
Comparing Comprehensibility of Modelling
Languages for Specifying Behavioural Requirements

Grischa Liebel
Software Engineering Division

Chalmers | University of Gothenburg, Sweden
grischa@chalmers.se

Matthias Tichy
Ulm University, Germany
matthias.tichy@uni-ulm.de

Abstract—The selection of a suitable modelling language influ-
ences the success of software modelling. Several experiments com-
paring the comprehensibility of graphical modelling languages
have been published. However, no published study comparing
the comprehensibility of functional requirements modelled in
different graphical modelling languages exists. This paper eval-
uates how two requirements modelled in a sequence-based nota-
tion, Modal Sequence Diagrams, and in a state-based notation,
Timed Automata, compare with respect to comprehensibility. A
controlled experiment with 22 student from an undergraduate
course on software modelling was performed. Our results show
no significant differences with respect to the comprehensibility
of the two different languages, but subjects who answered the
questionnaire for the sequence-based notation completed signifi-
cantly more answers in the given time limit. These initial results
indicate that choosing a modelling language for requirements
modelling based on convenience does not significantly affect the
understanding of the resulting requirements.

I. INTRODUCTION

Choosing a visual modelling language in practice is typically
dependent on previous experience with the modelling language
or the availability of the respective modelling tools. While both
aspects are certainly reasonable, other criteria are similarly
important.

Comprehensibility is a commonly evaluated criteria of
visual languages, e.g., for UML diagrams in [1], [2], [3], [4].
However, evaluation results can be contradicting as in [1] and
[2]. Similarly to visual languages, the comprehensibility or
understandability of software requirements specifications is
the most common aspect evaluated in empirical requirements
engineering studies [5]. At the same time, their practical
value is often questioned [6]. A recent family of experiments
by Abrahão et al. reports that providing sequence diagrams
together with a natural language specification increases com-
prehensibility [7]. Additionally, the authors state that possible
future work in this area could be “experiments to analyse the
effect of different behavioural diagrams in the comprehension
of software models”.

As a first step in this direction, we conducted a controlled
experiment in order to understand which behavioural diagrams
perform superior to others for the specific case of modelling
functional requirements with respect to comprehensibility.
Specifically, we compared two modelling languages, Modal
Sequence Diagrams (MSDs) [8] and Timed Automata (TA) [9].
We chose these two languages as they are representatives for

sequence-based notations (MSDs) and state-based notations
(TAs), as they are similar in terms of expressiveness and hence
possible alternatives for expressing the same requirements, and
as both have been applied in industrial case studies, e.g. [10],
[11], [12]. Additionally, both languages were already used in a
joint project with industrial partners. The experiment is based
on an extensive and detailed requirements specification by a
vehicle manufacturer that defines the behaviour of a software
function to be realised by a supplier. Hence, the requirements
specification is quite detailed and as such a reasonable candidate
for modelling. We used 22 undergraduate students in a course
on software modelling as subjects. Our results show no
significant difference with respect to the comprehensibility of
requirements modelled in the two languages, but requirements
modelled in MSDs are significantly quicker to understand. This
indicates that the current practice, selecting visual languages
based on convenience, is in fact feasible with respect to the
comprehension of the resulting requirements specifications.
However, it might take longer to understand the requirements
depending on the chosen language.

The remainder of this paper is structured as follows. In
Section II, related literature is discussed. Section III covers
the basics of the two visual modelling languages we used in
the experiment. Section IV describes the experiment design,
followed by a discussion of validity threats in Section V.
Section VI presents the actual results and discusses them in
depth. The paper is concluded in Section VII.

II. RELATED WORK

In the context of the UML [13], a number of experimental
studies have been published that compare different modelling
languages with respect to comprehensibility. The compre-
hensibility of UML behavioural diagrams, namely sequence,
collaboration, and state machine diagrams, in both real-time
and management information systems is compared using a
controlled experiment by Otero and Dolado [1]. The results
show that sequence diagrams are more comprehensible for real-
time systems than for management information systems. With
respect to the answering speed, their data shows that sequence
diagrams perform better than collaboration and state machine
diagrams for both domains. As subjects, 31 undergraduate
students are used in their study.

17

In contrast to this, Glezer et al. report that sequence diagrams
are more comprehensible for management information systems
than for real-time systems [2]. The authors mainly attribute
this difference to the previous knowledge of the subjects, who
were not experienced in real-time systems. In this study, the
76 student subjects performed the experiment in terms of a
mandatory mid-term exam.

Nugroho investigates the impact of detail on the compre-
hension of UML Class, Sequence, Package, and Use Case
diagrams in form of a controlled experiment with 53 graduate
students [3]. The author reports that a low level of detail can
lead to misinterpretations and that the subjects’ knowledge did
not have an impact on the comprehension.

