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Abstract—Mapping IP addresses to physical locations is im-
portant for a host of cyber security applications. Examples
include identifying the origin of cyber attacks, protecting against
fraud in internet commerce, screening emails for phishing, and
enforcing restrictions on commerce with sanctioned countries.
Simultaneous geolocation of large numbers of IP hosts is needed
for cyber situation awareness. Explicit formal representation
of the geospatial aspects of the cyber domain is necessary for
interoperation with other cyber security capabilities. Formally
representing the uncertainty inherent in geolocation supports
increased accuracy via information fusion, as well as integration
of geospatial inference with inference about other aspects of the
cyber landscape. This paper presents a probabilistic ontology
(PO) for IP geolocation. The geolocation PO is represented in
the PR-OWL language, which allows an OWL ontology to be
augmented with information to support uncertainty management.
We show how the PR-OWL ontology supports automated con-
struction of a Bayesian network for simultaneously geolocating
a large number of IP hosts. The ultimate aim is to integrate
our probabilistic ontology into a comprehensive cyber security
probabilistic ontology to support cyber situation awareness,
predictive modeling, and response strategy definition.

I. INTRODUCTION

Recognition is growing of the need to establish a common
vocabulary for and a shared understanding of the cyber se-
curity domain (e.g., [1]). Explicit, formal representation of
entity types, properties and relationships is a key means to
this end ([2], [3], [4]). Among the advantages of such a
cyber domain ontology include increasing interoperability of
cyber security tools and methods, improving tools to sup-
port situation awareness among cyber security operators, and
enhancing information sharing among domain experts (c.f.,
[5]). Anticipating, diagnosing and responding to increasingly
sophisticated cyber threats requires drawing on and fusing
information from diverse sources. Automated fusion of hard
and soft, structured and unstructured information requires se-
mantic as well as syntactic interoperability among information
providers and consumers. Ontologies are a key enabler of
semantic interoperability.

The cyber security domain is fraught with uncertainty. Sup-
port for uncertainty management is a key requirement for cyber
situation awareness and decision support tools. Probabilistic
ontologies augment traditional ontologies with the ability
to represent uncertainty associated with properties of and
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relationships among domain entities, supporting semantically
aware automated uncertainty management [6].

This paper presents a case study of the use of a probabilistic
ontology to represent and reason about a key problem in
the cyber security domain, mapping IP addresses to physical
locations. Example applications of IP geolocation include
identifying the origin of cyber attacks, protecting against fraud
in internet commerce, screening emails for phishing, and
enforcing restrictions on commerce with sanctioned countries.
Most IP geolocation methods focus on identifying the location
of a single IP host. To support cyber situation awareness, a
useful capability is simultaneous geolocation of a large number
of hosts, with a reduced requirement for geographic resolution.

As an essential component of an overall cyber security
strategy, geolocation services need to interoperate smoothly
with other elements of a cyber security tooklit. For this
purpose, an ontology of the geospatial aspects of the cyber
domain can form a useful module in a cyber domain ontology.
Auvailable information for IP geolocation is fraught with uncer-
tainty. Representing the uncertainty inherent in geolocation can
support more accurate geolocation through information fusion,
as well as integration of geospatial inference with inference
about other aspects of the cyber landscape.

This paper presents a probabilistic ontology (PO) for IP
geolocation and describes its application to the simultaneously
IP node geolocation problem. The geolocation PO is repre-
sented in the PR-OWL language, which provides constructs
for augmenting an OWL ontology with information to support
uncertainty management. We show how the PR-OWL ontology
supports automated construction of a Bayesian network for
simultaneously geolocating a large number of IP hosts. The
ultimate aim is to integrate our probabilistic ontology into a
comprehensive cyber security probabilistic ontology to support
cyber situation awareness, predictive modeling, and response
strategy definition.

The paper is organized as follows. Section II gives a brief
overview of previous research on IP node geolocation. Section
Il presents a factor graph model [7] for simultaneous IP
node geolocalization that forms the basis for our PO. Section
IV makes the case for explicitly representing the semantics
of the model, presents a probabilistic ontology for IP node
localization, and shows how the probabilistic ontology can be
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queried using a generic reasoner to construct a geolocation
model that is formally equivalent to the model of [7]. Section
V presents a summary and discussion.

