paper focuses on the importance and variety of data mining methods in
case-based reasoning, in particular for health sciences applications [Bichindaritz].
Finally, the invited speaker summary discusses how hybrid case-based reasoning
is likely to change the future of health science and healthcare [Funk].

These papers report on the research and experience of 11 authors working
in three different countries on a wide range of problems and projects, and il-
lustrate some of the major trends of current research in the area. Overall, they
represent an excellent sample of the most recent advances of CBR in the health
sciences, and promise very interesting discussions and interaction among the
major contributors in this niche of CBR research.

September 2015
Frankfurt

Isabelle Bichindaritz
Cindy Marling

Stefania Montani
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Trace Retrieval as a Tool for Operational
Support in Medical Process Management

Alessio Bottrighi (1), Luca Canensi (2), Giorgio Leonardi (1),
Stefania Montani (1), Paolo Terenziani (1)

(1) DISIT, Computer Science Institute, Università del Piemonte Orientale,
Alessandria, Italy

(2) Department of Computer Science, Università di Torino, Italy

Abstract. Operational support assists users while process instances are
being executed, by making predictions about the instance completion, or
recommending suitable actions, resources or routing decisions, on the ba-
sis of the already completed process traces. Operational support can be
particularly useful is the case of medical processes, where a given pro-
cess instance execution may differ from the indications of the existing
reference clinical guideline. In this paper, we propose a Case Based Rea-
soning approach to medical process management operational support.
The framework enables the user to retrieve past traces by submitting
queries representing complex patterns exhibited by the current process
instance. Information extracted from the retrieved traces can guide the
medical expert in managing the current instance in real time. The tool
relies on a tree structure, allowing fast retrieval from the available event
log. Thanks to its characteristics and methodological solutions, the tool
implements operational support tasks in a flexible, efficient and user
friendly way.

1 Introduction

Operational support is a process management activity meant to assist users while
process instances are being executed, by making predictions about the instance
completion, or recommending suitable actions, resources or routing decisions, on
the basis of the already completed instances [1]. Operational support can be par-
ticularly useful in the case of medical processes, where a given process instance
execution may (significantly) differ from the indications of the existing reference
clinical guideline. Indeed, specific patient characteristics (e.g., co-morbidities,
allergies, etc.), or local resource constraints, may lead to deviations from the
default behavior, which need to be managed in real time. Prediction and recom-
mendation heavily rely on experiential knowledge, stored in the so-called “event
log” in the form of past process traces. Case Based Reasoning (CBR) [2], and
specifically the retrieval step in the CBR cycle, thus appears to be a very valuable
methodology for implementing these operational support tasks. The percentage
of retrieved traces that, e.g., were completed on time, can then be used to cal-
culate the probability that the current instance will complete on time too. A

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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similar approach can be adopted to estimate costs, or predict problems. More-
over, the best actions to execute next can also be extracted from the retrieved
traces.

In this paper we propose a case-based retrieval framework, where cases are
traces of process execution, aimed at enabling prediction and recommendation in
medical process operational support. In our framework, queries can be composed
of several simple patterns (i.e., single actions, or direct sequences of actions),
separated by delays (i.e., interleaved actions we do not care about). Delays can
also be imprecise (i.e., the number of interleaved actions can be given as a range).
To the best of our knowledge, an operational support facility like this is not
available in the tools described in the literature. Our framework relies on a tree
structure, called the trace tree, allowing fast retrieval, thus avoiding a flat search
for all the traces in the log that match the input pattern. The trace tree is a
sort of “model” of the traces, that we learn using a process mining technique we
recently implemented [3], and built in such way that it can be used as an index1.

The paper is organized as follows. In section 2 we illustrate our retrieval
approach. In section 3 we discuss related work. In section 4 we present our
concluding remarks and future work directions.

2 Trace retrieval

In our framework, trace retrieval relies on a tree structure, called the trace tree,
in order to avoid a flat search for all the traces in the log that match the input
query. In the following, we will first describe the trace tree semantics, and then
introduce our query language and, finally, our retrieval procedure.

Trace tree semantics. In the trace tree, nodes represent actions, and arcs
represent a precedence relation between them. More precisely, each node is rep-
resented as a pair < P, T >.

P denotes a (possibly unary) set of actions; actions in the same node are in
AND relation, or, more properly, may occur in any order with respect to each
other. Note that, in such a way, each path from the starting node of the tree to a
given node N denotes a set of possible process patterns (called support patterns
of N henceforth), obtained by following the order represented by the arcs in the
path to visit the trace tree, and ordering in each possible way the actions in
each node (for instance, the path {A,B} → {C} represents the support patterns
“ABC” and “BAC”).

T represents a set of pointers to all and only those traces in the log whose
prefixes exactly match one of the patterns in P (called support traces henceforth).
Specifically, prefixes correspond to the entire traces if the node at hand is a leaf.
In the case of a node representing a set of actions to be executed in any order, T is

1 While the motivations for defining such a novel mining algorithm, and its advantages
with respect to existing process mining literature contributions (e.g., ProM [4]), are
extensively discussed elsewhere [3], in this work we focus on its usage to support
case retrieval.
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more precisely composed of several sets of support traces, each one corresponding
to a possible action permutation.

Since all traces start with a dummy common action #, the root node contains
the action #, paired to the pointers to all log traces.
Query language. In a tool implementing this framework, the user can issue
a query, composed of one or more simple patterns to be searched for. In turn,
simple patterns are defined as one or more actions in direct sequence. Multiple
simple patterns can be combined in a complex pattern, by separating them by
delays. A delay is a sequence of actions interleaved between two simple patterns;
the semantics is that we do not care about these actions, so they will not be
specified in the query. Instead, only their number will be provided, possibly in
an imprecise way (i.e., we allow the user to express the number of interleaved
actions as a range).

Formally, a query is represented in the following format:

〈(min1,max1)SP1(min2,max2)SP2...(mink,maxk)SPk(mink+1,maxk+1)〉
where:

– SPj is a simple pattern (i.e. a sequence of letters, representing the actions
we are looking for; these actions have to be in direct sequence);

– (minj ,maxj) is the delay between two items (i.e., two simple patterns, or a
simple pattern and the trace starting/ending point), expressed as a range in
the number of interleaved actions.

As an example, the query
〈(0, 0)B(0, 1)E(2, 2)Z(0, 1)〉
looks for action B, which has to start at the very beginning of the trace (just

after the start action # - all traces start with a dummy common action # in our
approach). This first simple pattern B must be followed (with zero or a single
interleaved action in between) by action E. E must be followed by two actions,
which we do not care about; after them, Z is required. Z can be the final action,
or can be followed by one additional action we do not care about.

For instance, in the stroke management domain, where we will test our ap-
proach, actions B, E and Z could correspond to “Arrival at the emergency de-
partment”, “Neurological examination”, and “Chest X-ray” respectively. Look-
ing for “Arrival at the emergency department” at the very beginning of the trace
allows the exclusion of all those patients that were first stabilized at home or
in the ambulance. The query then aims for searching for those situations where
“Neurological examination” is executed early, and before “Chest X-ray”; in fact,
this specific ordering is not mandatory, because “Chest X-ray” is a procedure
common to many different disease management processes, and may be executed
at different times, also depending on the availability of the X-ray machine. Sim-
ilarly, in some cases “Neurological examination” might be delayed, if the neu-
rologist is not available. The two actions between “Neurological examination”
and “Chest X-ray” would typically correspond to “CTA” and “ECG”, always
obtained to every patient in the case of a suspected stroke (but not explicitly
queried in the example).
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It is worth noting that a query written as above corresponds to a whole
set of queries, each one obtained by choosing a specific delay value and specific
actions in each of the (minj ,maxj) intervals. Every query in this set can be made
partially explicit as a string, containing as many dummy symbols ∗ as needed,
to cover the corresponding delay length (where the dummy symbol is chosen
because we are not interested in the specific interleaved actions). For example,
the query above would correspond to the following four partially explicit queries,
whose length ranges from 6 to 8 actions (including #), where the dummy symbol
∗ has been properly inserted, according to the delay values information: #BE ∗
∗Z; #BE ∗ ∗Z∗; #B ∗ E ∗ ∗Z; #B ∗ E ∗ ∗Z∗

Since each ∗ could be substituted by any of the N types of actions recorded in
the log and/or existing in the application domain, the example query corresponds
to N2 + 2 ∗N3 + N4 totally explicit queries.