Staron et al. report the results from four controlled ex-
periments studying the impact of using UML stereotypes
on comprehensibility conducted with 68 students and 4
professionals in total [4]. The studies show that stereotypes
indeed improve the comprehensibility and the total and relative
times for answering the used questionnaires.

Similar to the UML, comprehensibility is a commonly
studied characteristic of requirement specifications. Condori-
Fernández et al. present an evaluation of empirical studies
until 2008 on requirements comprehensibility [6]. The authors
conclude that while comprehensibility studies are common,
many of them have practical limitations, such as using made-
up examples instead of real specifications.

Kamsties et al. study how different specification techniques
affect the comprehensibility of a software requirements specifi-
cation, using a re-engineered specification of a bicycle computer
[14]. The authors report that black-box specification techniques,
describing a system by its externally visible behaviour, lead
to a faster and more correct answering of the used instrument
than white-box specification techniques, where the system is
described by the behaviour between its entities.

Finally, there are a number of studies which investigate the
comprehensibility of requirements modelled in or enhanced
with visual modelling languages. Scanniello et al. study the
effect on requirements comprehensibility when using SysML
diagrams in addition to natural language, compared to only
natural language requirements [15]. The authors use students
as subjects in two controlled experiments and report that
comprehensibility is increased when SysML diagrams are
provided, whereas completion time for the comprehension
task is unaffected.

A recent paper by Abrahão et al. reports a family of five
experiments on the comprehensibility of functional require-
ments modelled with sequence diagrams in addition to the
natural language specification [7]. Hereby, one experiment uses
undergraduate students, two experiments use master students,
one experiment uses doctoral students and one experiment uses
professionals as subjects. Four out of five experiments show
statistically significant support for improved comprehensibility
when using sequence diagrams.

In summary, a number of experiments exist that investigate
the comprehensibility of visual modelling languages, of re-
quirements specifications, and of requirements represented in

visual modelling languages. However, the outcomes vary and
are sometimes even contradicting, e.g. in [1] and [2].

Additionally, we are not aware of any experiment comparing
requirements represented by behavioural models only. This
is a gap in knowledge, as requirements are typically on a
more abstract level than for example software design and are,
additionally, often intended to be read and understood by non-
experts. Particularly, in the automotive domain, it is the usual
process that detailed requirements specificions covering the
behaviour of software components are defined by the vehicle
manufacturer and subsequently sent to the supplier who needs
to correctly understand and realise the specified behaviour. We
are filling this gap with our contribution in this paper.

III. BACKGROUND

In the following, we introduce the two compared modelling
languages and illustrate them using sample models from our
experiment. The models specify the behaviour for the case
that a user wants to increase the speed of a wiper by one unit.
Since both languages basically employ the same modelling
notations to specify real-time aspects, we did not use any real-
time aspects but instead focused on non real-time behaviour.
Furthermore, a pilot of the experiment showed that the real-
time aspects were too difficult to understand for the planned
experiment. We plan a future experiment specifically targeting
the real-time aspects.

A. Modal Sequence Diagrams

Modal Sequence Diagrams (MSDs) [8] are a recent variant
of Live Sequence Charts (LSCs) [16] to model the behaviour
of a set of objects. MSDs/LSCs are sequence diagrams that,
by different modalities assigned to messages and conditions,
allow to precisely describe scenarios with liveness (something
good must happen) and safety (something bad must not
happen) properties. Notably, LSCs and MSDs define how
multiple scenarios can be active concurrently and synchronise
on common events as well as activate and de-activate MSDs.
This allows engineers to flexibly specify systems that fulfill
different tasks at the same time.

One key advantage of MSDs/LSCs is that they can be
executed with the play-out algorithm, which allows engineers
and other stakeholders to understand the behaviour emerging
from the interplay of the scenarios [17]. Furthermore, it is
possible to analyse whether a set of scenarios can be realised,
i.e., it does not contain contradictions or results in deadlocks.

Figure 1 shows a sample MSD used in our experiment. It
specifies the communication between a user, a wiper controller
as well as the actual wiper actuator. The sequence in the figure
describes that (1) a request is sent to the wiper controller
to increase the speed, (2) it is checked whether the wiper is
in the state active, and (3) the controller sends a message
to the actuator to increase the speed by one. If the check in
step 2 fails, the MSD will be de-activated and not further
executed. Once the first message in an MSD is executed
(wiperRequest(WiperRequest::WIPER INCREASE) in Figure
1), it is called active. After the last message, the MSD is

18

MSD Start_Increase
wiper:

WiperController

wiper.wiperState == WiperState::WIPER_ACTIVE

wiperRequest(WiperRequest::WIPER_INCREASE)

addToCurrentSpeed(1)

act:
WiperActuator

0

1

usr: User

Fig. 1. Sample MSD

WiperRequest?