II. BACKGROUND: IP GEOLOCATION

Although most work on IP geolocation focuses on identi-
fying the physical location of a single IP host, the problem
of simultaneous geolocation of many IP hosts is beginning
to receive attention ([7], [8]). The challenge for large-scale
IP geolocation is three-fold. The first is to expand the scope
of IP geolocation by taking into account not only hosts at
the network edge but also hosts in the network core, such as
routers. The second is to achieve scalability to large numbers
of IP hosts, which requires the ability to simultaneously
infer the location of many hosts. The final challenge is to
improve geolocation accuracy while not sacrificing the first
two objectives. To tackle these challenges, we introduce a
model that uses Bayesian inference to fuse information from
multiple sources to simultaneously geolocate a set of IP
addresses to within a discrete set of geographic regions. The
simultaneous geolocation model underlying our IP geolocation
PO was presented in [7], and is reviewed briefly in this section.

By itself, an IP address provides no information about a
host’s location. Therefore, information from external sources
is required to map an IP address to a physical location.
Available information comes from different sources, each
subject to uncertainty. Information sources for geolocation
can be classified into three broad categories: database-based,
name-based and measurement-based [9].

Geolocation databases [10] contain mappings between IP
addresses and locations. These providers tend to focus on
geolocating end-hosts, and consequently tend to be unreliable
in geolocating routers. Moreover, it has been observed that
databases tend to geolocate blocks of IP addresses to the
location where they were initially registered — often the
business address of the network provider. As a result, some
geographically distributed blocks of IP addresses that may be
geolocated to the same location. Location information about
devices in the core of the network, such as routers, can often
be inferred from the names assigned to them.

Name-based geolocation [11] uses information embedded
in a hostname, such as an airport code or a city abbreviation,
to infer the location of the host. For example, the hostname
ip68-100-3-241.dc.dc.cox.net indicates a device
located in Washington D.C. When available, hostname infor-
mation tends to be fairly reliable, but it is not always available.

Measurement-based geolocation [12] uses network informa-
tion such as delay and topology to estimate the location of
nodes. When location of and connectivity to “landmark” hosts
is available, measurement data can be used to infer the location
of other nodes in the network. However, such techniques
depend not only upon active landmarks that conduct delay
measurements among themselves and the target but also on
passive landmarks that are used for approximating the target’s
location. Also, due to factors discussed later, some delay

measurements may be biased significantly. As a result, delay-
based geolocation errors may be large, sometimes on the
order of several hundred kilometers. The size of the error
has been shown [13] to be correlated with the number of
distributed landmarks and with the number of probes between
landmarks and the unknown target. The dependence on many
distributed hosts with known locations, coupled with the focus
on pinpointing the location of individual target hosts, renders
such techniques impractical for geolocating large numbers of
IP hosts.

III. A MODEL FOR IP GEOLOCATION

From the discussion above, it is clear that geolocating a
large number of hosts requires coping with missing and/or im-
perfect information. Fusing information from the geolocation
database and the location hints obtained from hostnames admit
information about mutually exclusive sets of hosts, thereby
increasing the number of hosts that can be geolocated. How-
ever, this does not guarantee improvement in accuracy due to
the aforementioned uncertainties in the respective information
sources. Because past studies [14], [15] have shown a strong
relationship between measured delay and physical distance,
we incorporate evidence about link delay into our model as a
means to improve accuracy.

Our link delay measurements are taken from the DIMES
database [16], [17], constructed as part of an ongoing, dis-
tributed, open-source project to map the structure and topol-
ogy of the Internet. The DIMES database contains a set of
traceroute measurements. Each traceroute measure-
ment includes the measured round trip time (RTT) from a
source node along a path toward a destination node, along
with the IP addresses of the intermediate nodes along the path.
Host-to-host or link delays can be inferred by subtracting RTTs
for consecutive hosts. In addition, path information can be used
to infer the network topology.

Our model assumes that IP nodes are to be geolocated
into a set of M discrete disjoint geographic regions. A joint
probability distribution is defined over the random variables
defined in Table I. The random variable R,, denotes the region
in which IP node n is located; GG,, represents the result of
a geolocation database query for IP node n; H, represents
the result of a hostname lookup for IP node n. The random
variable Y,,,,, represents a measurement of relative host-to-host
propagation delay between host m and host n.

TABLE I
RANDOM VARIABLE DEFINITIONS

Random Definition

Variable

R, Region in which node n is located

Gn Region returned by geolocation database query
for node n

H, Region returned by hostname lookup for node n

Yin Delay measurement for signal transit between

nodes m and n
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A joint probability distribution for the random variables
{Rn,Gn, Hp, Yimn} is defined in factored form as follows.