The problem is obviously combinatorial, with respect to the possible delay
ranges and action types. We thus believe that extensional approaches (in which
only explicit queries can be issued) would not be feasible in many domains.
Our query language, allowing for compact “intensional” queries, is therefore a
significant move in the direction of implementing an efficient and user-friendly
operational support tool.
Trace retrieval. In order to retrieve the log traces that match a query, we
have implemented a multi-step procedure, articulated as follows: (1) automaton
generation; (2) tree search; (3) filtering.

To generate the automaton, in turn, we implement the following procedure:

1. transform the query into a regular expression;
2. apply the Berry and Sethi [5] algorithm, to build a non-deterministic au-

tomaton that recognizes the regular expression above;
3. unfold the non-deterministic automaton;
4. transform the unfolded non-deterministic automaton into a deterministic

automaton [6].

Steps (1) and (4) are trivial. As regards step (1) note that our query language
is just a variation of regular expressions, useful to express delays and “do not
care” (i.e., dummy) symbols in a compact way. The cost of step (1) is linear in
the number of delays used in the query. Steps (2) and (3) use classical algorithms
in the area of formal languages. The cost of step (2) is linear in the number of
symbols in the query expressed as a regular expression (i.e., the output of step
(1) [5]), and the cost of step (3) is the product between the number of dummy
symbols in the query and the cardinality of the action symbols available in the
log. Step (4) substitutes each arc labeled by the dummy symbol in the automaton
with a set of arcs, one for each action in the event log. Although in the worst case
step (4) is exponential with respect to the number of states in the automaton
(i.e., the output of step (2)), note that the worst case is rare in practice [7].

Once the deterministic automaton has been obtained, it would be possible
to exploit it in a classical way, by providing all event log traces in input to it,
to verify which of them match the query. However, some of these traces may be
identical, or share common prefixes of various length, so that the straightforward
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approach would lead to repeated analyses of the common parts. In order to
optimize efficiency, we have therefore proposed a novel approach, that provides
the trace tree as an input to the automaton. Each path in the trace tree may
index several identical support traces, that will be considered only once, thus
speeding up retrieval with respect to a flat search into the event log. Moreover, in
the tree common prefixes of different traces are represented just once, as common
branches close to the root (different postfixes can then stem from the common
branches, to reach the various leaves). These common parts will be executed on
the automaton only once, without requiring repeated, identical checks.

It is worth noting that providing a tree as an input to the automaton repre-
sents a significantly novel contribution, since in the formal languages literature
the input to be executed on the automaton is typically a string. The work in
[8] represents an exception, but the tree it exploits (a Patricia tree) has very
different semantics with respect to ours.

In detail, our approach operates as follows: the algorithm Search Process
(see algorithm 1) takes in input the trace tree T and the deterministic automaton
A, and provides as an output a set of pairs, composed of a trace tree leaf node
and a corresponding string. Notably, there could be several pairs having the same
leaf node. Each of the strings is an explicit instantiation of the query represented
by the automaton, verified by (some of) the support traces in the leaf node. The
output support traces are then provided as an input to the filtering step (see
below).

Basically, Search Process executes a breadth first visit of the trace tree; it
exploits the variable searching, defined as a set of triples, composed of a trace
tree node, an automaton state, and the string that has been recognized on the
automaton so far. Initially (line 4), searching contains the root (with the dummy
action #), paired to the initial state of the query automaton and to the empty
string. The visit procedure (lines 7-35) extracts one triple at a time from the set
searching. If the node in the triple contains a set of actions to be executed in
any order (line 9), we simulate all the permutations on the automaton, and save
the states we reach and the corresponding recognized strings into new states
set (line 12). If the node contains one single action, we simply simulate it on
the automaton, and save the state we reach and the corresponding string into
new states set (line 17). In both cases, the string saved in new states is the one
in the input triple properly updated with the newly recognized symbols.

After the simulation, if the node at hand is a leaf (line 20), then for each
item in new states we check whether the state component is a final state (lines
22-24); if this is the case, node and the string paired to the final state are saved
in the output variable result (line 23). Otherwise, if node is not a leaf, we pair
its children to all the items in new states, and save these objects into searching
(lines 27-33). The visit terminates when searching is empty, i.e., all tree levels
have been visited. The visit procedure is linear in the number of the trace tree
nodes.

Referring to our example query, providing the trace tree in figure 1 as an
input to the algorithm Search Process, after examining the root (which is triv-
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ALGORITHM 1: Pseudo-code of the procedure Search Process.

1 Search Process(T, A)
2 Output: set of < node, string >
3 result ← {}
4 searching ←< root(T ), 0, empty >
5 repeat
6 tmp ← {}
7 foreach < node, state, string > ∈ searching do
8 new states ← {}
9 if node is an any-order-node then

10 foreach Perm ∈ permutation(node) do
11 foreach act ∈ Perm do
12 new states ← new states ∪ simulate(A, act,state,string)
13 end

14 end

15 end
16 else
17 new states ← simulate(A, action(node),state,string)
18 end
19 if new states 6= {} then
20 if node is a leaf then
21 foreach < state, string > ∈ new states do
22 if final(state) then
23 result ← result ∪ < node, string >
24 end

25 end

26 end
27 else
28 foreach n ∈ sons(node) do
29 foreach < state, string > ∈ new states do
30 tmp ← tmp ∪ < n, state, string >
31 end

32 end

33 end

34 end

35 end
36 searching ← tmp

37 until searching 6= {}
38 return result
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ial), searching contains the children of the root A, B, and C, paired with the
state of the deterministic automaton, and with the string #. We simulate the
actions A, B, and C on the automaton. Only B (i.e., “Arrival at the emergency
department”) is recognized, generating a state saved in new states with the cor-
responding string #B (line 17). We then pair the children of node B (E, D,
D − E) to the item in new states and save these triples into searching (lines
27-33). In the stroke management domain, E corresponds to “Neurological ex-
amination” and D to “CTA”. Continuing the visit, particularly interesting is the
case of node D−E, which requires consideration of all the possible permutations
of actions D and E. Both the permutations DE and ED are initially recognized.
However, as the visit proceeds and node P −Z is reached (with P corresponding
to “ECG” and Z corresponding to “Chest X-ray”), it turns out that DE must
be followed by the permutation PZ to match the query; on the other hand, if
the choice ED is made, it must be followed by ZP . Indeed, the query imposes
some constraints that cannot be checked only locally, i.e., referring to a single node
along the branch. After this step of the visit (depth 5 in the tree), the recognized
partial strings paired to node P −Z are #BDEOPZ and #BEDOZP (with O
corresponding to “NMR”). Notably, the patterns #BDEOZP and #BEDOPZ
do not match the input query.

Fig. 1. Trace tree in the example.

If an output leaf node ends a branch which includes one or more nodes with
actions to be executed in any order, it is possible that only some of the permuta-
tions of these actions are acceptable to answer the query. However, the trace tree
leaf node indexes all the traces corresponding to the various support patterns
(i.e., considering all possible permutations). Therefore, the support traces must
be filtered.

To do so, without the need of operating directly on the input traces, we
exploit the fact that, in each node with actions to be executed in any order,
every permutation is explicitly stored, and each permutation indexes all and
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only the support traces corresponding to it. Thus, the basic idea of our filtering
step is simple: for each output pair 〈 Node, String 〉 of the tree search step, we
navigate the trace tree from Node back to the root, maintaining, in each any
order node, only the (pointers to) the traces corresponding to String (this can
be easily done through the operation of intersection between sets of pointers).

The complexity of the filtering step is superiorly limited by the number of 〈
Node, String 〉 pairs identified as an output of the tree search step, multiplied
by the tree depth.

Obviously, if the leaf node ends a branch that contains no nodes with actions
to be executed in any order, the leaf support traces can be directly presented to
the user, and the filtering step is not required.