AddToCurrentSpeed?

AddToCurrentSpeed?

s1

error

s2

false

addToCurrentSpeedSignal==1

wiperRequestSignal==WiperRequest_INCREASE
&& Actuator_WiperState==WiperState_ACTIVE

addToCurrentSpeedSignal!=1

Actuator_WiperSpeed := Actuator_WiperSpeed +1

Fig. 2. Sample TA

deactivated again. The numbers on the right side describe the
so-called cut, the positions in which an MSD can be.

The complete MSD model consists of a set of five scenarios
covering the communication and conditions for the three
mentioned objects.

B. Timed Automata

Timed automata [18] are a state-based formalism which
extends finite automata with a set of real-valued variables called
clocks as well as various real-time constraints. Several timed
automata can be combined into a network of timed automata
where different automata synchronise their behaviour by, so
called, synchronisation channels. Synchronisation channels can
be used as a means to specify synchronous message passing.
Timed automata can be both simulated as well as verified for
correctness using model checking.

Figure 2 shows the timed automaton for the wiper con-
troller covering the increase wiper speed scenario as de-
scribed previously for the MSD. It defines that if a wiper
request for increasing the speed (condition: wiperRequestSig-
nal==WiperRequest INCREASE) using the synchronisation
channel WiperRequest? is received and the wiper is active
(condition: Actuator WiperState==WiperState ACTIVE), then
the wiper speed is increased by 1 and a helper variable is set to
1 (addToCurrentSpeedSignal:=1). This helper variable is used
in another automaton for a long-press functionality.

The complete TA model consists of a network of five timed
automata covering the communication and conditions for the
three mentioned objects.

IV. EXPERIMENT DESIGN

The evaluation of comprehensibility of the two considered
modelling languages used for requirements engineering was
performed using a controlled experiment. The goal of this exper-
iment is formulated as follows, using the Goal/Question/Metric
paradigm [19]:

• Analyse requirements modelled in two different modelling
languages for the purpose of comparison with respect to
comprehensibility from the point of view of software de-
velopers in the following context: application (verification
and validation), subjects (students).

We used a between-subject randomised design with two
treatments [20]. The between-subject design was chosen to
avoid learning effects. The treatments are the used modelling
language, namely MSD and TA. MSDs, a variant of Live
Sequence Charts [21], are sequence diagrams with assigned
modalities that allow the expression of liveness and safety
properties, and real-time constraints. Timed Automata are
a modification of Finite Automata for the specification and
verification of real-time systems. Hence, both languages are
very similar in terms of expressiveness. However, MSDs use
a scenario-based description covering multiple objects in one
MSD, whereas TA use a state-based description covering a
single object in one TA. MSDs were chosen in order to have a
sequence-based language with executable semantics, in contrast
to UML Sequence Diagrams, and with the possibility to model
required and forbidden behaviour. In order to not introduce
any bias, we chose TA as a second modelling language, as
the language had not either been introduced during the course.
Both languages are used without their timing functionality.
Subjects were assigned randomly one of the two treatments. In
the following subsections, the details of the experiment design
are presented.

A. Subjects

We performed the experiment with 22 students from an
undergraduate course on software modelling. This is due to
availability reasons, as we had a scheduled university course
in the end of 2014 in which we could perform the experiment.
The students had basic knowledge of UML, as the experiment
was performed towards the end of the course. Both modelling
languages were only introduced prior to the experiment in a
single 45-minute lecture. However, the students were introduced
to similar languages earlier in the course, namely to UML
sequence diagrams and to UML state machine diagrams.

B. Instrumentation

As a basis for the experimental objects, which we used in the
study, we selected requirements from a real-life project within
the automotive domain from an industrial partner. The selected
requirements describe joint behaviour, i.e. the requirements are
not entirely independent. As these requirements are confidential,
we abstracted them and changed their actual content resembling
a car wiper specification. However, we ensured that the
complexity and the logic is comparable. These requirements
were then modelled by the main author of this paper using

19

MSD and TA. The resulting experimental objects consist of
two requirements models, SMSD and STA, consisting of five
diagrams each. The diagrams specify the activation of a car
wiper in slow mode and in fast mode, the increase of the
wiper’s speed in two different ways, and the deactivation of
the wiper. Additionally, the experimental objects contained a
single page describing the context of each treatment. For the
MSD specification, this consisted of a UML class diagram and
an UML object diagram, and for the TA specification, this
page contained the system declarations.

