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Abstract—Model-based code-generators are complex in nature;
they are built using a variety of tools such as language work-
benches, and model-to-model and model-to-text transformation
languages. Due to the highly heterogeneous technology ecosystem
in which code generators are built, understanding and main-
taining their architecture pose numerous cognitive challenges
to both novice and expert developers. Most of these challenges
are associated with tasks that require to trace and pinpoint
generation artifacts given a life-cycle requirement. We argue
that such tasks can be classified in three general categories: (a)
information discovery, (b) information summarization, and (c)
information filtering and isolation. Furthermore, we hypothesize
that visualizations that enable the interactive exploration of
model-to-model and model-to-text transformation compositions
can significantly improve developers’ performance when reflect-
ing on a code-generation architecture, and its corresponding
execution mechanics. In this paper we describe an empirical
study conceived (a) to understand the performance of developers
(in terms of time and precision) when asked to discover, filter,
and summarize information about a model-based code generator,
using classic integrated development environments and editors,
and (b) to measure and compare the developers’ effectiveness on
the same tasks using state-of-the-art traceability visualizations
for model-transformation compositions.

I. INTRODUCTION

Model-based code generation refers to a software-
engineering methodology for building systems that system-
atically differ from each other [1][2]. In effect, code gen-
erators are frameworks for building applications from code
semantics that have been engineered for reuse. However,
code generators can be difficult to understand since they are
typically composed of numerous elements, whose complex
interdependencies pose cognitive challenges for developers
performing design, implementation, and maintenance tasks
[3][4].

Model-based code generators integrate rule-based model-
to-model transformation languages (such as ATL [5] and
EGL [6]) and template-based model-to-text transformation
languages (such as Acceleo [7]) to translate high-level system
specifications into executable code and scripts [8][9]. At
the core of a model-based code generator, model-to-model
and model-to-text transformations are composed in so-called
model-transformation chains (MTCs) [10].

Given the complexity and heterogeneity of the technologies
involved in a code generator, developers who are trying to
inspect and understand the code-generation process have to
deal with numerous different artifacts. As a concrete example,
in a code-generator maintenance scenario, a developer might
need to find all chained model-to-model and model-to-text
transformation bindings, that originate a buggy line of code to
fix it [11]. This task is error prone, if not virtually impossible,
when done manually. We believe that flexible traceability tools
are needed to collect and visualize information about the
architecture and operational mechanics of code generators, to
reduce the cognitive challenges that developers face during
their life-cycle. With the purpose of tackling this challenge,
we have developed ChainTracker [12][13], a tool that enables
developers to better understand how model-based code gener-
ators are built, using interactive traceability visualizations and
code projections. ChainTracker gathers and visualizes model-
to-model, and model-to-text traceability information for ATL
and Acceleo model-transformation compositions (Figure 1).

Whether at design or maintenance time, developers are con-
stantly trying to solve software-engineering tasks on model-
based code generators. We argue that such tasks can be classi-
fied in three categories: (a) information discovery, (b) informa-
tion summarization, and (c) information filtering and isolation.
In this paper we describe an empirical study conceived (a)
to understand the performance of developers when asked to
discover, filter, and summarize information about a model-
based code generator, using classic integrated development
environments and editors, and (b) to measure and compare
the performance of developers executing the same set of
tasks using state-of-the-art visualizations for code-generator
traceability information.

This study will enable us to analyze the performance of
developers when reflecting on a model-based code generator
to achieve various software-engineering goals. Furthermore,
it will increase our understanding of how advanced develop-
ment environments and traceability visualization tools, such
as ChainTracker, can help developers to design, study and
maintain a code generator. This study includes a comparative
analysis of developers’ performance in answering questions
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Fig. 1. ChainTracker’s Main Screen (1) Transformation-composition Branch View; (2) Transformation Script View; (3) Binding Information Tables; (4.a)
Filtering and Visualization Options; (4.b) Context-dependent menu to isolate artifacts related to metamodel elements, or generated textual sources.

with ChainTracker versus using existing code editors (i.e.
Eclipse). Furthermore, in this study developers’ performance
is understood in terms of the time taken to answer a question
and the correctness of their answers.

In this paper, we first present our study research questions
and hypothesis. Second, we describe the study subject systems.
Third, we present a detailed description of the families of tasks
developers will solve in the study, including question templates
that can be reused by the community. Finally we introduce
the protocol of the study, its expected treats to validity, and
expected contributions.