3 Related work

Operational support techniques are implemented in the open source framework
ProM [4] (developed at the Eindhoven University of Technology), which repre-
sents the state of the art in process mining research. In ProM, prediction and
recommendation are typically supported by replaying log traces on the transi-
tion system [9], a state-based model that explicitly shows the states a process
can be in, and all possible transitions between these states. The replay activity
allows calculation of, e.g., the mean time to completion from a given state, or
the most probable next action to be executed. In ProM’s approach, statistics on
event log traces are thus used for operational support, but the overall technique
is very different from the one we propose in this paper, and no trace retrieval on
the basis of complex pattern search is supported.

On the other hand, traces have been recently considered in the CBR litera-
ture, as sources for retrieving and reusing user’s experience. As an example, at
the International Conference on CBR in 2012, a specific workshop was devoted
to this topic [10]. In 2013, Cordier et al. [11] proposed trace-based reasoning,
a CBR approach where cases are not explicitly stored in a library, but are im-
plicitly recorded as “episodes” within traces. The elaboration step, in which a
case is extracted from a trace, is thus one of the most challenging parts of the
reasoning process. Zarka et al. [12] extended that work, and defined a similarity
measure to compare episodes extracted from traces. In these works, traces are
typically intended as observations captured from users’ interaction with a com-
puter system. Trace-based reasoning was exploited in recommender systems [13,
14], and to support the annotation of digitalized cultural heritage documents
[15]. Leake used execution traces recording provenance information to improve
reasoning and explanation in CBR [16]. In the Phala system [17], the authors
supported the generation and composition of scientific workflows by mining ex-
ecution traces for recommendations to aid workflow authors. Finally, Lanz et al.
used annotated traces recorded when a human user played video games in order
to feed a case-based planner [18].
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All these approaches implement forms of reasoning on traces. However, to
the best of our knowledge, a tace-based CBR approach has never been exploited
for operational support in Medical Process Management.

4 Conclusions

In this paper, we have introduced a novel framework for trace retrieval, designed
to implement operational support tasks in a flexible, efficient and user-friendly
way. With respect to existing operational support facilities, our tool is more
flexible because it allows to search for traces that exhibit complex query patterns,
identified in the input trace. The tool is also efficient and user-friendly, since:

– by allowing for the use of (imprecise) delays in the query language, it enables
users to express a very large number of explicit queries in a compact way;

– by providing the trace tree as an input to the automaton:

• it speeds up retrieval relative to a flat search into the event log;
• it executes common prefixes of different traces only once on the automa-

ton, avoiding repeated, identical checks.

In the future, we plan to extensively test the overall framework on real world
traces, which log the actions executed during stroke patient management in a
set of Northern Italy hospitals.
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Abstract. The 4 Diabetes Support System (4DSS) is a prototypical hy-
brid case-based reasoning (CBR) system that aims to help patients with
type 1 diabetes on insulin pump therapy achieve and maintain good
blood glucose control. The CBR cycle revolves around treating blood
glucose control problems by retrieving and reusing therapeutic adjust-
ments that have been effectively used to treat similar problems in the
past. Other artificial intelligence (AI) approaches have been integrated
primarily to aid in situation assessment: knowing when a patient has a
blood glucose control problem and characterizing the type of problem
that the patient has. Over the course of ten years, emphasis has shifted
toward situation assessment and machine learning approaches for pre-
dicting blood glucose levels, as that is the area of greatest patient need.
The goal has been to make large volumes of raw insulin, blood glucose
and life-event data actionable. During the past year, newly available fit-
ness bands have provided a potentially valuable source of additional data
for controlling diabetes. Because it was initially unclear whether or how
this new data might be leveraged, a case study was conducted, and CBR
was once again called into play. This paper describes the case study and
discusses the potential of CBR to serve as a prelude to big data analysis.

1 Introduction

The World Health Organization estimates that there are 347 million people living
with diabetes [11]. From 5 to 10% of them have type 1 diabetes (T1D), the
most severe form, in which the pancreas fails to produce insulin. T1D is neither
curable nor preventable; however, it can be treated with insulin and effectively
managed through blood glucose (BG) control. Good BG control helps to delay
or prevent long-term diabetic complications, including blindness, amputations,

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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kidney failure, strokes, and heart attacks [4]. Therefore, it is important to rapidly
identify and correct BG control problems.

The 4 Diabetes Support System (4DSS) is a prototypical hybrid case-based
reasoning (CBR) system that detects and predicts BG control problems and
suggests personalized therapeutic adjustments to correct them. The 4DSS has
been extensively described in the literature [6, 7, 9]; a brief system overview is
presented in the next section. A critical research thrust that grew out of work on
the 4DSS is how to continuously, in real-time, predict that a BG control problem
is about to occur. The key is to be able to accurately predict what the BG level
will be in the next 30 to 60 minutes, which would allow enough time to intervene
and prevent predicted problems. Large volumes of raw insulin and BG data are
available for analysis. Machine learning algorithms for time series prediction have
been efficaciously applied. Studies conducted on retrospective data show that our
system predicts BG levels comparably to physicians specializing in diabetes care,
but not yet well enough for use by patients in the real world [2, 8].

Recently, commercially available fitness bands and smart watches, such as
the Basis Peak, Nike Fuelband, Fitbit, and Apple Watch, have made it practical
to inexpensively and unobtrusively collect large quantities of physiological data.
As this data may be indicative of patient activity impacting BG levels, it could
potentially be used to improve BG level prediction. However, due to the compli-
cated nature of the problem, it was not initially clear whether or how this data
could be leveraged. Therefore, a case study was conducted in which a patient
with T1D wore a fitness band in addition to his usual medical devices for two
months. The data was consolidated and displayed via custom visualization soft-
ware. The patient, his physician, and artificial intelligence (AI) researchers met
weekly to review and interpret the data, using a protocol like that employed to
build the 4DSS. This case-based focus shed light on how the new data could be
integrated into machine learning models and leveraged to improve BG predic-
tion. We posit that a case-based approach is especially useful in dealing with new
data sources, new patients, and new medical conditions, and that early lessons
learned through the CBR process can aid in later big data analysis.

2 Background

This section briefly describes the 4DSS and the work on machine learning models
for blood glucose prediction prior to the new case study.

2.1 The 4 Diabetes Support System

A graphical overview of the prototypical hybrid CBR system is shown in Figure
1. The patient provides BG, insulin and life-event data to the system. BG and
insulin data are uploaded from the patient’s prescribed medical devices. The
patient enters data about life events that impact BG levels, such as food, exer-
cise, sleep, work, stress and illness, using a smart phone. The data is scanned by
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Fig. 1. Overview of the 4 Diabetes Support System, reproduced from [6]

the situation assessment module, which detects and predicts BG control prob-
lems. The most critical types of problems are: hyperglycemia, or high BG, which
contributes to long-term diabetic complications; and hypoglycemia, or low BG,
which may result in severe immediate reactions, including weakness, dizziness,
seizure or coma. The situation assessment module reports detected problems to
the physician. The physician selects a problem of interest, which is then used by
the case retrieval module to obtain the most similar case or cases from the case
base. Each retrieved case contains a specific BG control problem experienced by
a T1D patient, a physician’s recommended therapeutic adjustment, and the clin-
ical outcome for the patient after making the therapeutic adjustment. Retrieved
cases go to the adaptation module, which personalizes a retrieved solution to fit
the specific needs of the current patient. A solution is a therapeutic adjustment
comprising one or more actions that a patient can take. Adapted therapeutic
adjustments are displayed to the physician as decision support. The physician
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decides whether or not to recommend the therapeutic adjustments to the pa-
tient. Directly providing suggestions to the patient, while a long-term goal, would
require regulatory approval.

2.2 Machine Learning Models for Blood Glucose Prediction

Originally conceived of as important for situation assessment, BG prediction
has multiple potential applications that could enhance safety and quality of life
for people with T1D if incorporated into medical devices. These applications in-
clude: alerts to warn of imminent problems; decision support for taking actions to
prevent impending problems; “what if” analysis to project the effects of lifestyle
choices on BG levels; and integration with closed-loop control algorithms for
insulin pumps (aka the “artificial pancreas”). Predicting hypoglycemia is espe-
cially important, both for patient safety and because hypoglycemia is a limiting
factor for intensive insulin therapy [3].