Finally, the instrument contained one page of syntax and
semantic explanation additionally to the introduction lecture
and a questionnaire. In turn, the questionnaire consisted of a pre-
experiment part, collecting demographic data about the subjects
(including subjects’ knowledge regarding modelling languages),
a post-experiment part, collecting subjective judgment, and the
actual measurement questionnaire consisting of 12 questions
targeting the subjects’ understanding. The pre- and post-
experiment questionnaires were used to judge whether previous
experience, understanding of the introduction lectures, or other
factors might have affected the dependent variables. Due to
space limitations, we only discuss the data obtained from these
questionnaires briefly in Section VI. Each of the 12 questions
consisted of an initial state of the system and a number of
executed messages or commands. Then, 2 sub-questions were
asked. The subjects first had to answer whether the execution
violated the requirements or not. Additionally, we asked in
which state the system was after the execution (or right before
the requirements violation), either by asking for the system’s
variable values or by asking for the active cuts/states of each
diagram. Both sub-questions were awarded with one point
each. The second sub-question was only counted if the first
sub-question was correct, as it was otherwise already clear
that the subject had wrongly executed the requirements. An
example question with solutions for both the MSD and the TA
model is depicted in Figure 3.

This questionnaire approach has been successfully applied
in many similar studies, e.g. in [7], [15], [1]. The instrument,
together with the resulting raw data, is published at http://www.
grischaliebel.de/data/research/instrument exp msd ta.zip.

C. Variables

There is only a single independent variable in the performed
experiment. This is the used visual modelling language with
the values MSD or TA. We measured the comprehensibility
of the used requirements specification using three dependent
variables:
Answered: The number of answered questions.
AScore: The average score achieved per answered question.
Score: The total score achieved for all 12 questions.
Instead of measuring the time, we decided to design the
instrument in a way that it would be difficult to answer all
questions in the given time frame. Therefore, we use the number
of answered questions, Answered, instead of the needed time.
We are foremost interested in using modelling languages for
verification and validation purposes later on. Therefore, we

Precondition: act.wiperSpeed = Constants.SPEED_SLOW
act.wiperState = WiperState::WIPER_ACTIVE
wiper.vehicleStatus = VehicleStatus::RUNNING
wiper.configuration = WiperConfig::WIPER_INSTALLED

 1. usr sends Message ‘wiperRequest(WiperRequest::WIPER_OFF)’ to
wiper

 2. wiper sends Message ‘setWiperSpeed(Constants.SPEED_OFF)’ to
act

Question 1: Does the input scenario violate the specified behaviour?
Answer 1: No , Yes, in step: 1 ☐, 2 ☐

Question 2: Which values do the following variables have
 - after the execution of the input scenario (if A1 is ‘No’)
 - before the violating step (if A1 is ‘Yes’)?
Answer 2:
 act.wiperSpeed = Constants.SPEED_OFF
 act.wiperState = WiperState::WIPER_ACTIVE
 wiper.vehicleStatus = VehicleStatus::RUNNING
 wiper.configuration = WiperConfig::WIPER_INSTALLED

Precondition: Actuator_WiperSpeed = Constants_SLOW
Actuator_WiperState = WiperState_ACTIVE
Wiper_VehicleStatus = VehicleStatus_RUNNING
Wiper_WiperConfiguration = WiperConfig_INSTALLED!

 1. WiperRequest is triggered, with wiperRequestSignal set to
WiperRequest_OFF

 2. SetWiperSpeed is triggered, with setWiperSpeedSignal set to
Constants_OFF

Question 1: Does the input scenario violate the specified behaviour?
Answer 1: No , Yes, in step: 1 ☐, 2 ☐

Question 2: Which values do the following variables have
 - after the execution of the input scenario (if A1 is ‘No’)
 - before the violating step (if A1 is ‘Yes’)?
Answer 2:
 Actuator_WiperSpeed = Constants_OFF
 Actuator_WiperState = WiperState_ACTIVE
 Wiper_VehicleStatus = VehicleStatus_RUNNING
 Wiper_WiperConfiguration = WiperConfig_INSTALLED

Fig. 3. Example Question for TA Model (above) and MSD Model (below)

think that an accurate understanding of a specification is more
important than speed. This is why we chose AScore as a metric
for measuring how correct a question is answered in average.
For completeness, we also added Score, which is related
to the other two metrics by Score = Answered ∗ AScore.
We opted for comprehensibility instead of letting subjects
create diagrams themselves, as this is easier and requires
less training. Furthermore, the experiment targets models of
functional requirements, not simply behavioural models in
general. Therefore, we argue that comprehensibility is of
particular importance, as the aim of requirements is to document
what a system shall fulfill. Hence, correctly understanding these
requirements is crucial.

