
The Effects of Education on Students’ Perception of
Modeling in Software Engineering

 Omar Badreddin

Northern Arizona University
Flagstaff, U.S.A

Omar.Badreddin@nau.edu

Arnon Sturm
Ben-Gurion University of the Negev

Beer Sheva, Israel
sturm@bgu.ac.il

Abdelwahab Hamou-Lhadj
Concordia University
Montreal QC, Canada

abdelw@ece.concordia.ca

Timothy Lethbridge
University of Ottawa
Ottawa ON, Canada
tcl@eecs.uottawa.ca

Waylon Dixon
Northern Arizona University

Flagstaff, U.S.A
waylon.dixon@nau.edu

Ryan Simmons
Northern Arizona University

Flagstaff, U.S.A
rsimmons07@gmail.com

Abstract— Models in software engineering bring significant
potential in improvements of productivity of engineers, and
improved quality of the artifacts they produce. Despite this
significant potential, modeling adoption in practice remains
rather low. Computer Science and software engineering
curriculums may be one factor that causes this low adoption.

In this study, we investigate the effects of education on
students’ perception of modeling. We conducted a survey in three
separate institutions, in Canada, Israel, and the U.S. The survey
covers various aspects of modeling and addresses students
ranging from a first year in undergraduate studies until final
years in graduate studies.

The survey’s findings suggest that the perception of
undergraduate students towards modeling declines as they
progress in their studies. While graduate students tend to be
more favorable of modeling, their perception also declines over
the years. The results also suggest that students prefer more
modeling content to be integrated earlier in the curriculum.

Index Terms—Survey of Perceptions, Pedagogy, Modeling in
Software Engineering, UML, Education.

I. INTRODUCTION
Model Driven Engineering promotes the use of models,

rather than code, for system development. Models can be easier
to understand [1][2], improve communications amongst
stakeholders [3], and help generate executable artifacts [4]. In
addition, platform independent models can improve system
portability, and can facilitate migrating systems from legacy
platforms [15].

UML has emerged as the standard modeling language in
software engineering. In an empirical assessment of MDE in
industry, Hutchison et al. [10] mentioned that UML was used
by 85 percent of the respondents. Petre [16] mentioned many
studies that have indicated the UML is the de facto standard
modeling language or the “lingua franca” one. The standard is
managed by OMG, and supports many aspects of the life cycle
of software development, from requirements, specification, to
development and deployment. However, the adoption of
modeling in software engineering practice remains dismal.
Studies point to significantly low adoption of modeling in
practice [2] and that open source projects remain code-centric

by and large [5]. Petre [16] also provided evidence that the
actual adoption of UML is quite low.

The reasons behind such low adoption may be attributed to
many factors. These include complexity of modeling tools, the
lack of compatibility within different tools, the lack of
integration of modeling tools within existing environments, and
the lack of education about the value of modeling tools and
techniques [6].

Our goal in this study is to investigate the effect of
education in software engineering and computer science on
students’ perception of modeling. In particular, we want to
understand what effect, if any, education has on how students
perceive the value of models.

We designed and distributed a survey covering many
aspects of modeling for students throughout the full academic
spectrum, from undergraduate to post graduate students. The
survey is conducted in three separate universities to allow for
different cultural and perspectives.

 This paper is organized as follows. In Section II, we review
the related work. In Section III, we introduce the study design.
We then briefly introduce a background on the modeling-
related curriculum at the three participating institutions. The
results of the survey are presented in section V and further
discussed and analyzed the results in Section VI. Finally, In
Section VII we conclude and as set plans for future research
directions.

II. RELATED WORK
The perception of UML by professional software engineers

has been investigated, with mixed results. Ariadi and Chaudron
have surveyed 80 professional software engineers about their
perception of the value of UML in terms of productivity and
quality [7]. Despite the low adoption of UML, its value is
perceived very positively in design, analysis and
implementation. Other such surveys have reported negative
perceptions of UML due to its complexity, incompleteness, and
finds that UML is perceived to be difficult to learn [13].