In our BG prediction approach, a generic physiological model is used to
generate informative features for a Support Vector Regression (SVR) model that
is trained on patient specific data. The physiological model characterizes the
overall dynamics into three compartments: meal absorption, insulin dynamics,
and glucose dynamics. The parameters of the physiological model are tuned to
match published data and feedback from physicians. To account for the noise
inherent in the data, the state transition equations underlying the continuous
dynamic model are incorporated in an extended Kalman filter.

Fig. 2. Overview of the Blood Glucose Level Prediction Process

Figure 2 shows the overall BG level prediction process. A continuous dynam-
ical system implementing the set of physiological equations is run in prediction
mode for 30 and 60 minutes. Physiological model predictions are then used as
features for an SVR model that is trained on the two weeks of data preced-
ing the test point. Furthermore, an AutoRegressive Integrated Moving Average
(ARIMA) model is trained on the same data and its predictions are used as ad-
ditional features. The models are trained to minimize Root Mean Square Error
(RMSE). SVR predictions are made at 30 and 60 minute intervals and compared
to BG levels at prediction time (t0), ARIMA predictions, and predictions made
by physicians specializing in diabetes care. Results are shown in Figure 3.
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Fig. 3. RMSE of the Best SVR Model vs. the t0, ARIMA, and Physician Predictions

3 The Case Study

The recent proliferation of commercially available fitness bands provides an op-
portunity to exploit new data from inexpensive, unobtrusive, portable physiolog-
ical sensors. These sensors provide signals indicative of activities that are known
to impact BG levels, including sleep, exercise and stress. The hope is that, by
incorporating these signals, we can obtain a more accurate picture of patient
activity, while reducing or eliminating the need for the patient to self-report life
events. We conducted an N-of-1 study in order to learn whether or how this
influx of new data could be leveraged to advantage.

The subject was a middle-aged physician who has had T1D since childhood.
For two months, he wore a fitness band along with his regularly prescribed
medical devices and entered life-event data via his smart phone. The fitness
band, a Basis Peak, provided data for galvanic skin response (GSR), heart rate,
and skin and air temperatures. The medical devices, a Medtronic insulin pump
and a Dexcom continuous glucose monitoring (CGM) system, provided insulin
and BG data. All of this data was consolidated in the 4DSS database.

Once a week, the subject met with his physician and AI researchers to review
and analyze the data. The consolidated data was displayed via custom-built visu-
alization software called PhysioGraph. A screen shot from PhysioGraph, showing
the different types of data, is shown in Figure 4. BG control problems identified
by the 4DSS software, the subject, and/or his physician, were visualized and dis-
cussed. We looked for visual patterns in the fitness band data during the times
when the problems occurred.

Preliminary findings based on these visualizations were encouraging. While
even subtle patterns may be detected by machine learning algorithms, we were
able to detect some marked patterns as humans. The most pronounced pattern
was a rise in GSR with severe hypoglycemia. The most interesting pattern re-
volved around shoveling snow. The study was conducted during an unusually
harsh winter in which the patient (and most of the rest of us) had to frequently
shovel heavy snow. Shoveling snow is strenuous exercise, and exercise is known
to lower BG levels. After shoveling for extended periods, the subject sometimes
experienced hypoglycemia. This is a problem we would like to predict, because,
if alerted, the patient could take action to prevent it. There was a discernable
pattern in the fitness band data surrounding this problem. GSR and heart rate
rose, while skin and air temperature dropped. While we do not yet know if this
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combination of signals will allow us to predict hypoglycemia or only detect it,
we now have leads to follow.

4 Discussion

When work began on the 4DSS in 2004, we had little data and no structured
cases. As we built our case base and collected data from over 50 T1D patients,
we developed a database that enabled us to build machine learning models for
purposes we did not envision in 2004. With more data, it becomes possible
to leverage more AI approaches for more purposes. When data or knowledge
is limited, however, CBR can be an enabling approach. As non-health-related
examples, we can think of leveraging all of the information possible from a single
oil spill, or of basing product recommendations for a customer with no purchase
history on what similar customers have bought. In the medical arena, CBR
has also proven useful for dealing with new situations. For example, CARE-
PARTNER used CBR to determine appropriate follow-up care for the earliest
stem cell transplant patients [1]. Once many patients had undergone stem cell
transplantation and received follow-up care, their collective experiences were
distilled into clinical practice guidelines that were used in lieu of CBR. Today,
nearly 20 years later, big data tools like IBM Watson Health [5] may allow us to
further evaluate, refine, and personalize treatment for these patients.

In the diabetes domain, big data is not yet publicly available; however, we an-
ticipate its near-term future availability. Three non-technical factors contribute
to this lack of data: (1) most diabetes patients do not yet wear devices or use
systems that continuously collect data; (2) medical device manufacturers do not
yet allow access to raw data in real-time, but require the use of their own pro-
prietary software; and (3) patient privacy concerns inhibit data sharing, even
when data exists. There has been a recent drive to collect and consolidate data
from all T1D patients and all types of (currently incompatible) medical devices,
spearheaded by the non-profit organization Tidepool [10]. A goal is to be able to
analyze and leverage continuous data from hundreds of thousands of patients to
improve diabetes care and outcomes for individuals. Our case engineering, based
on the limited data we have already collected, could serve to jump start such
efforts.

At the heart of any CBR system is the case. The case is a knowledge struc-
ture that, especially in complex medical domains, may embody more than a
collection of readily available feature-value pairs. The design of a case for a CBR
system begins with the analysis of real-world cases to identify problems, solutions
and outcomes. It is necessary to understand and define the features that make
cases similar to each other, reusable in different circumstances, and adaptable
to the case at hand. Features engineered for cases may provide machine learning
algorithms with better inputs than raw data or surface features.

In our case study, the fitness band provided physiological signals that were
not a part of our original case design. There were 20 times as many data points
per patient per day as we had previously collected. We did not know how the
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new data could be used to anticipate or detect blood glucose control problems
or, more fundamentally, how it related to BG levels in people with T1D. The
inputs to our SVR models are not raw data points, but features that have been
carefully engineered from the raw data based, in part, on insights gained from
cases. Sometimes, simple data combinations suffice; for example, we could see
during the case study that the difference between air and skin temperature was
more relevant than either individual measurement. Other times, we have had
to employ complex systems of equations; for example, a complex physiological
model is needed to characterize the impact of insulin on BG levels. Even as we
move toward more automated means of feature engineering and more reliance
on machine learning techniques, early use of CBR can help to provide insight
and intuition that may guide big data exploration and interpretation.

5 Summary and Conclusion

The 4DSS is a prototypical hybrid CBR system that aims to help T1D patients
achieve and maintain good BG control. As cases and data have accumulated over
ten years, the research emphasis has shifted toward using the accumulated data
to build machine learning models for BG prediction. While these models have
applicability to situation assessment within the 4DSS, their greater potential is in
facilitating a wide range of practical applications that could enhance safety and
quality of life for T1D patients. The recent proliferation of commercially available
fitness bands has presented the opportunity to incorporate new types of data
indicative of patient activity into the models to improve prediction accuracy.
However, when it was initially unclear whether or how this new data might be
leveraged, a case study was conducted, calling CBR back into play.

In the N-of-1 study, a T1D patient on insulin pump therapy with continuous
glucose monitoring wore a fitness band and entered life-event data into the 4DSS
database for two months. The aggregated data was displayed via custom-built
visualization software and reviewed at weekly intervals by the patient, his physi-
cian, and AI researchers. BG control problems were analyzed with a focus on
identifying patterns in the new data at the time the problems occurred. Some
promising patterns could be visualized, including a marked rise in GSR with
severe hypoglycemia. This case-based focus provided insight and intuition about
how the new data relates to BG levels. Work on integrating the new data into
our BG prediction models is currently underway.
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Abstract. Case-based reasoning (CBR) systems often refer to diverse data mining 

functionalities and algorithms. This article locates examples, many from health 

sciences domains, mapping data mining functionalities to CBR tasks and steps, 

such as case mining, memory organization, case base reduction, generalized case 

mining, indexing, and weight mining. Data mining in CBR focuses greatly on 

incremental mining for memory structures and organization with the goal of 

improving performance of retrieval, reuse, revise, and retain steps. Researchers are 

aiming at the ideal memory as described in the theory of the dynamic memory, 

which follows a cognitive model, while also improving performance and accuracy 

in retrieve, reuse, revise, and retain steps. Several areas of potential cross-

fertilization between CBR and data mining are also proposed. 