In the absence of prior information on the distribution of
hosts across regions, independent uniform distributions are
assumed for the node locations R,,. That is, for each region
r,

6]

Of course, if information were available about the relative
density of nodes in different regions, it could be encoded as
an informative prior distribution on the locations R,,.

Conditional on the region in which n is located, the geolo-
cation database and hostname evidence are independent with
distributions given by:

o r=s:s
o=t =n={ Lu 127
and
B8 t=r
Pr(H, =t|R, =71) = Z 3
it =dr=n={ L |50

That is, the model assumes there is a probability « that
the geolocation database query returns the correct region,
with the remaining probability distributed uniformly among
the remaining regions. Similarly, there is a probability /3
that the hostname lookup returns the correct region, with
the remaining probability distributed uniformly among the
remaining regions. Again, this simple model could be modified
to incorporate additional information if available.

Finally, the distribution of a link delay measurement de-
pends on the distance between the starting and ending point of
the link. A measurement probe packet traveling from a source
to a destination may encounter other delays at each node.
While propagation delay is directly proportional to distance,
the true linear relation is distorted by the presence of other
delays, including queueing, transmission and nodal processing
delay. For Y,,,, measuring link delay between nodes m and
n, let D,,, denote the distance between the regions R,, and
R,, where nodes m and n are located. Chandekar and Paris
[7] considered a normal distribution for Y,,,, given R,, and
R,:

fYon = y|Re =1, Ry = 5) =

1 _w-aa-n?

:d) e 252

2ro

“4)

with mean ad + b a linear function of the distance between
the starting and ending point, and standard deviation o. They
also noted that delay measurements may be biased due to
the fact that some internet routers delay ICMP (Internet
Control Message Protocol) replies. Thus, they also considered
a Gaussian mixture model with different components for zero,
positive and negative bias.

The distributions (1 - 4) are combined into a factored
representation for the joint distribution of {R,,, G1, Hy, Yinn }-
The joint probability mass / density function is:

I Pr(R) Pr(GulRa) Pr(Ha|Ry) [ FYoun|Rin, Ba)
neN (m,n)eLl
(5)
where A is the set of IP nodes to be localized and L is the set
of links, or pairs of nodes connected by signal transmission
measurements.

Fig. 1, adapted from [7], depicts a factor graph for the
joint distribution (5) when there are two nodes connected by
a single link. A factor graph is a graphical probability model
for a joint distribution represented in factored form [18]. The
figure shows a Forney-style factor graph [19], [20], in which
nodes are labeled by factors of the joint distribution and edges
connect pairs of factors that share a random variable. Edges
are labeled by the random variable shared between the factors
at either end of the edge. If a random variable is shared by
more than two factors, equality constraint nodes are inserted
into the graph to “clone” random variables so each random
variable is shared by no more than two factors. Evidence is
shown as labels at the end of edges extending from the random
variables whose values are observed. For example, evidence
that G, has value s, is depicted at the terminus of an edge
extending from the factor Pr(G,|Ry).

From Fig. 1 it can be observed that the underlying physical
topology determines the connectivity between random vari-
ables in the factor graph. The graph shows a cluster for each
of the two hosts. Each of these clusters contains a factor for
the prior distribution over the node’s location, as well as a
factor for evidence from the geolocation database query and a
factor for evidence from the hostname lookup. These evidence
items local to each host are henceforth referred to as node-
local evidence. Fig. 1 also contains a link between the two
clusters, which is labeled by a factor representing the delay
measurement.

Extending this model to an arbitrary network results in a
factor graph containing a node-local evidence cluster for each
host in the network and an edge connecting any two clusters
for which there is a link delay measurement. Thus, the factor
graph structure mirrors the topology of the physical network.
Each node-local evidence cluster corresponds to a physical IP
node and the delay evidence edge corresponds to a connection
(IP link) between nodes.

This mapping between network topology and factor graph
allows for the systematic and simultaneous geolocation of a set
of interconnected nodes using the joint probability distribution
(5). This can be achieved by finding the joint posterior
distributions of the node regions { R, }1<n<a conditional on
database, hostname and delay evidence. For general network
topologies, solving for the joint posterior distribution is in-
tractable. However, the well-known sum-product algorithm
[18] can be applied to estimate the joint posterior distribution.
This algorithm operates by passing messages along edges of
the factor graph to propagate evidence through the network.
The factor graph model allows for the systematic update of

STIDS 2015 Proceedings Page 20



Pr(R,,) Pr(R,)
Ry, ‘ R,
R R
= - f(Ymanvan) - =

R;n Yin R'/n
R — R R — R
m m n n

Pr(Gm|Rm)) (Pr(Hum|Rum) Pr(GulRy))  (Pr(Ha|Ry)
Gm H,, Gn H,
Sm tm Sn ty,

Fig. 1. Factor Graph representation for combining delay and node-local evidence to simultaneously geolocate a pair of nodes m,n

directly connected nodes, thereby reasoning about the location
of a host based on the location of its directly connected hosts
that may have inaccurate or missing node-local evidence.