An additional variable which can influence the outcome of
the experiment is the subjects’ knowledge regarding modelling
languages and their domain knowledge in the automotive
domain. While all students are from the same course, they
might have different previous knowledge and experience. To
address this issue we employed a pre-experiment survey which
asked for background information, such as previous courses
on modelling taken by the subject.

D. Hypotheses

In the course of the experiment, we used the following null
and alternative hypotheses, H0 and H1, which we formulated
as follows.

• H0: There is no significant difference between Modal
Sequence Diagrams and Timed Automata with respect to
comprehensibility of requirements specifications.

20

• H1: There are significant differences between Modal
Sequence Diagrams and Timed Automata with respect to
comprehensibility of requirements specifications.

We evaluated the hypotheses separately for each of the
dependent variables. Each of the variables was tested for
significance using a non-parametric Mann-Whitney U test.
Additionally, we tested for equality of variances for each
of the variables using a Levene test in order to fulfill the
assumptions of the Mann-Whitney U test. For both tests, we
used a significance value of 0.05.

E. Operation

The experiment was piloted with two PhD students prior to
execution. The instrument turned out to be too complicated
and was therefore simplified furthermore to its current form.

The experiment was conducted in a 90-minute lecture.
Participation was voluntary and the students received no
benefits for the modelling course, such as bonus points or higher
grades. In the first 45 minutes, both visual modelling languages
were introduced. While this is a rather short time for introducing
two new languages, we were limited to this time frame by
the course schedule. Additionally, the subjects had previous
knowledge in similar languages from the course, so that it
was possible to related the newly introduced languages to that
knowledge. Prior to the introduction lecture, we already handed
out the experimental objects, so that the subjects knew which
treatment they would receive and could concentrate on that
language during the lecture. Additionally, they could familiarise
themselves with the model. The subjects were encouraged
not to share or exchange the objects with each other. After
the introduction lecture, we handed out the remaining parts
of the instrument, namely the questionnaires and the syntax
help. Subjects then received 3 minutes for filling out the pre-
experiment questionnaire, 40 minutes to fill out the experiment
questionnaire, and finally 2 minutes for the post-experiment
questionnaire.

V. VALIDITY

We will in the following discuss means which we took in
order to ensure validity. We use the four aspects of validity as
presented in Wohlin et al. [20].

A. Construct Validity

In order to avoid inadequate preoperational explication of
constructs, we have explicitly defined what ’comprehensibility’
means with respect to our study. Also, it is clearly defined that
a higher score in any of the three dependent variables means a
better result for that variable. Our dependent variables do not
require any human judgment and are therefore objective. Mono-
operation bias can currently not entirely be ruled out, as we
only used one experimental object. We are planning to replicate
the experiment with another requirements specification in the
future in order to address this. Mono-method bias is addressed
by asking two sub-questions for each of the 12 experiment
questions. While the first of the two sub-questions is a simple
yes/no question, it is an additional check whether the subject

has correctly understood the model. If this one is already
incorrect, we automatically awarded 0 points to the second
sub-question as well. Additionally, the second sub-question
was much harder to get right by chance.

B. Internal Validity

In order to avoid maturation or learning effects, subjects were
only allowed to participate in the experiment once and only
in one group, and were not allowed to exchange information
with other subjects during the experiment. Additionally, we
used a pre-experiment questionnaire in order to assess the
subjects domain and modelling knowledge, which might affect
the outcome. While all students came from the same course,
they had different previous experience with respect to software
modelling and requirements engineering. We also assured that
the subjects voluntarily participated in the experiment, by not
giving rewards in the form of improved course grades or similar,
in order to avoid compensation rivalry or demoralisation.
However, we can not entirely rule out that some subjects
participated to win our appraisal later in the course. The fact
that we used volunteers might bias the results, as they could
have been more motivated than the average.

C. External Validity

We used parts of a real-life specification instead of a
toy example for the experiment instrument. However, the
requirements had to be abstracted as the original specification
is confidential. Additionally, while modelling the requirements,
we had to ensure that both treatments were modelled in the
same way and exhibited the same behaviour. This could have
lead to one of the treatments being modelled in a way which
would not happen in practice, and thus limit generalisability.
We tried to reduce this threat by iteratively discussing and
improving the instrument among the authors of this paper.
Additionally, the fact that we used student subjects possibly
limits the generalisability to an industrial context. Finally,
the specification is based on an automotive requirements
specification, which can limit the generalisability to other
domains.