1 Introduction 

Case-based reasoning (CBR) systems have tight connections with machine learn-

ing and data mining as exemplified by their description in data mining (Han et al. 

2012) and machine learning (Mitchell 1997) textbooks. They have been tagged by 

machine learning researchers as lazy learners because they defer the decision of 

how to generalize beyond the training set until a target new case is encountered 

(Mitchell 1997), by opposition to most other learners, tagged as eager. Even 

though a large part of the inductive inferences are definitely performed at Retriev-

al time in CBR (Aha 1997), mostly through sophisticated similarity evaluation, 

most CBR systems also perform inductive inferences at Retain time. There is a 

long tradition within this research community to study what is a memory, and 

what its components and organization should be. Indeed CBR methodology focus-

es more on the memory part of its intelligent systems (Schank 1982) than any oth-

er artificial intelligence (AI) methodology, and this often entails learning declara-

tive memory structures and organization. This article proposes to review the main 

data mining functionalities and how they are used in CBR systems by describing 

examples of systems using them and analyzing which roles they play in the CBR 

framework (Aamodt and Plaza 1994). The research question addressed is to de-

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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termine the extent to which data mining functionalities are being used in CBR sys-

tems, to enlighten possible future research collaborations between these two fields, 

particularly in health sciences applications. This paper is organized as follows. Af-

ter the introduction, the second section highlights major concepts and techniques 

in data mining. The third section reviews the main CBR cycle and principles. The 

fourth section explains relationships between CBR and machine learning. The fol-

lowing sections dive into several major data mining functionalities and how they 

relate to CBR. The ninth section summarizes the findings and proposes future di-

rections. It is followed by the conclusion. 

2 Data Mining Functionalities and Methods 

Data mining is the analysis of observational data sets to find unsuspected relation-

ships and to summarize the data in novel ways that are both understandable and 

useful to the data owner (Hand et al. 2001). Traditionally described as a misno-

mer, knowledge discovery or knowledge discovery in databases is a preferred 

term. Some functionalities are clearly well defined and researched, among which 

(Han et al. 2012): 

• Classification / prediction: classification is a supervised data mining 

method applied to datasets containing an expert labeling in the form of a 

categorical attribute, called a class; when the attribute is numeric, the 

method is called prediction. Examples of classifiers include neural net-

works, support vector machines (SVMs), naïve Bayes, and decision trees. 

• Association Mining: association mining mines for frequent itemsets in a 

dataset, which can be represented as rules such as in market basket analy-

sis. It is an unsupervised method. The most famous algorithm in this cat-

egory is a priori algorithm. 

• Clustering: clustering finds groups of similar objects in a dataset, which 

are also dissimilar from the objects in other clusters. In addition to the 

similarity-based methods like K Means, some methods use density-based 

algorithms or hierarchical algorithms. 

Considerations for evaluating the mining results vary in these different meth-

ods, however a set of quality measurements are traditionally associated with each, 

for example accuracy or error rate for classification, and lift or confidence for as-

sociation mining. 

These core functionalities can be combined and applied to several data types, 

with extensions to the underlying algorithms or completely new methods.in addi-

tion to the classical nominal and numeric data types. Well researched data types 

are graphs, texts, images, time series, networks, streams, etc. We refer to these ex-

tensions as multimedia mining. 

Other types of functionalities, generally combined with the core ones are for 

example feature selection, where the goal is to select a subset of features, sam-

pling, where the goal is to select a subset of input rows, and characterization, 
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where the goal is to provide a summary representation of a set of rows, for exam-

ple those contained in a cluster. 

 

Fig. 1. CRISP-DM data mining process (Han et al. 2012) 

Finally, the CRISP-DM methodology has been described to guide the data 

mining process (see Fig. 1) (Han et al. 2012). This methodology stresses the im-

portance of stages preparing for and following the actual model building stage: da-

ta preparation, dealing with issues such as data consolidation, data cleaning, data 

transformation, and data reduction, which can require up to 85% of all the time 

dedicated to a project. 

3 CBR Cycle and Methods 

Case Based Reasoning is a problem solving methodology that aims at reusing pre-

viously solved and memorized problem situations, called cases. Traditionally, its 

reasoning cycle proceeds through steps (see Fig. 2). This article will refer to the 

major steps as Retrieve, Reuse, Revise, and Retain (Aamodt and Plaza 1994). 

4 CBR and Machine Learning 

CBR systems are generally classified as data mining systems because they can 

perform classification or prediction tasks. From a set of data – called cases in CBR 

– the classification or prediction achieved gives the case base a competency be-
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yond what the data provide. If CBR systems are in par with data mining systems 

in such tasks as classification and prediction, there is, though an important differ-

ence. CBR systems start their reasoning from knowledge units, called cases, while 

data mining systems most often start from raw data. This is why case mining, 

which consists in mining raw data for these knowledge units called cases, is a data 

mining task often used in CBR. CBR systems also belong to instance based learn-

ing systems in the field of machine learning, defined as systems capable of auto-

matically improving their performance over time. Although there is much com-

monality between data mining and machine learning, their definitions and goals 

are different. CBR systems are problem-solving systems following a reasoning 

cycle illustrated in Fig. 1. However as long as they learn new cases in their retain 

step, they are qualified as learning systems, thus belonging to machine learning 

system. 

For this article, we will focus on identifying which data mining functionalities 

and methods are used in CBR, and what is their result in the CBR memory.  

 

 

 

 

 

 

 

Fig 2. The classical CBR reasoning cycle (Aamodt and Plaza 1994) 

First of all, since data mining emerged in the 90’s from scaling up machine 

learning algorithms to large datasets, let us review what machine learning authors 

have been saying about CBR. They consider case-based reasoning systems as ei-

ther analogical reasoning systems (Michalski 1993), or instance based learners 

(Mitchell 1997). Michalski (1993) presents the analogical inference, at the basis of 

case-based retrieval, as a dynamic induction performed during the matching pro-

cess. Mitchell (1997) refers to CBR as a kind of instance based learner. This au-
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thor labels these systems as lazy learners because they defer the decision about 

how to generalize beyond the training data until each new query instance is en-

countered. This allows CBR systems to not commit to a global approximation 

once and for all during the training phase of machine learning, but to generalize 

specifically for each target case, therefore to fit its approximation bias, or induc-

tion bias, to the case at hand. He points here to the drawback of overgeneralization 

that is well known for eager learners, from which instance based learners are ex-

empt (Mitchell 1997).  

These authors focus their analysis on the inferential aspects of learning in 

case-based reasoning. Historically CBR systems have evolved from the early work 

of Schank in the theory of the dynamic memory (Schank 1982), where this author 

proposes to design intelligent systems primarily by modeling their memory. Ever 

since Schank’s precursory work on natural language understanding, one of the 

main goals of case-based reasoning has been to integrate as much as possible 

memory and inferences for the performance of intelligent tasks. Therefore focus-

ing on studying how case-based reasoning systems learn, or mine, their memory 

structures and organization can prove at least as fruitful as studying and classify-

ing them from an inference standpoint.  

From a memory standpoint, learning in CBR consists in the creation and 

maintenance of the structures and organization in memory. It is often referred to as 

case base maintenance (Wilson and Leake 2001). In the general cycle of CBR, 

learning takes place within the reasoning cycle - see (Aamodt and Plaza 1994) for 

this classical cycle. It completely serves the reasoning, and therefore one of its 

characteristics is that it is an incremental type of mining. It is possible to fix it af-

ter a certain point, though; in certain types of applications, but it is not a tradition 

in CBR: learning is an emergent behavior from normal functioning (Kolodner 

1993). When an external problem-solving source is available, CBR systems start 

reasoning from an empty memory, and their reasoning capabilities stem from their 

progressive learning from the cases they process. Aamodt and Plaza (1994) further 

state that case-based reasoning favours learning from experience. The decision to 

stop learning because the system is judged competent enough is not taken from 

definitive criteria. It is the consequence of individual decisions made about each 

case, to keep it or not in memory depending upon its potential contribution to the 

system. Thus often the decisions about each case, each structure in memory, allow 

the system to evolve progressively toward states as different as ongoing learning, 

in novice mode, and its termination, in expert mode. If reasoning and thus learning 

are directed from the memory, learning answers to a process of prediction of the 

conditions of cases recall (or retrieval). As the theory of the dynamic memory 

showed, recall and learning are closely linked (Schank 1982). Learning in case-

based reasoning answers a disposition of the system to anticipate future situations: 

the memory is directed toward the future both to avoid situations having caused a 

problem and to reinforce the performance in success situations. 