UML as the standard modeling language is increasingly
becoming integrated into academic curriculums for
undergraduate and graduate students. There has been a number
of studies that reported on experiences on teaching UML [12],

39

as well as studies in innovative tools for UML education [11].
In addition, a number of studies on the effectiveness of a
specific teaching technique for software engineering students
have been reported, such as case study and problem based
approaches [8].

There has been a number of studies on the comprehension
of specific modeling notation, such as the work of Glezer et al.
[9] on the comprehension of UML Interaction diagrams.
However, there has been very little known about students’
perception of modeling, modeling tools and the curriculum in
terms of modeling coverage and depth.

III. STUDY DESIGN
A. Goal

The goal of this study is to uncover the perceived value and
usefulness of models by undergraduate and graduate students
in Computer Science and Software Engineering as they
progress in their studies. The focus in this study is not on the
specific modeling language (e.g., UML or BPMN) but rather
on the applicability and usability of models in general.

The research questions we were interested in are the
following:
• Do students perceive models useful? And in what context?

What are the reasons for that?
• Do students think or wish to have a more substantial

modeling education?
• Does students’ perception over modeling evolve over their

studies?

B. Intended Subjects
The intended subjects of this study are undergraduate and

graduate students in system development related fields such as
software engineering, computer science, and information
systems engineering.

C. Administering the Survey
The survey was filled by students either in classrooms, labs,

or online. Participation was both anonymous and voluntary.
The survey was conducted in three institutions, Concordia
University in Canada, Ben-Gurion University of the Negev in
Israel, and in the Northern Arizona University in the U.S.

D. The Survey
The survey consisted of two parts: demographic data and a

reflection on modeling.
The demographic data part included questions regarding the

university, the study program, the academic year, age, work
experience (with ranges: 0-3, 4-7, 8-12, 13+), and the average
grade (with ranges: 65-75, 76-85, 86-90, 91+).

The reflection part included the following questions:
1. Applicability of Models (APP)

a. Models are very useful
b. Models are useful for documentation
c. Models are useful for communication
d. Models are useful for representing requirements
e. Models are useful for specification

f. Models are useful for implementation and/or code
generation

g. Models are useful for testing
h. Models are useful for maintenance

2. Modeling Characteristics (CHR)
a. Models are normally used just as drawings
b. Code is just a type of model
c. Models are precise (i.e., unambiguous)
d. Models can be easily checked to find opportunities

for improvement
e. Models are more comprehensible than code
f. In general, models are easy to understand
g. Models facilitate abstractions and comprehension
h. Textual models are easier to understand than

graphical models
i. Textual models are easier to construct than graphical

models
j. Models are implementation independent
k. Models help provide flexibility during the

development process
l. Modeling is counterproductive since the models need

to be changed all the time
m. Models are usually abandoned after the code is

written
3. Implementation (IMP)

a. Modeling tools are not mature enough
b. Modeling tools are too complex and are difficult to

learn
c. It is not easy for developers to obtain modeling tools

that meet their needs
4. Modeling Education (EDU)

a. Modeling should be taught before programming
b. Modeling and programming should be taught at the

same time
c. Modeling is not being taught sufficiently
d. Modeling should be integrated in most software

engineering and computer science courses

These questions had Likert scale: Strongly Agree, Agree,
Neutral, Disagree, Strongly Disagree, and NA;
representing a scale from 5 to 1. The full list of questions
as well as the raw data is included in the supplementary
material.

IV. BACKGROUND ON THE INSTITUTIONS AND THEIR
MODELING COURSES

In the following we elaborate on the education background
of the participants by introducing the curriculum in each of the
institutes.