D. Conclusion Validity

We tried to avoid ambiguous wording of questions in
the questionnaire by iteratively reviewing and improving it.
Additionally, we performed a pilot experiment with two PhD
students prior to the actual experiment, in order to improve
both the introduction material and the questionnaire. Reliability
of treatment implementation is given, as the introduction lecture
was only given once for the actual experiment. We did only
perform statistical tests on the three dependent variables, which
were defined up-front, and did not fish for results [20].

VI. RESULTS AND DISCUSSION

In the following, we will discuss first the demography of
the subjects participating in the experiment. Afterwards, we
present and discuss the results of the hypothesis testing for
the experiment. Finally, we finish with a discussion of the
post-experiment questionnaire.

21

A. Demographic Data

Out of the 22 subjects, 19 are Bachelor students and 3 are
Master students. This can be explained through the fact that the
course in which we performed the experiment is on Bachelor
level, but can be taken as an elective course by first year
Master students. All 3 Master students were randomly assigned
the MSD treatment. Out of 22 subjects, 13 have a secondary
school degree, 7 a Bachelor degree, 1 a Master degree, and
1 subject another degree as their highest degree. This means
that 5 subjects on Bachelor level are already in possession of a
Bachelor degree, and one Master student already has a Master
degree. While this is certainly possible, it might also be caused
by misunderstanding the question. Most subjects already had
previous courses on related topics, such as Object-oriented
programming or Software Architecture. Only 6 subjects stated
to not have taken any related courses previously. Additionally,
we asked the subjects for their professional experience in
developing software, in modelling software, and in requirements
engineering. In both modelling software and in requirements
engineering, only 3 subjects answered that they had previous
professional experience, ranging from half a year to three years
of experience. In addition to this, 9 subjects stated that they
have professional experience in software development, with one
subject each stating 0.3 years, 1 year, and 8 years of experience,
and 3 subjects each stating 2 and 3 years of experience.

B. Experiment Results

The experiment was conducted on 4th December 2014 at
Chalmers University in Gothenburg, Sweden. The answers
from the paper questionnaire were afterwards digitalised in
order to allow computerised data processing. An overview over
both the descriptive statistics and the significance testing for
all three variables is depicted in Tables I and II.

TABLE I
DESCRIPTIVE STATISTICS OF THE EXPERIMENT

Treatment Dependent variable Mean Standard
deviation

TA Answered 5.667 3.42
AScore 0.693 0.726
Score 5.583 7.669

MSD Answered 9.4 3.273
AScore 0.576 0.45
Score 6.2 5.453

TABLE II
SIGNIFICANCE TESTING OF THE EXPERIMENT

Dependent
variable

Significance
Level Levene

Significance
Level Mann-
Whitney U

H0 rejected

Answered p ≈ 0.94 p ≈ 0.021 Yes
AScore p ≈ 0.097 p ≈ 0.947 No
Score p ≈ 0.707 p ≈ 0.464 No

The results of the first dependent variable, Answered, are
depicted in Figure 4 for both treatments. Clearly, subjects in
the TA group took longer to answer the questionnaire, which

led to only one subject finishing all questions. In the MSD
group, half of the subjects finished all questions. Additionally,
four subjects in the TA group answered three or less questions,
whereas this is only the case for one subject in the MSD group.
The large difference in the two means for this variable already
indicates that the null hypothesis can be rejected, which is
confirmed by the significance test with p ≈ 0.021. Hence,
there is a significant difference with respect to the number of
answered questions between the two treatments. A possible
explanation for this might be the nature of MSDs, compared
to TAs. While a single MSD has to be taken into account
only once it is activated, each automaton in a TA is ’active’
by definition. This means that for each message in a given
scenario, all automata need to be studied, while only a subset
of the MSDs needs to be considered.

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	
Subject	

Answered	 (TA)	

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Subject	

Answered	 (MSD)	

Fig. 4. Answered of TA an MSD treatment

The second dependent variable, AScore, is depicted in Figure
5 for both TA and MSD treatment. Here, in the TA treatment
there is a much larger variance in the data set, with both
very high and very low values. For the MSD treatment, there
are few values in the extremes. The statistical test results in
p ≈ 0.947, so that the null hypothesis can not be rejected
for this variable. We do not have an explanation for the large
differences between subjects in the TA treatment, but they
might be attributed to misunderstandings with respect to the
modelling language. Several subjects achieved average scores
under 1 point, even though they stated in the post-experiment
questionnaire that they were confident in their answers. We
plan to replicate the experiment in the future which will include
some simple upfront questions in order to measure whether
the subjects have really understood the languages well enough

22

and analyse whether this correlates with the self-assessment.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Subject	

AScore	 (MSD)	 μ	 =	 0.576	
σ2	 =	 0.202	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	
Subject	

AScore	 (TA)	
μ	 =	 0.693	
σ2	 =	 0.526	

Fig. 5. AScore of TA and MSD treatments

As the third variable Score is directly computed from AScore
and Answered, it exhibits a similar pattern (see Figure 6). In the
TA group, two subjects achieved 20 or more points, close to the
maximum of 24. However, many subjects in this group have low
total scores. As subjects in the MSD group have significantly
higher values in the Answered metric, their average Score
values are higher, even though the average score AScore is
lower for this group.