More precisely, learning in case-based reasoning, takes the following forms: 

1. Adding a case to the memory: it is at the heart of CBR systems, traditionally 

one of the main phases in the reasoning cycle, and the last one: Retain (Aamodt 
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and Plaza 1994). It is the most primitive learning kind, also called learning by 

consolidation, or rote learning. 

2. Explaining: the ability of a system to find explanations for its successes and 

failures, and by generalization the ability to anticipate. 

3. Choosing the indices: it consists in anticipating Retrieval, the first reasoning 

step. 

4. Learning memory structures: these may be learnt by generalization from cases 

or be provided from the start to hold the indices for example. These learnt 

memory structures can play additional roles, such as facilitating reuse or 

retrieval. 

5. Organizing the memory: the memory comprises a network of cases, given 

memory structures, and learned memory structures, organized in efficient ways. 

Flat and hierarchical memories have been traditionally described. 

6. Refining cases: cases may be updated, refined based upon the CBR result. 

7. Discovering knowledge or metareasoning: the knowledge at the basis of the 

case-based reasoning can be refined, such as modifying the similarity measure 

(weight learning), or situation assessment refinement. For example d’Aquin et 

al. (2007) learn new adaptation rules through knowledge discovery. 

5 Classification / Prediction and CBR 

Since CBR is often used as a classifier, other classifiers are generally used in en-

semble learning to combine the CBR expertise with other classification/prediction 

algorithms. Another type of combination of classifier is to use several CBR sys-

tems as input to another classifier, for example SVM, applied to the task of pre-

dicting business failure (Li and Sun 2009). 

Another notable class of systems is composed of those performing decision 

tree induction to organize their memory. INRECA (Auriol et al. 1994) project 

studied how to integrate CBR and decision tree induction. They propose to pre-

process the case base by an induction tree algorithm, namely a decision tree. Later 

refined into an INRECA tree (see Fig. 2), which is a hybrid between a decision 

tree and a k-d tree, this method allows both similarity based retrieval and decision 

tree retrieval, is incremental, and speeds up the retrieval. This system was used in 

biological domains among others. 

6 Association Mining and CBR 

Association mining, although not looking closely related to CBR, can be resorted 

in several scenarios. Main uses are for case mining and case base maintenance.  

Wong et al. (2001) use fuzzy association rule mining to learn cases from 

a web log, for future reuse through CBR. 
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 Liu et al. (2008) use frequent item sets mining to detect associations be-

tween cases, and thus detect cases candidate for removal from the case base and 

thus its reduction (Retain step). 

7 Clustering and CBR 

Memory structures in CBR are foremost cases. A case is defined as a contextual-

ized piece of knowledge representing an experience that teaches a lesson funda-

mental to achieving the goals of a reasoner (Kolodner 1993). For many systems, 

cases are represented as truthfully as possible to the application domain. Addition-

ally, data mining methods have been applied to cases themselves, features, and 

generalized cases. These techniques can be applied concurrently to the same prob-

lem, or selectively. If the trend is now to use them selectively, probably in the near 

future CBR systems will use these methods more and more concurrently. 

7.1 Case mining 

Case mining refers to the process of mining potentially large data sets for cases 

(Yang and Cheng 2003). Researchers have often noticed that cases simply do not 

exist in electronic format, that databases do not contain well-defined cases, and 

that the cases need to be created before CBR can be applied. Instead of starting 

CBR with an empty case base, when large databases are available, preprocessing 

these to learn cases for future CBR permits to capitalize on the experience 

dormant in these databases. Yang and Cheng (2003) propose to learn cases by 

linking several database tables through clustering and Support Vector Machines 

(SVM). The approach can be applied to learning cases from electronic medical 

records (EMRs). 

7.2 Generalized case mining 

Generalized case mining refers to the process of mining databases for generalized 

and/or abstract cases. Generalized cases are named in varied ways, such as proto-

typical cases, abstract cases, prototypes, stereotypes, templates, classes, ossified 

cases, categories, concepts, and scripts – to name the main ones (Maximini et al. 

2003). Although all these terms refer to slightly different concepts, they represent 

structures that have been abstracted or generalized from real cases either by the 

CBR system, or by an expert. When these prototypical cases are provided by a 

domain expert, this is a knowledge acquisition task. More frequently they are 

learnt from actual cases. In CBR, prototypical cases are often learnt to structure 

the memory. Therefore most of the prototypical cases presented here will also be 

listed in the section on structured memories.  
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In medical domains, many authors mine for prototypes, and simply refer to 

induction for learning these. CHROMA (Armengol and Plaza 1994) uses induc-

tion to learn prototypes corresponding to general cases. Bellazzi et al. organize 

their memory around prototypes (Bellazzi et al. 1998). The prototypes can either 

have been acquired from an expert, or induced from a large case base. Schmidt 

and Gierl (1998) point that prototypes are an essential knowledge structure to fill 

the gap between general knowledge and cases in medical domains. The main pur-

pose of this prototype learning step is to guide the retrieval process and to de-

crease the amount of storage by erasing redundant cases. A generalization step be-

comes necessary to learn the knowledge contained in stored cases.  

Others specifically refer to generalization, so that their prototypes correspond 

to generalized cases. For example Malek proposes to use a neural network to learn 

the prototypes in memory for a classification task, such as diagnosis (Malek 

1995). Portinale and Torasso (1995) in ADAPTER organize their memory through 

E-MOPs (Kolodner 1993) learnt by generalization from cases for diagnostic prob-

lem-solving. Maximini et al. (2003) have studied the different structures induced 

from cases and point out that several different terms exist, such as generalized 

case, prototype, schema, script, and abstract case. The same terms do not always 

correspond to the same type of entity. They define three types of cases. A point 

case is what we refer to as a real or ground case. The values of all its attributes are 

known. A generalized case is an arbitrary subset of the attribute space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Hierarchical memory organization in MNAOMIA: concepts are learnt dur-

ing CBR for diagnosis, treatment, and/or follow-up, and can be reused by research 

task (Bichindaritz 1995) 

There are two forms: the attribute independent generalized case, in 
which some attributes have been generalized (interval of values) or are unknown, 

and the attribute dependent generalized case, which cannot be defined from inde-

pendent subsets of their attributes.  
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Finally, many authors learn concepts through conceptual clustering. 

MNAOMIA (Bichindaritz 1995) learns concepts and trends from cases through 

conceptual clustering (see Fig. 3). Perner learns a hierarchy of classes by hierar-

chical conceptual clustering, where the concepts represent clusters of prototypes 

(Perner 1998). 

Dìaz-Agudo and Gonzàlez-Calero (2003) use formal concept analysis (FCA) 

– a mathematical method from data analysis - as another induction method for ex-

tracting knowledge from case bases, in the form of concepts. The authors point to 

one notable advantage of this method, during adaptation. The FCA structure in-

duces dependencies among the attributes that guide the adaptation process (Dìaz-

Agudo et al. 2003). Napoli (2010) stresses the important role FCA can play for 

classification purposes in CBR, through learning a case hierarchy, indexing, and 

information retrieval. 

 

 
 

 

 
 

 

 

 

 

 

Fig. 4. Tree memory organization in INRECA using k-d trees (Auriol et al. 1994) 

7.3 Mining for Memory Organization 

Efficiency at case retrieval time is conditioned by a judicious memory organiza-

tion. Two main classes of memory are presented here: unstructured – or flat – 

memories, and structured memories. 

 

Flat memories 
Flat memories are memories in which all cases are organized at the same level. 