II. RESEARCH QUESTIONS AND HYPOTHESIS

In the life-cycle of a code generator developers ask
multiple questions to optimize and maintain its infrastructure.
Particularly, once a code-generator has been built, developers
face multiple scenarios of evolution [14]. The two most
important among them are metamodel evolution, in which
changes are needed to the domain-specific language
that interfaces with the end user, or to the intermediate
metamodels that modularize the code-generation process, in
order to improve the language expressiveness, and platform
evolution, where the generated code needs to be refined with
different purposes, such as fixing a bug or optimizing the
performance of a generated codebase. In the latter scenario,
the generator’s model-to-text and, in some cases model-to-
model transformations, need to be modified in order to reflect
such refinements in a systematic way. Indeed, evolutionary
scenarios in model-based code generators motivate questions
about their architecture and execution mechanics, such as:

• Where does this generated feature come from?
• What chained generation artifacts would be affected if a

model element were removed or modified?
• What is the coverage of the transformation rules in each

stage of my generation process?

• What portions of code have evolved in the generated
codebases? and, assuming that code changes should
indeed be included in future genertion instances, what
elements of the underlying models and transformations
should be revised?

To answer these questions, developers need to have a
thorough understating of the generation architecture. In this
study we hypothesize that the interactive exploration of model-
to-model and model-to-text transformation scripts can signifi-
cantly improve developers’ performance when reflecting on a
code-generator architecture. Furthermore, we believe that the
tasks that developers perform when reflecting on the design
and execution mechanics of a generator can be classified in
three general categories. Let us now briefly discuss each one
of them.

1. Information Discovery Tasks: The developer’s intent
when performing this family of tasks is to explore the code
generator to identify its major components, and to understand
how the underlying transformation scripts are organized from
a static point of view. This type of task involves locating
individual elements of the code-generator’s architecture, i.e.,
individual metamodel elements, transformation rules, and col-
lections of transformation bindings, inside the generator’s
source scripts. These tasks are commonly performed when a
developer is dealing with legacy code generators that need to
be reused or optimized.

2. Information Summarization Tasks: The purpose of these
tasks is for developers to measure generic information of the
code-generation architecture, such as to quantify the coverage
of a model transformation, or to measure the size of its meta-
models. Summarizing information about the code generator
allows developers to assess, and potentially improve, its overall
design and correctness [15].

3. Information Filtering and Isolation Tasks: These tasks
are generally performed when developers are assessing the
impact of platform-evolution scenarios. They involve tracing
and isolating elements of the code-generation architecture
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from a dynamic perspective, in order to find dependency rela-
tionships between metamodel elements, metamodel attributes,
transformation bindings, and generated pieces of code.

Considering the above types of tasks we believe developers
solve when answering questions about a model-based code
generator, we intent to investigate two research questions:

• Q1: How do developers approach the process of
answering questions that involve the discovery, filtering,
and summarization of artifacts that constitute a code
generator?

• Q2: Do developers answer questions more accurately
when solving tasks that involve information discovery,
filtering, and summarization using the interactive
traceability visualizations provided by ChainTracker?

On the basis of the above questions we outlined two
corresponding null hypotheses.

• HQ1: Developers spend an equal amount of time when
solving tasks that involve information discovery, filtering,
and summarization of a model-based code generator
using ChainTracker as they do using Eclipse editors.

• HQ2: Developers provide equally accurate answers, in
terms of task solution correctness, using ChainTracker as
they do using Eclipse editors.

III. SUBJECT SYSTEMS

The subject systems of our study are two model-based
code generators developed in our research laboratory: PhyDSL
(System Subject 1) and ScreenFlow (System Subject 2).
PhyDSL [16][17] is a model-based code generator for mo-
bile physics-based 2D games (see Figure 2). It is built in
a textual domain-specific language, and a multi-branched
model-transformation composition that includes three model-
to-model transformations implemented using ATL, and three
template-based model-to-text transformations written in Ac-
celeo. PhyDSL is currently used to create cost-effective
and fully-featured mobile games with rehabilitation purposes.
PhyDSL is now being used in the construction of mobile
games used by the Faculty of Rehabilitation Medicine at the
University of Alberta, the Glenrose Rehabilitation Hospital
in Edmonton, Canada, and the Knowledge Media Design
Institute at the University of Toronto. ScrenFlow1 is a code
generator for Android application skeletons with interface-
navigation logic, from graphic user interface storyboard spec-
ifications (see Figure 3). ScreenFlow is composed by a textual
domain-specific language, and a single-branched (i.e. linear)
model-transformation composition that includes one model-to-
model transformation, and one model-to-text transformation,
written in ATL and Acceleo respectively. ScreenFlow is used