A. Concordia University
Concordia University (CU) offers two related programs that

are both managed by Department of Computer Science and
Software Engineering: Computer Science and Software
Engineering. The Computer Science program focuses primarily
on the study and design of computer systems, such as design
algorithms, languages, hardware architecture, systems
software, and applications software and tools. Whereas, the

40

Software Engineering program, while built on the
fundamentals of computer science, is focused more on the
principles and practices of engineering to develop creative
applications such as, computer games, web services,
information security, and avionics.

Tables 1 and 2 present the courses in which modeling
education takes place along with their modeling content, in
both programs. Although two programs are administratively
separate, in this survey we unified the results of the two
programs since the modeling content is largely similar.

Table 1. Computer Science @ Concordia

Sem Course Credit
(/90) Modeling Content

2 Fundamentals of
Programming 3

Includes basics of object-
oriented programming,
essentially UML aspects.

3 System Hardware 3 Abstraction and modeling of
system architecture.

4 Object-Oriented
Programming 1 & 2 7 Essentially, a modeling course

related to all UML aspects.

5 Introduction to
Database Applications 4 Modeling DB using ERD

6 Computer Architecture 3

Using modeling construct to
teach CA content such as
content/data flow, shared
memory models, etc.

6-8 Databases 4 Modeling DB using ERD,
OOD, and ODL.

6-8 Introduction to
Software Engineering 4

Using modeling construct to
teach other SE content such as
design patterns and refactoring.

6-8 Database Design 4 Essentially, a modeling course
related to all UML aspects.

7,8 Computer Science
Project 1 & 2 6 Using models to implement and

manage a whole project.

Table 2. Software Engineering @ Concordia

Sem Course Credit
(/120) Modeling Content

6-8 Software Process 3
Basic principles of SE with
activities in software notations
and documentations.

6-8 Software Architecture
and Design 1 & 2 6 Essentially, a modeling course

related to all UML aspects.

6-8 User Interface
Design 3

Using modeling construct to
teach other UID content such as
usability engineering, user
models, and notations.

6-8 Control Systems and
Applications 3

Using modeling construct to
teach CSA content such as
block diagrams.

7 Software Engineering
Team Design Project 3.5 Using models to implement and

manage a software project.

8
Capstone Software
Engineering Design
Project

4 Using models to implement and
manage a whole project.

B. Ben-Gurion University of the Negev
In Ben-Gurion University of the Negev (BGU) there are

two system engineering programs which are related to the goal
of the survey. The first is the Information System Engineering
program in which the focus on data analysis, yet, graduates of
that program are expected to perform development activities as
well. The program is managed by the department of the
Information System Engineering. Table 3 presents the courses

that cover software modeling. Other courses refer to
information systems management such as production
management, organizational culture, information retrieval and
data mining, operational research etc. The second program is
the Software Engineering, which is managed by the two
departments of Information System Engineering and Computer
Science. Graduates of that program serve mainly in
development positions. Table 4 presents the courses in which
modelling education takes place along with their modeling
content. Other courses include computer science foundation
such as principles of programming languages, automata,
compilation, etc.

Table 3. Information Systems Engineering @ BGU

Sem Course Scope
(/160)

Modeling Content

1
Introduction to
Information Systems
Engineering

3 Basics of UML, mainly class
diagram

5 Database Systems 3.5 Modeling DB using ERD

5 Analysis and Design of
Information Systems 5 Focus mainly of functional

modeling

6 Object-Oriented
Analysis and Design 3.5 Essentially, a modeling course

related to all UML aspects.

7-8 Capstone Project 8 Using models to implement
and manage a whole project.

Table 4. Software Engineering @ BGU

Sem Course Credit
(/160) Modeling Content

2 Introduction to
Software Engineering 2.5 Basics of UML, mainly class

diagram
3 Database Systems 3.5 Modeling DB using ERD

4 Analysis and Design of
Software System 5

Essentially, a modeling course
related to all UML aspects as
well as DFD.

5 Topics in Software
Engineering 4.5

Using modeling construct to
teach other SE content such as
design patterns, and
refactoring.