Retrieval in such memories processes all the cases in memory. Classical nearest 

neighbor (kNN) retrieval is a method of choice for retrieval in flat memories. Flat 

memories can also contain prototypes, but in this case the prototypical cases do 

not serve as indexing structures for the cases. They can simply replace a cluster of 

similar cases that has been deleted from the case base during case base mainte-

nance activity. They can also have been acquired from experts. Flat memories are 
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the memories of predilection of kNN retrieval methods (Aha 1997) and of so-

called memory-based systems.  

 

Structured memories 
Among the different structured organizations, the accumulation of generalizations 

or abstractions facilitates the evaluation of the situation the control of indexation. 

Structured memories, dynamic, present the advantage of being declarative. 

The important learning efforts in declarative learning are materialized in the struc-

tures and the dynamic organization of their memories. In medical imaging, Perner 

learns a hierarchy of classes by hierarchical conceptual clustering, where the con-

cepts are clusters of prototypes (Perner 1998). She notes the advantages of this 

method: a more compact case base, and more robust (error-tolerant). 

MNAOMIA (Bichindaritz 1995) proposes to use incremental concept learn-

ing, which is a form of hierarchical clustering, to organize the memory. This sys-

tem integrates highly data mining with CBR because it reuses the learnt structures 

to answer higher level tasks such as generating hypotheses for clinical research 

(see Fig. 3), as a side effect of CBR for clinical diagnosis and treatment decision 

support. Therefore this system illustrates that by learning memory structures in the 

form of concepts, the classical CBR classification task improves, and at the same 

time the system extracts what it has learnt, thus adding a knowledge discovery di-

mension to the classification tasks performed. 

Another important method, presented in CHROMA (Armengol and Plaza 

1994), is to organize the memory like a hierarchy of objects, by subsomption. Re-

trieval is then a classification in a hierarchy of objects, and functions by substitu-

tion of values in slots. CHROMA uses its prototypes, induced from cases, to or-

ganize its memory. The retrieval step of CBR retrieves relevant prototypes by 

using subsomption in the object oriented language NOOS to find the matching 

prototypes.  

Many systems use personalized memory organizations structured around sev-

eral layers or networks, for example neural networks (Malek 1995).  

Another type of memory organization is the formal concept lattice. Dìaz-

Agudo and Gonzàlez-Calero (2003) organize through formal concept analysis 

(FCA) the case base around Galois lattices. Retrieval step is a classification in a 

concept hierarchy, as specified in the FCA methodology, which provides such al-

gorithms (Napoli 2010). The concepts can be seen as an alternate form of indexing 

structure.  

Yet other authors take advantage of the B-tree structure implementing data-

bases and retrieve cases using database SQL query language over a large case base 

stored in a database (West and McDonald 2003).  

8 Feature Selection and CBR 

Feature mining refers to the process of mining data sets for features. Many CBR 

systems select the features for their cases, and/or generalize them. Wiratunga et al. 
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(2004) notice that transforming textual documents into cases requires dimension 

reduction and/or feature selection, and show that this preprocessing improves the 

classification in terms of CBR accuracy – and efficiency. These authors induce a 

kind of decision tree called boosted decision stumps, comprised of only one level, 

in order to select features, and induce rules to generalize the features. In biomedi-

cal domains, in particular when data vary continuously, the need to abstract fea-

tures from streams of data is particularly prevalent. Other, and notable, examples 

include Montani et al., who reduce their cases time series dimensions through Dis-

crete Fourier Transform (Montani et al. 2004), approach adopted by other authors 

for time series (Nilsson and Funk 2004). Niloofar and Jurisica propose an original 

method for generalizing features. Here the generalization is an abstraction that re-

duces the number of features stored in a case (Niloofar and Jurisica 2004). Ap-

plied to the bioinformatics domain of micro arrays, the system uses both cluster-

ing techniques to group the cases into clusters containing similar cases, and 

feature selection techniques. 

 
Table 1. Data mining functionalities versus CBR steps map – methods ital-

icized represent future directions 
 

 Classification / 

prediction 

Association 

mining 

Clustering Feature 

selection 

Data preparation 

/ Metareasoning 

Ensemble 

learning 

Case 

mining 

Case mining  

Retrieve Opportunistic similarity knowledge mining 

Reuse Opportunistic reuse knowledge mining 

Revise Opportunistic revise knowledge mining 

Retain Memory 

organization 

Case base 

reduction 

Generalized 

case mining 

Memory 

organization 

Indexing  

Weight 

learning 

9 Discussion and Future Directions 

In addition to the main functionalities listed above, multimedia mining extends the 

algorithms to the form taken by cases and the type of their features for the same 

kinds of applications previously listed.  

In summary, if we map the different data mining functionalities and the 

CBR steps / tasks, we notice on Table 1 that the steps benefitting the most from 

data mining are Retain, Data preparation and Metareasoning. This is not surprising 

because these steps are the most involved in declarative knowledge learning or 

updating. However the processing intensive steps such as Retrieve, Reuse and Re-
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vise do not seem to resort to data mining beside the dynamic induction mentioned 

in Section 4.  

 Interesting areas to explore could be feature selection functionality for 

case mining, data preparation, or metareasoning. Retrieve, Reuse, and Revise 

could also explore the use of data mining. For retrieval, in addition to weight 

learning already mentioned, learning similarity measures (Stahl 2005), or improv-

ing on an existing one, would be valuable. For reuse or revise, learning adaptation 

rules or revision rules or models would be highly pertinent – and some work has 

started in these areas (Badra et al. 2009). These synergies could take place during 

the Retain step, but also in an opportunistic fashion during the processing steps 

(see Table 1). 

We can also foresee such synergies with Big Data for the processing of 

large datasets in distributed main memory that can make efficient use of data min-

ing during processing on a larger scale. It is therefore very important for CBR re-

searchers and professionals to gain expertise in data mining advances and their 

applicability to CBR. 

 CBR research focuses mostly on the model building stage of CRISP-DM. 

Other aspects of the CRISP-DM methodology would also be interesting for CBR 

synergies, for example aspects of data understanding, data preparation, testing, 

evaluation, and deployment in relationship with CBR to make this methodology 

more robust to fielded applications. 

10 Conclusion 

CBR systems make efficient use of most data mining tasks defined for descriptive 

modeling. We can list among the main ones encountered in biomedical domains, 

cluster analysis, rule induction, hierarchical cluster analysis, and decision tree in-

duction. The motivations for performing an incremental type of data mining dur-

ing CBR are several folds, and their efficiency has been measured to validate the 

approach. The main motivations are the following: 

• Increase efficiency of retrieval mostly, but also of reuse, revise, and retain 

steps. 

• Increase robustness, tolerance to noise. 

• Increase reasoning accuracy and effectiveness. 

• Improve storage needs. 

• Follow a cognitive model. 

• Add functionality, such as a synthetic task like generating new research 

hypotheses as a side effect of normal CBR functioning. 

• Perform metareasoning, such as knowledge discovery to learn new adaptation 

rules. 

The memory organization maps directly into the retrieval method used. For 

example, generalized cases and the like are used both as indexing structures, and 

organizational structures. We can see here a direct mapping with the theory of the 
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dynamic memory, which constantly influences the CBR approach. The general 

idea is that the learned memory structures and organizations condition what infer-

ences will be performed, and how. This is a major difference with database ap-

proaches, which concentrate only on retrieval, and also with data mining ap-

proaches, which concentrate only on the structures learned, and not on how they 

will be used. Opportunistic use of data mining during the retrieval, reuse, and re-

vise steps would bring a more robust dimension to CBR by learning when a need 

arises, instead of, or in addition to, systematically at Retain. The ideal CBR 

memory is one which at the same time speeds up the retrieval step, and improves 

effectiveness, efficiency, and robustness of the task performed by the reasoner, 

and particularly the reuse performed, influencing positively both the retrieval, the 

reuse and the other steps. Researchers do not want to settle for a faster retrieval at 

the expense of less accuracy due to an overgeneralization. And they succeed at it.  