1a complete description and demo video of ScreenFlow can be found at
http://goo.gl/IGqLTv

by novice Android application developers in rapid software
prototyping environments such as hackathons.
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Fig. 2. PhyDSL’s multi-branched model-transformation composition architec-
ture: four model-to-model (M2M) ATL transformations, and four model-to-
text (M2T) Acceleo transformations chained in four transformation branches.
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Fig. 3. ScreenFlow’s linear model-transformation composition architecture:
one model-to-model (M2M) ATL transformation, and one model-to-text
(M2T) Acceleo transformation, chained in one transformation branch.

ATL model-to-model transformations and Acceleo model-
to-text transformations are two widely adopted model-
transformation technologies in both industry and academic
environments. We believe that ATL and Acceleo exemplify
the semantic complexity of state-of-the-art transformation lan-
guages built on top of model manipulation languages such as
OCL [18], thus generalizing the complexity behind modern
model-based code generators.

IV. DEPENDENT AND INDEPENDENT VARIABLES

Considering the hypotheses HQ1 and HQ2, we have two
dependent variables in our study:

• V arA: Time developers spend solving each task.
• V arB : Developers’ accuracy in terms of task solution

correctness.

TABLE I
STUDY INDEPENDENT VARIABLES

Subject System Tasks ChainTracker Tasks Eclipse
Subject System 1 V arCT1 V arEE1

Subject System 2 V arCT2 V arEE2

The four independent variables of the study are V arCT1,
V arEE1, V arCT2, and V arEE2 (see Table I). The first
two define the set of questions developers will solve using
PhyDSL as the subject system (a model-based code generator
with a branched transformation composition). The last two
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specify the set of questions to be solved using ScreenFlow
as a subject system (a model-based code generator with a
linear transformation composition). We believe that by using
two subject systems with different levels of complexity (eight
transformations in PhyDSL vs. two of ScreenFlow) the study
will be able to investigate if the compositional architecture
of the generator affects developers when conducting software-
engineering tasks.

V. DETAILED HYPOTHESIS

Taking into account our two high-level null hypotheses, our
two subject systems, and the variables of our study, let us
briefly discuss the set of detailed null hypotheses that this
study will try to reject. They all share the following general
form:

HxV arxy : Ṽ arxCTy = Ṽ arxEEy

• where x is A or B in place for hypothesis HA0 and HB0

related to V arA-time and V arB-accuracy respectively;

• Ṽ arxCTy is the median of our study dependent
variables, where x indicates the developer’s time and
precision, when solving tasks using the interactive
visualizations provided by ChainTracker;

• Ṽ arxEEy is the median of our study dependent
variables, where x indicates the developer’s time and
precision when solving tasks using off-the-shelf Eclipse
script editors for ATL and Acceleo;

• and y (1, or 2) refers to the result of a dependent
variable obtained from developers solving tasks on the
System Subject 1: PhyDSL, and the System Subject 2:
ScreenFlow, respectively.

In summary, four detailed null-hypothesis will be investi-
gated in this study. While HAV arA1 and HAV arA2 compare
the median time spent by developers solving tasks that in-
volve information discovery, filtering, and summarization on
single and multi-branched model-based code generators (i.e.
developers spend an equal amount of time solving questions
using ChainTracker as they do using Eclipse editors for single
and multi-branched code generators), hypothesis HBV arA1

and HBV arB2 compare the median accuracy (in terms of
task solution correctness) of developers conducting software-
engineering tasks on single and multi-branched model-based
code generators, respectively (i.e. developers provide equally
accurate answers using ChainTracker as they do using Eclipse
editors for single and multi-branched code generators).

VI. STUDY PROTOCOL

The protocol of the study will be divided in two main
stages that involve two independent working sessions with
two different sets of participants, and two exit surveys that
will assess the participants’ experience during the study (see
Figure 4).