6
Software
Implementation
Workshop

3
Using models to implement
iteratively a small scale
application.

7-8 Capstone Project 8 Using models to implement and
manage a whole project.

C. University of Northern Arizona
At Northern Arizona University (NAU), there are two

related programs; the first is Computer Science where there is
emphasis on theoretical foundation of computer science
(Automata theory, Algorithms, etc.) and the second is Applied
Computer Science where students are given the option to
replace theory courses with more applied courses (such as
mobile and web development courses). The Computer Science
program at NAU is accredited under ABET [14]. Table 5
presents the courses where modeling is covered along with
their content.

Table 5. Computer Science @ NAU

Sem Course Credit
(/~120) Modeling Content

1
Introduction to
Computer Science I
(+lab)

4 Basic Class Diagrams

41

2
Introduction to
Computer Science II
(+lab)

4 Basic Class Diagrams

5 Data Base Systems 3 ER Diagrams

6 Software Engineering 3
Many UML notations are
presented (class, state machines,
use cases)

7
Requirements
Engineering (Capstone
I)

2 Project-specific UML.

V. RESULTS
In this section, we present the summarized results for each

institution. The complete raw data as well as summarized data
are made publicly available1 to facilitate replication and
validation of the results [17].

A. Demographics
All in all we got 195 filled questionnaires for the three

universities. Analyzing the profiles of the participating
students, as they appear in the following tables, we found out
that most of the participants have good grades and they have
limited work experience (a fact that emphasizes that their
perception is mainly established by their education).

Table 6. Profile of the participating students

(a) Number of Responses

Institute Number of Responses
Y1 Y2 Y3 Y4 Grad

NAU 5 10 26 8 2
BGU-SE 8 12 17 22

25
BGU-ISE 3 3 23 12
CU 0 0 0 0 19

(b) Years of experience

Institute Experience (years)
0-3 4-7 8-12 13+

NAU 46 5 1 0
BGU -SE 47 0 1 0
BGU -ISE 35 3 0 0
CU 12 5 1 1

(c) Average grades obtained in modeling-related courses

Institute Average Grade (%)
65-75 76-85 86-90 91+

NAU 0 20 14 17
BGU -SE 6 25 9 6
BGU -ISE 5 23 6 4
CU 0 4 8 7

The response rates we had for the questionnaire are as
follows. For BGU-ISE and BGU-SE, as the survey was
conducted on line, we got response rate of 13 percent. For
BGU graduate students, for NAU, and CU we had a response
rate of above 90 percent as the survey was conducted in class
as a paper questionnaire.

1 https://zenodo.org/record/20367?ln=en#.Veuv5dNViFI

B. Reflection on Modeling
Figures 1-3 summarize the average results for each

institution and give an overview of the results per institution. In
the following, we discuss these results.

In general, the perception of BGU’s students towards
modeling is positive. In particular, they perceive modeling as a
useful means mainly for documentation and communication.
One of the reasons for that limited usefulness might be the
students’ perception of modeling characteristics. For example,
the students perceive models as drawings, they find it
counterproductive, and they find textual models (like code)
easier to deal with. As for the training they receive, the
students think that more training on modeling is required.

Overall, the perception of NAU’s student of modeling is
generally positive. Graduate students seem to appreciate
modeling for documentation and communication. But they do
not find models to be that useful for representing requirements
or for specification. Their perception of models tends to get
significantly lower when it comes to using models for testing
and maintenance.

NAU Undergraduate students seem to find models to be
more comprehensible than code. This could be interpreted by
the fact that undergraduates find code to be challenging and/or
complex. Graduate students, on the other hand, do not find
models to be more comprehensible.

