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Abstract. Real-Time Strategy (RTS) games are popular testbeds for
AI researchers. In this paper we compare different machine learning al-
gorithms to predict the outcome of small battles of marines in StarCraft,
a popular RTS game. The predictions are made from the perspective of
an external observer of the game and they are based only on the actions
that the different units perform in the battlefield. Our empirical results
show that case-based approaches based on k-Nearest Neighbor classifica-
tion outperform other standard classification algorithms like Linear and
Quadratic Discriminant Analysis or Support Vector Machines.
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1 Introduction

Real-Time Strategy (RTS) games are popular testbeds for AI researchers [4]
because they provide complex and controlled environments in which to carry
out different experiments. In this paper we assume the role of an external ob-
server of the game that tries to predict the outcome when the armies of two
different players engage in combat. As a spectator of the game, we can only
base the predictions on the actions of the different units in the battlefield. From
this perspective, we can consider each army as a group of agents working in a
coordinated manner to defeat the other army. We know that the units in the
game are not really agents because they are not autonomous (in fact they are
controlled by a human player or by the internal AI of the game), but from the
perspective of an external observer we only see several units performing actions
in a simulation, and we do not know whether those actions are consequence of
individual decisions or some superior intelligence. Therefore, our approach to
prediction in RTS games could be applied as well to multi-agent simulations.

The ability to predict the outcome of battles is interesting because it can be
used to dynamically modify the strategy of the player. For example, the player
could decide to change the composition of the army, to bring more troops into
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Fig. 1: Screenshot of our custom map: Battle of Marines

the battlefield or deploy them differently, or even to flee if the prospects are
not good. In general, an agent able to make predictions (running an internal
simulation based on what he knows) might be able to adapt his behavior more
successfully than other agent without this ability.

In this work, we compare classical classification algorithms like Linear and
Quadratic Discriminant Analysis, Support Vector Machines, and two instance-
based classifiers based on the retrieval of the k-Nearest Neighbors (kNN). kNN
classifiers can be seen as simple Case-based Reasoning (CBR) systems that only
implement the retrieval phase of the CBR cycle. In this paper we study the
accuracy of the prediction during the course of the battle, the number of games
that each algorithm needs to learn, and the stability of the prediction over time.

The rest of the paper is organized as follows. Sections 2 and 3 describe the
scenario used in the experiments, the process to extract the data for the analysis
and the features chosen to represent the game state. Sections 4 and 5 explain the
different classification algorithms and the results obtained. The paper concludes
with the related work, and some conclusions and directions for future research.

2 Battles of Marines in StarCraft

StarCraft1 is a popular RTS game in which players have to harvest resources,
develop technology and build armies combining different types of units to defeat

1 http://us.blizzard.com/en-us/games/sc/
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game frame units1 life1 area1 units2 life2 area2 distance winner

1 0 6 40 2772 6 40 2520 1309.903 1
1 3 6 40 2772 6 40 2520 1309.903 1
1 6 6 40 2736 6 40 2925 1302.857 1
1 9 6 40 2964 6 40 2923 1282.317 1
1 12 6 40 3876 6 40 2905 1266.277 1
1 15 6 40 4332 6 40 3045 1246.241 1

Table 1: Examples of game states extracted from a Starcraft game trace.

the other players. The combination of different types of units and abilities, and
the dynamic nature of the game force players to develop strategies at different
levels. At the macro level, players have to decide the amount of resources in-
vested in map exploration, harvesting, technology development, troops, offensive
and defensive forces, among others. At the micro level players have to combine
different types of units, locate them in the map and use their abilities. In this
paper we focus on small battles, that is, at the micro level.

StarCraft also provides a map editor to create custom games. Using this tool,
we have created a simple combat scenario (Figure 1) in which each player controls
a small army of 6 terran marines (marines are basic ground combat units with
ranged attack). The game always begins with the same initial configuration,
each army located on opposite sides of the map, and the game ends when all the
units of one player are destroyed. In this type of scenario it is very important to
strategically locate the units on the map to take advantage of the range attack
and concentrate the fire on a few units to destroy them as soon as possible.

3 Data Collection and Feature Selection

In order to obtain the data to train the different classifiers, we played 200 games
collecting traces that describe the evolution of the games. We configured the
map so the internal game AI controls both players so (1) we can automatically
play as many games as required, and (2) we know that all the games are well
balanced (since the StarCraft AI is playing against itself). Finally, there is a
third player that only observes the game (it does not intervene) and extracts the
game traces to a file so they can be analyzed later2.

The data set contains traces of 200 games in which player 1 won 119 times
and player 2 the remaining 81. They are very fast games with an average duration
of 19.12 seconds. In each trace we store the game state 6 times per second, so
each game is described with approximately 114 games states or samples.