In summary, we can state that MSDs are significantly quicker
to comprehend. Therefore, if speed is a relevant factor, MSDs
should be chosen instead of TA. One could argue that speed
itself is not relevant, as long as AScore is low. Therefore, we
plan to replicate the experiment with subjects who are more
familiar with the modelling languages, in order to see whether
the difference in speed is still present.

C. Correlation between Demographic Data and Dependent
Variables

We used the Pearson product-moment correlation coefficient
to assess the correlations between the three dependent variables
and the number of related courses previously taken by
students, the education level (Bachelor/Master), and the
subject’s confidence in their answers. The resulting values
for Pearson’s r and the p-value are depicted in Table III.
Assuming an effect size of r < 0.3 as small, an effect size of
0.3 ≤ r < 0.4 as medium, and an effect size of r ≥ 0.4
as large, we see that there is a large correlation between
all three dependent variables and the subject’s confidence
in their results. This result indicates that subjects had, in

0	
2	 2	

1	

9	

5	
6	

7	

14	
16	

0	

4	

8	

12	

16	

20	

24	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Subject	

Score	 (MSD)	 μ	 =	 6.2	
σ2	 =	 29.73	

0	 0	
2	

3	

0	
1	

0	
2	

9	 9	

20	
21	

0	

4	

8	

12	

16	

20	

24	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	
Subject	

Score	 (TA)	 μ	 =	 5.583	
σ2	 =	 58.81	

Fig. 6. Score of TA and MSD treatment

TABLE III
CORRELATIONS BETWEEN DEPENDENT VARIABLES AND DEMOGRAPHICS

Dependend Previous Courses Bachelor/Master Confidence
Variable r p r p r p

Answered 0.207 0.355 −0.247 0.267 0.56 0.007
AScore 0.122 0.588 0.116 0.606 0.513 0.015
Score 0.17 0.45 0.074 0.745 0.557 0.007

average, a clear grasp of whether they understood the instrument
or not. Interestingly, both the number of previous courses
and the education level only show a small correlation with
the dependent variables. Similarly, previous experience in
Software Development, Software Modelling, and Requirements
Engineering has small correlation with the dependent variables,
as depicted in Table IV. These results could indicate that
the dependent variables were in fact influenced by other
factors, such as confusion regarding the newly introduced
modelling languages. However, they could also indicate that
the understanding of the requirements is not dependent on
previous education and experience. Further replications will be
necessary in order to answer these questions in a satisfactory
manner.

TABLE IV
CORRELATIONS BETWEEN DEPENDENT VARIABLES AND EXPERIENCE

Dependend Software Dev. Modelling Req. Eng.
Variable r p r p r p

Answered 0.08 0.724 0.054 0.811 0.092 0.685
AScore −0.044 0.846 0.053 0.816 0.063 0.781
Score −0.09 0.692 0.028 0.901 0.039 0.863

23

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the results of a controlled
experiment with 22 students in an undergraduate course on
software modelling. We studied the comprehensibility of
functional requirements modelled in two graphical languages,
Modal Sequence Diagrams, a sequence-based notation, and
Timed Automata, a state-based notation. Subjects received a
model in one of the two languages and a questionnaire with
questions testing their understanding of the model. While we
can not reject the null hypothesis, that there are no significant
differences between the two treatments, for both the average
and the total questionnaire scores, subjects receiving the Modal
Sequence Diagram specification answered significantly more
questions. This indicates that if the speed or the efficiency plays
an important role, scenario-based models should be considered
instead of the state-based models. However, further studies
need to be conducted in order to understand whether this
effect persists with more experienced users who achieve higher
overall scores.

While our sample of students without a previous knowledge
of the used treatments can be seen as a possible threat to
validity, this lack of experience is in fact a realistic setup
for industrial use in the automotive domain. As requirements
specifications are used across organisations and across roles
within an organisation, it can not be assumed that the receiver
of a specification is always familiar with every detail of the used
language. Additionally, receivers are often no experts in mod-
elling, but in other areas such as requirements engineering or
system design. Therefore, in contrast to, for example, software
development, the receivers of a requirements specification can
not be expected to be experts in the used language. Additionally,
our results indicate that the current practice, choosing the
modelling language based on convenience, is not a threat to
the comprehension of the specifications in itself.