CU students find modeling very useful and that it should be
integrated in the curriculum earlier (as shown in Figure 3).
They also believe that modeling is important for various
software engineering tasks, and not just used for drawing
diagrams. Concordia students also believe that textual
modeling is not easier to understand and construct than
graphical modeling. We attribute this positive reaction to
modeling of Concordia students mainly to the fact that they are
graduate students. Many of them had taken some graduate
courses on modeling as well. It is also interesting to note that
when asked whether modeling and programming should be
taught at the same time, Concordia students seem less favorable
to this idea (average score is 3.4/5). This might indicate that
students wish to see more courses dedicated to using models as
the main development artifacts. Courses that combine tightly
both perspectives (code and models) seem to reiterate the
traditional perception of modeling, which restricts models to
the design phase only.

The survey’s results towards the educational section tend to
have an upward trend that is more evident for the graduate
students. Students in general want more training in modeling
and feel that modeling should be taught at the same time as
coding. Interestingly, graduate students tend to agree more.
This can be interpreted by the fact that graduates appreciate
models more, and have more appreciation on the role of
modeling in Software Engineering, and therefore, are more
positive regarding increasing the modeling portions in the
curriculum.

42

Fig. 1. BGU Results

Fig. 2. NAU Results

Fig. 3. Concordia University Results

43

VI. CROSS-UNIVERSITY ANALYSIS
A. Perception Trends

Of particular interest to this study, is to investigate whether
curriculums have positive, negative, or neutral effects on how
students perceive the value of modeling. We studied the
perception trend of both undergraduates and graduates as
follows. For undergraduates, we analyze the changes in
perception from year to year, starting from year 1 to 4. For
example, if students’ average perception of “Models
Usefulness” in year 1 is 3.0/5.0 and in year 2 the average
perception is 4.0/5.0, this implies that the perception has
improved from year 1 to 2. For graduates, we analyze the
differences in perception from undergraduates and graduate
averages. We do this by taking the average of the entire data set
for undergrads and subtract it from the average for graduates.

This analysis is performed using only a subset of questions
that reflect models usefulness and value. The subset includes
the following questions as listed in Section III.D: 1.a through
1.h, 2.c through 2.g, 2.j, 2.k. 2.l. We also report on the analysis
of the students’ perception of educating students on modeling
using analysis of answers to questions 4.a through 4.d.

We use the sign analysis technique as reported in [18]. We
count the number of positives (indicating perception
improvement) and negative (indicating perception decline).
The results are summarized in the following table.

Table 7. Sign analysis of the survey results

 Usefulness Education
 + - + -
NAU UG 0 14 0 5
NAU G 5 13 3 2
BGU UG 6 10 0 4
BGU G 3 12 1 3

NAU Undergraduate students’ perception of modeling
declines as they progress in their undergraduate education,
evident by 14 negatives, and 0 positives. This result is also
reflected in students’ perception of modeling education (0
positive, and 5 negatives). For NAU graduate students, the data
is more balanced, but remains overall negative. One possible
explanation might be that students with low perception of
modeling do not enroll in graduate studies, or that perception of
modeling is an indicator of academic success.

The results for BGU are more balanced, but remain overall
negative. The perception of usefulness and education among
undergraduates and graduates tend to decline over the years of
their education.

B. Cross-University Trends
For the cross-university analysis, we are interested in

answering the following high-level questions.
Q1. Do students perceive models to be more useful for

documentation and communication, as opposed to software
development activities (code generation, implementation and
maintenance)?

Q2. Do students in general think that more modeling need
to be integrated into the curriculum?

Q3. How do students perceive modeling tools? For this
question, we limit our data analysis for graduate students as
undergrads may not have the sufficient maturity to understand
the distinction between the tools, and the approach.

Q4. How does the students’ perception change from their
undergrad education to their final years in graduate studies?

Fig. 4. Models for documentation versus implementation

For Q1, it is evident that students tend to find models more
useful for documentation and communication, and less for
other development tasks (Fig. 4). This preference in perception
was more evident in graduate students that undergraduate
students, particularly for NAU and Concordia graduate
students.