Future work involves revisiting these data mining techniques in the frame-

work of the knowledge containers identified by Richter (2003) and constantly 

tracking novel methods used as they appear. The variety of approaches as well as 

the specific and complex purpose lead to thinking that there is space for future 

models and theories of CBR memories, in particular embracing metareasoning and 

opportunistic approaches more systematically, and where data mining will play a 

larger role. 
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Abstract, The rapid development of the medical field makes it impossible even for 
experts in the field to keep up with new treatments and experience. Already in 2010 
all medical knowledge doubled in 3,5 years, to keep up to date with all development 
even in a narrow field is today far beyond human capacity. The need for decision 
support is increasingly important to ensure optimal treatment of patients, especially 
if patients are not “standard patients” matching a gold standard treatment. By 
ensuring confidentiality and collecting structured cases on a large scale will enable 
clinical decision support far beyond what is possible today and will be a major leap 
in healthcare. 

 
Already in 2010 all medical knowledge doubled every 3.5 years and is expected to double 
every 7 months in 2020 [1]. 20 years ago physicians met and discussed medical cases over 
a cup of coffee, an efficient way of sharing experience and disseminating knowledge. 
Times are changing; physicians say they don’t have time for this any more. In a modern 
and efficient healthcare organisation there is no longer room for experience sharing and 
patients are treated according to guidelines. Many physicians I have discussed with admit 
that the consequence is that as much as 30% of patients don’t receive optimal treatment. 
The amount of medical knowledge is already huge, so it often takes years for new results 
to spread and even specialists are not able to keep up to date with all developments in 
their own area. Also some physicians mentioned the use of “golden standard” having the 
consequence that not all patients get an optimal treatment on an individual level [2]. To 
illustrate this situation Fig. 1 shows what some physicians see as a problem.  

 
The need for more individualized treatment is recognized today, but to make this come 

true is not easy for a number of reasons, one suggested reason given by a physician is the 
lack of support in hospitals for individualized treatments “No one questions your actions 
if you follow a gold standard and something goes wrong, but if you divert from it and 
something goes wrong, you are in a difficult situation”. Sharing experience on patients 

Copyright © 2015 for this paper by its authors. Copying permitted for private and 
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.
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that do not fit the standard treatment is essential in order to reach a higher degree of 
individualization. And it is not always possible to wait for evidence. A valuable ability in 
humans is that we are able to learn from anecdotal cases and improve performance.  

 

 
Fig 1. If treatment Y is better than treatment X, then it may be tempting to make treatment Y to a 

recommended gold standard. But what about the 26% which don’t get the best treatment? If we can 
identify which individuals respond best on X and which respond best to Y, we are able to give every 

patient their optimal treatment. 
 

Key problems to improve with high relevance in the medical area: 
• Limited time to share experience among clinicians/physicians. 
• Limited time to acquire relevant knowledge/experience related to patients 
• Keeping up with all new medical knowledge 
• Dissemination of new knowledge and experience at the point of need 
• How to individualise treatment of patients so all get an optimal treatment 
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1. What can Case-based reasoning offer? 

Imagine you have a patient in front of you, the CBR system immediately says “your 
patient’s symptoms are very similar to 47 other patients in Europe, where there are 4 
different treatments, patients with treatment C recovered within 2 weeks, twice as fast as 
with treatment A and B, there is no difference in treatment cost. Based on my experience 
(all my cases) a modification of treatment C is recommended (due to your patient having 
diabetes). In France there is an alternative treatment D (8 patients) with recovery time of 
less than 10 days, the cost for this treatment is 5 times higher”. The system offers  

 
• Advice at the point of care tailored for the patient and physician 
• Dissemination of experience from new treatments/procedures 
• Second opinion for an experienced clinician, transfer experience to a less 

experienced clinicians 
• It can explain and justify all its conclusions and findings 

 
We can provide all this with CBR and I cannot see how this can be solved without 

case-based clinical decision support systems. All the different foundational methods and 
techniques are already available in research, to mention some [3,4,5], but to achieve a 
transformation of the healthcare system we need a large scale approach since it requires a 
change in how patient cases are recorded and stored in order to preserve privacy and 
enable experience reuse. 

To achieve this we need more elaborate case structures enabling hybrid case-based 
reasoning including experience sharing, knowledge discovery, data mining. Many 
approaches also address distributed knowledge sources [8] and under uncertainty [9] and 
case-based reasoning theory is today increasingly diverse and advanced able to address 
challenges preciously difficult to solve [10] and there is progress in integrating electronic 
patient record system with CBR [11]. One approach developed for medical application 
used in the Pain-Out project [5,6] is a two-layered case structure, see Fig. 2. 
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Fig 2. Extended case structure used in clinical application [3] 
 

When explaining the concept of case-based reasoning for clinicians, the response is 
often “such a tool would dramatically change and improve my work and healthcare”: 

• Patient records become sources of experience and knowledge and provide 
supplementary information not currently accessible for diagnosis and treatment by 
clinicians at the point of care 

• Clinicians will be able to easily and instantly share experience around specific case 
issues 

• Dissemination of new clinical experience will be efficient and at the point of need.  
• Patients will receive personalised and more informed diagnosis and care.   
 

2. Example case 
One project where we explored some of the issues is in the PAIN-OUT decision 

support tool. With over 40,000 cases as our “experience base“ we developed a tool, giving 
clinicians relevant information specifically compiled for the patient at hand (comorbidity, 
age, weight and other factors taken into account). Similar patients are identified amongst 
the cases and the treatment and outcome is analyzed and presented. 
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Fig 3. Example of a clinical decision support tool that provides physician with personalised 
information tailored for the patient at hand.  

 

 
Fig 4. Example of how medical cases can be used to support clinicians.  
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3. Conclusions 
We have summarized some important issues where case-based decision support can 

help.  
 

Clinical case based reasoning enables: 
• second opinion for an experienced clinician 
• dissemination of experience from new treatments/procedures 
• transfer experience to a less experienced clinician 
• link to relevant research and clinical studies 
• other clinicians experience (annotated cases) 

 
The requirements are that cases are collected where symptoms, diagnosis and outcome of 
treatment is recorded. In many medical registries this is unfortunately not available, 
especially the outcome is rarely recorded and it is often difficult or impossible to 
reconstruct the cases.  

Reference 
 
[1] Peter Densen, MD. Challenges and Opportunities Facing Medical Education. Trans Am Clin Climatol 

Assoc. 2011; 122: 48–58.PMCID: PMC3116346 
[2] Timmermans, Stefan, and Marc Berg. The gold standard: The challenge of evidence-based medicine and 

standardization in health care. Temple University Press, 2010. 
[3] Begum, Shahina, et al. "Case-based reasoning systems in the health sciences: a survey of recent trends and 

developments." Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 
41.4 (2011): 421-434. 

[4] C Marling, S Montani, I Bichindaritz, P Funk, Synergistic case-based reasoning in medical domains 
Expert systems with applications, 41. 2 (2014): 249-259. 

[5] Ahmed M.U., Funk P., A Computer Aided System for Post-operative Pain Treatment Combining 
Knowledge Discovery and Case-Based Reasoning, In Case-Based Reasoning Research and Development, 
pp. 3-16. Springer Berlin Heidelberg, 2012. 

[6] Rothaug et. al, Patients' perception of postoperative pain management: Validation of the International Pain 
Outcomes (IPO) Questionnaire, The Journal of Pain 14.11 (2013): 1361-1370, Churchill Livingstone. 

[7] Ahmed, Mobyen Uddin, and Peter Funk. "Mining rare cases in post-operative pain by means of outlier 
detection." Signal Processing and Information Technology (ISSPIT), 2011 IEEE International Symposium 
on. IEEE, 2011. 

[8] Reichle, Meike, Kerstin Bach, and Klaus-Dieter Althoff. "Knowledge engineering within the application-
independent architecture SEASALT." International Journal of Knowledge Engineering and Data Mining 
1.3 (2010): 202-215. 

[9] Bruland, Tore, Agnar Aamodt, and Helge Langseth. "Architectures integrating case-based reasoning and 
bayesian networks for clinical decision support." Intelligent Information Processing V. Springer Berlin 
Heidelberg, 2010. 82-91. 

[10] Richter, Michael M., and Rosina O. Weber. "Case-Based Reasoning." A Textbook (2013). ISBN 978-3-
642-40166-4, Springer Verlag. 

[11] van den Branden, M., Wiratunga, N., Burton, D., & Craw, S. (2011). Integrating case-based reasoning 
with an electronic patient record system. Artificial Intelligence in Medicine, 51(2), 117-123. 

204