In the future, we will replicate the experiment both with
different groups of students and with professionals from our
industrial partners in order to eliminate possible bias and to
assess whether experience and a deeper knowledge of the
languages can have a significant impact on the understanding.
Additionally, we will aim at generating a theory on which
languages are suitable for which kind of task or system when
modelling requirements.

ACKNOWLEDGEMENT

We would like to express our gratitude to Nadja Marko
and Christian Webel, who helped in reviewing and discussing
an early experiment design. Additionally, we would like to
thank Pariya Kashfi and Vard Antinyan for participating in
the pilot experiment. The research leading to these results has
received partial funding from the European Union’s Seventh
Framework Program (FP7/2007-2013) for CRYSTAL-Critical
System Engineering Acceleration Joint Undertaking under grant
agreement No 332830 and from Vinnova under DIARIENR
2012-04304.

REFERENCES

[1] M. C. Otero and J. J. Dolado, “Evaluation of the comprehension of
the dynamic modeling in UML,” Information and Software Technology,
vol. 46, no. 1, pp. 35–53, 2004.

[2] C. Glezer, M. Last, E. Nachmany, and P. Shoval, “Quality and com-
prehension of uml interaction diagrams-an experimental comparison,”
Information and Software Technology, vol. 47, no. 10, pp. 675–692,
2005.

[3] A. Nugroho, “Level of detail in uml models and its impact on model
comprehension: A controlled experiment,” Information and Software
Technology, vol. 51, no. 12, pp. 1670–1685, 2009.

[4] M. Staron, L. Kuzniarz, and C. Wohlin, “Empirical assessment of
using stereotypes to improve comprehension of uml models: A set
of experiments,” Journal of Systems and Software, vol. 79, no. 5, pp.
727–742, 2006.

[5] N. Condori-Fernández, M. Daneva, K. Sikkel, R. Wieringa, O. Dieste,
and O. Pastor, “A systematic mapping study on empirical evaluation of
software requirements specifications techniques,” in Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, 2009, pp. 502–505.

[6] N. Condori-Fernández, M. Daneva, K. Sikkel, and A. Herrmann,
“Practical relevance of experiments in comprehensibility of requirements
specifications,” in Empirical Requirements Engineering (EmpiRE), 2011
First International Workshop on, Aug 2011, pp. 21–28.

[7] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora,
“Assessing the effectiveness of sequence diagrams in the comprehension
of functional requirements: Results from a family of five experiments,”
Software Engineering, IEEE Transactions on, vol. 39, no. 3, pp. 327–342,
March 2013.

[8] D. Harel and S. Maoz, “Assert and negate revisited: Modal semantics
for UML sequence diagrams,” Software and Systems Modeling (SoSyM),
vol. 7, no. 2, pp. 237–252, May 2008.

[9] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[10] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing real-
time embedded software using uppaal-tron: An industrial case study,”
in Proceedings of the 5th ACM International Conference on Embedded
Software. ACM, 2005.

[11] A. Fehnker, “Scheduling a steel plant with timed automata,” in rtcsa.
IEEE, 1999, p. 280.

[12] J. Greenyer, M. Haase, J. Marhenke, and R. Bellmer, “Evaluating a
formal scenario-based method for the requirements analysis in automotive
software engineering,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ACM, 2015.

[13] O. M. Group, “Unified modeling language,” http://www.uml.org/, Jun.
2014.

[14] E. Kamsties, A. von Knethen, and R. Reussner, “A controlled experiment
to evaluate how styles affect the understandability of requirements
specifications,” Information and Software Technology, vol. 45, no. 14,
pp. 955–965, 2003, eighth International Workshop on Requirements
Engineering: Foundation for Software Quality.

[15] G. Scanniello, M. Staron, H. Burden, and R. Heldal, “On the effect of
using SysML requirement diagrams to comprehend requirements: Results
from two controlled experiments,” in 18th International Conference on
Evaluation Assessment in Software Engineering (EASE), May 2014, pp.
433–442.

[16] W. Damm and D. Harel, “LSCs: Breathing life into message sequence
charts,” in Formal Methods in System Design, vol. 19. Kluwer Academic,
2001, pp. 45–80.

[17] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer, August 2003.

[18] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on Concurrency and Petri Nets, vol. 3098. Springer,
2003, pp. 87–124.

[19] V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” Tech. Rep., 1992.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

[21] W. Damm and D. Harel, “LSCs: Breathing life into message sequence
charts,” in Formal Methods in System Design, vol. 19. Kluwer Academic,
2001, pp. 45–80.

24