For Q2, both graduates and undergraduates agree that more
should be taught about modeling (UG: 3.7, G: 4.0) and that
modeling should be taught at the same time (UG: 3.2, G: 3.3),
and that modeling should be integrated in computer science and
software engineering courses (UG: 3.8, G: 4.0).

For Q3, students did not find modeling tools to be more
complex, but rather, modeling tools were perceived to be more
difficult to obtain (Fig. 5). This is potentially due to the fact that
students are introduced to coding much earlier than modeling.
They become more quickly familiar with the coding platforms
than with the modeling tools.

Fig. 5. Perceptions of Modeling Tools

44

For Q4, we found a consistent pattern of declining
perceptions emerging in both NAU and BGU undergrad and
grad students. In general, the perception declination was more
prominent in the case of undergraduate than graduate students.

This can be interpreted in a number of ways, 1) the
curriculum fails to highlight the value of modeling in software
engineering or 2) students come to the program assuming
unrealistically high value of modeling. During their education
years, the curriculum does not improve on that initial
perception. 3) For large software projects, students fail to
discover the value of modeling (usually, UML), and may be
relying exclusively on code. As a result, students may come to
the conclusion that modeling is not as useful as they may have
thought initially. The lacks of tools may also contribute to this.
As the advance in the programs, students usually want to build
interesting systems that run quickly so they can make
modifications and improve their functionality. The
unavailability of good tools make this difficult. This may be a
factor that discourages students from adopting the modeling
paradigm as advanced stages. This question may require further
investigation to uncover exactly why the perception declines.

However, grads tend to perceive modeling more favorably
than undergrads, especially for communication, documentation,
and tool availability and readiness. This is with the exception
of a few aspects of models suitability for software development
and testing. This may be interpreted by the nature of the work
performed by the grads vs. undergrads. Grads may be using
models to abstract ideas and communicate early concepts.
Models for such tasks may be more suitable than code.

VII. THREATS TO VALIDITY
Threats to validity of this study are discussed in this

section.

A. Question Bias
The majority of the questions in this study were presented

in the positive sense (i.e. models are useful). It is possible that
negative questions may have a different impact on how
participants respond to questions.

B. Profile of the Respondents
The researchers in this study did not have control on

selecting participants. It is possible those participants who
opted to complete the survey, or those who decided to complete
the survey after it had started, may have had different views on
modeling than the general population. Our study collected
profiling data and as discussed in this paper, we attempted to
analyze the paper while considering the collected profiling
data.

C. Different Modeling Teaching Approaches
The three participating institutions deployed different

curriculum and different teaching styles. It is possible that the
participating universities teaching of modeling may have
influenced the views of the participants. This could in effect
mean that the participating universities are not a good
representation of the general population. This external validity
threat was minimized by the fact that three different institutions

participated, and that participants were not selected from a
specific group or study year.

VIII. CONCLUSION
This paper reports on a survey that was conducted in three

independent institutions. The goal of the survey is to uncover
students’ perception of the value of modeling in software
development. Participants included students from
undergraduate year one to last year in the graduate program.

The results suggest that students’ perception of the value of
modeling declines as they progress in their education. This was
true for both undergraduate and graduate students. These
results warrant further investigation into why this is the case.
The reasons of the decline in perception may be attributed to
wrong perceptions of modeling for young students, in adequate
coverage of modeling topics, lacks of adequate modeling tools,
or immaturity or unsuitability of the modeling techniques and
approaches for students’ projects. It is also possible that UML
is simply not appropriate for defining and/or implementing the
problems and solutions they face.

The results suggest that graduate students on average
appreciate modeling more than undergraduates. This could be
attributed to the nature of tasks that graduate students perform
that may be more suitable for modeling approaches.

The results of the study calls for further investigation of the
reasons of the relatively low perceptions of modeling
usefulness by students. This can be done by further correlations
analysis and interviewing students about their perceptions and
the reason for that. Furthermore, the results call for revisiting
modeling curriculum in order to introduce improvements and
to further recruit the students into the modeling era.