Each game state is stored using a vector of features (Table 1) that represents
the combat power of each army and the strategic deployment of the troops in the
map. The combat power is represented using the number of units alive in each

2 We use the BWAPI framework to extract information during the game
(https://github.com/bwapi/bwapi).
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Fig. 2: Average number of deaths during the game.

army and their average life. To represent the strategic distribution of troops in
the map we compute the area of the minimum axis aligned rectangle containing
the units of each player and the distance between the centers of both rectangles.
The rectangle area is a measure of the dispersion of the units, and the distance
between the centers indicates how close the two armies are. Each game state is
labeled later with the winner of that particular game. The table also shows the
game and the current frame for clarity (1 second is 18 game frames although we
only sample 6 of them), but we do not use those values in the prediction.

The features to describe the strategic distribution of the troops in the map
are especially important during the first seconds of the game. Figure 2 shows
the average number of dead units during the 200 games. As we can see, during
the first half of the game the armies are approaching each other and the fight
does not start until the second half. Thus, during the first seconds of the game
the predictions will depend only on the relative location of the units.

4 Classification algorithms

We will compare the following classification algorithms in the experiments:

– Linear Discriminant Analysis (LDA) [8] is classical classification algorithm
that uses a linear combination of features to separate the classes. It assumes
that the observations within each class are drawn from a Gaussian distribu-
tion with a class specific mean vector and a covariance matrix common to
all the classes.

– Quadratic Discriminant Analysis (QDA) [9] is quite similar to LDA but it
does not assume that the covariance matrix of each of the classes is identical,
resulting in a more flexible classifier.
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Classifier Accuracy Parameters

Base 0.5839
LDA 0.7297
QDA 0.7334
SVM 0.7627 kernel = radial, C = 1, sigma = 0.3089201
KNN 0.8430 k = 5

KKNN 0.9570 kernel = optimal, kmax = 9, distance = 2

Table 2: Classification algorithms, configuration parameters and global accuracy.

– Support Vector Machines (SVM) [7] have grown in popularity since they were
developed in the 1990s and they are often considered one of the best out-
of-the-box classifiers. SVM can efficiently perform non-linear classification
using different kernels that implicitly map their inputs into high-dimensional
feature spaces. In our experiments we tested 3 different kernels (lineal, poly-
nomial and radial basis) obtaining the best results with the radial basis.

– k-Nearest Neighbour (kNN) [2] is a type of instance-based learning, or lazy
learning, where the function to learn is only approximated locally and all
computation is deferred until classification. The kNN algorithm is among the
simplest of all machine learning algorithms and yet it has shown good results
in several different problems. The classification of a sample is performed
by looking for the k nearest (in Euclidean distance) training samples and
deciding by majority vote.

– Weighted K-Nearest Neighbor (kkNN) [10] is a generalization of kNN that
retrieves the nearest training samples according to Minkowski distance and
then classifies the new sample based on the maximum of summed kernel
densities. Different kernels can be used to weight the neighbors according to
their distances (for example, the rectangular kernel corresponds to standard
un-weighted kNN). We obtained the best results using the optimal kernel
[14] that uses the asymptotically optimal non-negative weights under some
assumptions about the underlying distributions of each class.

The three first algorithms use the training data (labeled game states in our
experiments) to infer a generalized model, and then they use that model to clas-
sify the test data (new unseen game states). The last two algorithms, however,
use the training data as cases and the classification is made based on the most
similar stored cases. All the experiments have been run using the R statisti-
cal software system [11] and the algorithms implemented in the packages caret,
MASS, e1071, class and kknn.

5 Analyzing the results

Table 2 shows the configuration parameters used in each classifier and its ac-
curacy computed as the ratio of samples (game states) correctly classified. The
optimal parameters for each classifier were selected using repeated 10-fold cross
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Fig. 3: Accuracy of the classifiers during the game.

validation over a wide set of different configurations. The accuracy value has
been calculated as the average of 32 executions using 80% of the samples as the
training set and the remaining 20% as the test set.

The base classifier predicts the winner based only on the proportion of sam-
ples belonging to each class (58.39% of the samples correspond to games won
by player 1) and it is useful only as a baseline to compare the other classifiers.
LDA, QDA and SVM obtain accuracy values ranging from 72% to 76%. The two
instance-based algorithms, on the other hand, obtain higher precision values. It
is especially impressive the result of kkNN that is able to predict the winner
95.70% of the times. These results seem to indicate that, in this particular sce-
nario, it is quite difficult to obtain a generalized model, and local based methods
perform much better.

The global accuracy value may not be informative enough because it does not
discriminate the time of the game when the prediction is made. It is reasonable
to expect the accuracy of the predictions to increase as the game evolves as it
is shown in Figure 3. The x-axis represents the percentage of elapsed time (so
we can uniformly represent games with different duration) and the y-axis the
average accuracy of each classifier for game states from that time interval.