Stage 1: The first stage involves a working session with 15
developers. Each participant will be asked 30 questions about a
subject model-based code generator. In this stage, information
about the time spent by developers answering each question
will be collected using an in-house survey application. In this
first stage, developers will solve the first half of the tasks using
off-the-shelf ATL and Acceleo code editors in Eclipse, and the
second half using ChainTracker.

Stage 2: The second stage consists of a second working
session with a new group of 15 developers. They will be
asked to answer the same set questions as developers in Stage
1. Developers’ performance will also be collected using our
in-house survey application. In this second stage developers
will be instructed to solve the first half of the tasks using
ChainTracker, and the second half using code editors in
Eclipse.

At the end of each working session, developers will be asked
to complete a survey on the usability of ChainTracker and
their general experience during the session. Let us now briefly
discuss how the working sessions will be structured.

A. Working Sessions

During Stages 1 and 2, each developer will be assigned an
individual working station consisting of a desktop computer
in which Eclipse and ChainTracker will be installed and
deployed. This computer will also have an in-house system
capable of monitoring the participant’s activity such as mouse
clicks and keystrokes events. Indeed, the difference between
the working sessions of Stage 1 and 2 is the order of the tools
that developers will use to solve the given tasks. Both stages
will be divided in four parts.

Part 1. The participants will receive a 20 minute high-level
presentation of Eclipse, ChainTracker, and the purpose of the
study. A demonstration of Eclipse’s features and user inter-
face will be given through a typical scenario of information
discovery, filtering, and summarization on both of the subject
systems. A similar demonstration will be conducted using
ChainTracker’s interactive visualizations, and code-projection
features. Finally, participants will be asked to sign the in-
formed consent form of the study.

Part 2. Participants will be pointed to our in-house survey
application where they will answer questions about their
experience with modeling tools, and their overall software-
development expertise. More specifically, the questionnaire
will cover i) the developers’ number of years of software-
development experience; ii) their experience using integrated
development environments; iii) their experience using mod-
eling tools to document software system implementations;
and iv) whether they been exposed to model-transformation
technologies before. A predefined list of options includ-
ing popular development environments, modeling tools, and
model-transformation technologies will be presented to the
participants along with open fields that will receive alternative
answers.

Part 3. Participants will have a five-minute break.
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Fig. 4. Protocol Stages

Part 4. Participants will be pointed to the second part of
the survey that will ask them to solve tasks with Eclipse and
ChainTracker. The mechanics of this part are as follows:

1) Each participant will be presented with a question about
a subject system (see Section VI-B).

2) The participant will use ChainTracker or Eclipse to find
information relevant to the question, and answer the
question.

3) The participant will submit her/his answer.
4) The participant will be directed to the next question. A

total of 30 questions will be asked to every participant
covering each one of our proposed families of tasks; 15
questions will be related to the Subject System 1, and
15 to the Subject System 2.

B. Question Templates

An appendix containing a collection of template questions
that involve information discovery, filtering, and summariza-
tion tasks on model-based code generators can be found
at: http://goo.gl/BDXpUO. Some examples of our template
questions are shown below.

• Find a template’s upstream model-to-model transforma-
tion dependencies: What transformation rules are up-
stream related to the template line of code [line-id] in
the [template-script-name] script?

• Identify the transformation rule that contains a given
metamodel binding: What transformation rule contains
the [metamodel-binding] binding in [model-to-model-
transformation-name]?

• Evaluate how well a metamodel is used in a transforma-
tion composition: What percentage of the [metamodel-
name] metamodel is been covered by the transformation
composition?

C. Data Analysis

Due to the nature of the variables and the limited number of
data points we will apply a Mann-Whitney “U” non-parametric
statistical test to study the hypothesis propositions. We will
adopt an alpha level with a p-value lower than 5%, thus we
will consider an acceptable probability of 0.05 for Type-I error,
i.e. rejecting the null hypothesis when it is true.