REFERENCES
[1] Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge.

"Model oriented programming: an empirical study of
comprehension." Procs of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp., 2012.

[2] Andrew Forward, Timothy C. Lethbridge, and Omar Badreddin.
"Problems and opportunities for model-centric vs code-centric
development: A survey of software professionals." 5th
Workshop" From code centric to model centric: Evaluating the
effectiveness of MDD (C2M: EEMDD)", University Pierre &
Marie Curie, Paris. 2010.

[3] Robert France, and Bernhard Rumpe. "Model-driven
development of complex software: A research roadmap." 2007
Future of Software Engineering. IEEE Computer Society, 2007.

[4] Djedjiga Mouheb, Mourad Debbabi, Makan Pourzandi, Lingyu
Wang, Mariam Nouh, Raha Ziarati, Dima Alhadidi,
Chamseddine Talhi, Vitor Lima. "Unified Modeling Language."
Aspect-Oriented Security Hardening of UML Design Models.
Springer International Publishing, 2015. 11-22.

[5] Omar Badreddin, Timothy C. Lethbridge, and Maged Elassar.
"Modeling Practices in Open Source Software." Open Source
Software: Quality Verification. Springer Berlin Heidelberg,
2013. 127-139.

[6] Alan Zeichick, "UML adoption making strong progress."
Software development times 15 (2004).

45

[7] Ariadi Nugroho , and Michel RV Chaudron. "A survey into the
rigor of UML use and its perceived impact on quality and
productivity." Procs of the 2nd ACM-IEEE int’l sym. on
Empirical software eng. and measurement. ACM, 2008.

[8] George G. Mitchell, and James Declan Delaney. "An assessment
strategy to determine learning outcomes in a software
engineering problem-based learning course." International J. of
Engineering Education 20.3 (2004): 494-502.

[9] Chanan Glezer, Mark Last, Efrat Nachmany, Peretz Shoval.
"Quality and comprehension of UML interaction diagrams-an
experimental comparison." Information and Software
Technology 47.10 (2005): 675-692.

[10] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of MDE in industry.
In Proceedings of the 33rd International Conference on
Software Engineering (ICSE '11). ACM, New York, NY, USA,
2011. 471-480

[11] Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward,
and Omar Badreddin . "Teaching UML using umple: Applying
model-oriented programming in the classroom." Software
Engineering Education and Training (CSEE&T), 2011 24th
IEEE-CS Conference on. IEEE, 2011.

[12] Dirk Frosch-Wilke, "Using UML in software requirements
analysis-Experiences from practical student project work."
InSITE-Informing Science and IT Education Conference. 2003.

[13] Martin Grossman, Jay E. Aronson, and Richard V. McCarthy.
"Does UML make the grade? Insights from the software
development community." Information and Software
Technology 47.6 (2005): 383-397.

[14] Richard M. Felder, and Rebecca Brent. "Designing and teaching
courses to satisfy the ABET engineering criteria." J of Eng.
Education-Washington- 92.1 (2003): 7-26.

[15] João Paulo Almeida, Remco Dijkman, Marten Van Sinderen,
and Luís Ferreira Pires. "Platform-independent modelling in
MDA: supporting abstract platforms." Model Driven
Architecture. Springer Berlin Heidelberg, 2005. 174-188.

[16] Marian, Petre. "UML in practice". In Proceedings of the
International Conference on Software Engineering (ICSE '13),
2013. IEEE Press, Piscataway, NJ, USA, 722-731.

[17] First International Workshop on Human Factors in Modeling
(HuFaMo’15). Available: http://hufamo.compute.dtu.dk/.

[18] W. J. Dixon and A. M. Mood. "The statistical sign test". 1946.
 Journal of the American Statistical Association pp. 557-566.

46