Selecting a winner during the second half of the game is relatively easy since
we can see how the battle is progressing, but during the first half of the game
the prediction problem is much more difficult and interesting since we only see
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Fig. 4: Accuracy of the classifiers vs. the number of training games.

the formation of the armies (pre-battle vs. during battle prediction). LDA, QDA
and SVM do not reach 90% of accuracy until the last quarter of the game. kNN
is able to reach the same accuracy at 66% of the game. The results of kkNN
are spectacular again, classifying correctly 90% of the game states from the first
seconds. kkNN is the only algorithm able to effectively find useful patters in the
training data before the armies begin to fight. Our intuition is that the training
data is biased somehow, probably because the StarCraft AI is playing against
itself and it does not use so many different attack strategies. In any case, kkNN
seems to be the only algorithm to effectively predict the outcome of the battle
from the first moves of each army.

Another important aspect when choosing a classifier is the volume of training
data they need to perform well. Figure 4 shows the accuracy of each classifier
as we increase the number of games used during the training phase. In the first
20 games all the algorithms perform similarly but then only kNN and kkNN
keep improving fast. It makes sense for instance-based algorithms to require a
large number of samples to achieve their highest degree of accuracy in complex
domains, while algorithms that infer general models stabilize earlier but their
prediction is more biased.

Finally, Figure 5 shows the stability of the predictions. We divided the game
in 20 intervals of 5% of time. The y-axis represents the number of games for
which the classifier made a prediction in that time interval that remained stable
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Fig. 5: Number of games for which each classifier becomes stable at a given time.

for the rest of the game. For example, the y value for x “ 0 represents the
number of games in which the prediction became stable during the first time
interval (0-4.99% of the game). Most of the classifiers need to wait until the
last quarter of the game to be stable in 80% of the games, except kkNN that
is very stable from the beginning. There are a few games, however, in which all
the classifiers are wrong until the end of the game because the army that was
winning made bad decisions during the last seconds.

In conclusion, instance-based classifiers seems to perform better in our sce-
nario, and kkNN in particular is the only algorithm that is able to effectively
find useful patters in the training data before the armies begin to fight. It is
also the most stable and it only performs worst than the other algorithms where
there is a very small number of training games available.

6 Related work

RTS games have captured the attention of AI researchers as testbeds because
they represent complex adversarial systems that can be divided into many inter-
esting subproblems [4]. Proof of this are the different international competitions
in AIIDE and CIG conferences. We recommend [12] for a complete overview of
the existing work on this domain, the specific AI challenges and the solutions
that have been explored so far.
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There are several papers regarding the combat aspect of RTS games. [6]
describes a fast Alpha-Beta search method that can defeat commonly used AI
scripts in small combat scenarios. It also presents evidence that commonly used
combat scripts are highly exploitable. A later paper [5] proposes new strategies
to deal with large StarCraft combat scenarios.

Several different approaches have been used to model opponents in RTS
games in order to predict the strategy of the opponents and then be able to
respond accordingly: decision trees, kNN, logistic regression [17], case-based rea-
soning [1, 3], bayesian models [16] and evolutionary learning [13] among others.

A paper very related to our work is [15], where authors present a Bayesian
model that can be used to predict the outcome of isolated battles, as well as to
predict what units are needed to defeat a given army. Our approach is different
in the sense that we try to predict the outcome as the game progresses and our
battles begin with 2 balanced armies (same number and type of units). We use
tactical information regarding the location of the troops and we use StarCraft
to run the experiments and not a battle simulator.

7 Conclusions and Future work

In this paper we compare different machine learning algorithms in order to pre-
dict the outcome when two small marine armies engage in combat in the Star-
Craft game. The predictions are made from the perspective of an external game
observer so they are based only on the actions of the individual units. The pro-
posed approach is not limited to RTS games and can be used in other domains
like multi-agent simulations, since it does not depend on whether the actions are
decided by each unit autonomously or by a global manager. Our results indicate
that, in this scenario, instance-based classifiers such as kNN and kkNN behave
much better than other classifiers that try to infer a general domain model in
terms of accuracy, size of the training set and stability.

There are several possible ways to extend our work. We have only considered
a small battle scenario with a limited number of units. As the number and
diversity of units increases, the number of possible combat strategies also grows
creating more challenging problems. Our map is also quite simple and flat, while
most of the StarCraft maps have obstacles, narrow corridors, wide open areas
and different heights providing locations with different tactical value. The high
accuracy values obtained by kkNN from the first seconds of the battle make us
suspicious about the diversity of the strategies in the recorded games. We plan
to run new experiments using human players to verify our results. Finally, our
predictions are based on static pictures of the current game state. It is reasonable
to think that we could improve the accuracy if we consider the evolution of the
game and not just the current state to predict the outcome of the battle.
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