VII. PARTICIPANTS

The study solicits participants of any age and gender with at
least three years of programming experience. The experience
requirement is tightly related to the technical tasks that devel-
opers will perform during the duration of the study. Due to the

limited experience of potential participants with model-driven
engineering technologies, the study will not enforce model-
driven engineering experience as a fundamental requirement,
however candidates with experience on model-transformation
technologies will be preferred. We believe that graduate and
undergraduate students are potentially interested in acquiring
different skills through the use of experimental tools that
enhance their software-development abilities. Therefore the
study solicits participants enrolled in advanced software en-
gineering courses in academic institutions. This study will be
also advertised in venues such as the International Conference
on Model Driven Engineering Languages and Systems (MOD-
ELS) and the International Conference on Model Transforma-
tion (ICMT) to potentially conduct additional virtual working
sessions with highly skilled professionals on model-driven
engineering technologies.

VIII. POTENTIAL THREATS TO VALIDITY

Construct validity (Do we measure what is intended?) In
this study we will measure the performance of developers
answering questions about a model-based code-generating
system. We understand developers’ performance in terms of
the time they take answering each question and their cor-
rectness. We have developed an in-house survey application
that presents participants with the questions and measures the
time from when the question is showed to the participant
to the moment when the participant has submitted an an-
swer. Furthermore, we have carefully instantiated our question
templates on our subject systems, and the correctness of
each expected answer has been validated by three model-
transformation experts. We do not foresee any significant
threats to the construct validity of study.

Internal validity (Are there unknown factors which might
affect the outcome of the experiments?) We have identified
two main threats to the internal validity of this study. First,
the limited number of participants and their heterogeneous
expertise on model-driven development technologies may limit
the validity of the study. This study, however, is planned to
be conducted with a minimum of 30 developers with at least
three years of software-development experience. Considering
that model-driven engineering technologies (such as model-
transformation languages and modeling tools) are still in their
infancy, and are yet to be adopted by the software engineering
community at large, our pool of participants are representative
of a community in which the majority of developers design-
ing and maintaining code generators are novice, or at least
not highly experienced, on model-driven engineering tools.

37



Furthermore, this study hopes to capture the interest of the
model-driven engineering community and conduct additional
virtual working sessions with highly-skilled model-driven pro-
fessionals around the world. Indeed, having a diverse pool of
participants will be highly valuable to the generalizability and
statistical soundness of the study. Second, we are aware of
the learning curve of ChainTracker and how its accessibility
might affect developers when trying to answer questions on
the subject systems. In order to minimize the impact of this
threat to validity, we have included an introductory tutorial
at the beginning of our working sessions’ protocol (Section
VI-A). The tutorial will showcase different question-solving
scenarios using ChainTracker and Eclipse. Furthermore, dur-
ing the last year we have iterated over ChainTracker’s graphic
user interface, running informal focus groups in order to make
its features accessible and intuitive for developers.

External validity (To what extend is it possible to gen-
eralize the findings?) The subject systems of our study are
two model-based code generators implemented using ATL,
a rule-based model-to-model transformation language, and
Acceleo, a template-based model-to-text transformation tech-
nology. Therefore any conclusions drawn from this study
can not be fully generalized to the performance of develop-
ers solving software engineering tasks on model-based code
generators built using other model-transformation technolo-
gies. However, both Acceleo and ATL are widely used in
academia and industry, and more importantly, both languages
are aligned to the Query/View/Transformation (QVT) standard
for model-to-model transformations [19], and the Model to
Text Transformation Language (MOF) standard for model-to-
text transformations [20] proposed by the Object Management
Group (OMG), respectively. Therefore the observations of this
study can potentially be generalized to developers performing
the same set of tasks in generators, with similar size and
architecture, built using languages that comply with the same
set of standards.

IX. EXPECTED CONTRIBUTIONS

The contributions of this study are twofold. First our study
will be the first of its kind to investigate how developers
approach the process of answering questions that reflect on
the design and execution mechanics of model-based code
generators. It is our strong belief that by gaining insight on
the human aspects of model-driven software development,
the community will be able to propose tools that make
the construction of code generators less error prone and
less cognitively challenging, thus potentially increasing the
adoption of model-driven engineering techniques as a whole.
Second, our study will increase the understanding on how
developers can solve software-engineering tasks on model-
based code generators, more accurately and efficiently, using
interactive traceability collection and visualization tools such
as ChainTracker. This study will gather information necessary
to enhance the current features of ChainTracker, and to create
new ones that further support developers in their daily tasks.
Furthermore, we believe this study is a novel contribution to

the community and plays an important role in the collective
endeavour to improve and boost the adoption of model-
driven engineering among software engineering researchers
and practitioners.
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