An algorithm for automatically constructing factor graphs
for arbitrary IP topologies is given in [7]. The authors applied
their factor graph construction method to several test cases,
applied the sum-product algorithm to find posterior distribu-
tions, and compared their results against ground truth. On both
simulated and real-world test cases, they reported improved
accuracy in geolocation from fusing delay data with node-
local information.

IV. TP GEOLOCATION PROBABILISTIC ONTOLOGY

IP address geolocation is an important component capability
for a broad variety of applications in cyber security and other
information technology domains. Explicitly representing the
the semantics of the IP address geolocation model can support
model reuse across applications and interoperability with other
kinds of models. For example, IP geolocation can contribute
to predicting, diagnosing and responding to large-scale cyber
attacks. Incorporating a geolocation capability into a cyber
situation awareness and response system is facilitated by
semantic awareness of the system and the component module.

As the factor graph in Fig. 1 makes clear, the geolocation
model consists of modular elements that are assembled into
a larger model to reason about a given network topology and
patterns of available evidence. Additional evidence types can
be added in a modular way by augmenting the graph with
additional nodes and edges representing the new evidence.
In a similar manner, the geolocation model could be used
within a more comprehensive system. For example, a graphical
probability model library for cyber attack plan recognition
(c.f. [21]) could be augmented with elements representing
geolocation information, which could then be referenced by
attack plan models.

It is worth noting that the model of Section III does not
consider intentional efforts by users to thwart attempts at ge-
olocation. Reasons for evading geolocation are diverse, includ-
ing privacy concerns, overcoming geographical restrictions on
content access, and disguising the source of cyber-attacks.

To address the problem of IP spoofing, a technique common
in denial of service (DoS) attacks, it is important to draw a
distinction between user geolocation and IP geolocation. As
pointed out by [22], user geolocation seeks to identify the
location of a user who requests content or attempts to connect
to a specific resource, whereas IP geolocation seeks to identify
the geographic location of a device given its IP address. An
IP geolocation capability such as the one presented above
can support user geolocation by tracing the path of a spoofed
packet to the network edge and geolocating the device nearest
to the origin. Other techniques exist to extract the actual IP
address of the attacker, which can be geolocated using an
IP geolocation method. Again, our IP geolocation could be
combined with additional modular components to form a user
geolocation capability.

Representing the model as a probabilistic ontology supports
this kind of model interoperability and reuse. Ideally, such a
probabilistic ontology would be built on an existing ontology
of the cyber domain (e.g., [2]). As such, many of the ran-
dom variables in the model should already be represented in
the ontology, and probabilistic ontology development would
largely involve augmenting the existing ontology with infor-
mation about uncertainties. For the purpose of illustrating the
approach, we constructed a limited, partial ontology consisting
of entities, properties and relationships needed to reason about
IP geolocation and augmented that ontology with uncertainty
information. Clearly, a comprehensive ontology of the cyber
domain would represent additional general knowledge and
specific domain knowledge not included here.

Our probabilisitic ontology is represented in the PR-OWL
language [6] and implemented in the UnBBayes-MEBN open-
source PR-OWL reasoning tool [23]. Our representation in-
cludes some workarounds to overcome limitations of the
current version of UnBBayes-MEBN. These limitations will
be addressed in future releases. The model encoded in the
probabilistic ontology is equivalent to the IP geolocation
model presented above.

Table 1II lists the entities in the partial ontology and proper-
ties used by the node geolocation probabilistic ontology. The
ontology has four types of entity: IP nodes, regions where IP
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nodes can be located, probe packets for measuring link delays,
and evidence items. Because this is an OWL ontology, all four
types are subtypes of Thing.

TABLE 11
ENTITIES AND ATTRIBUTES IN GEOLOCATION PROBABILISTIC
ONTOLOGY
Entity Property Description
IPNode Location Region in which IP node is lo-
cated
Region RegionID Unique identifier for a region
ProbePacket StartingNode Starting node for a link delay
measurement
EndingNode Ending node for a link delay
measurement

IP node to which a database
query or hostname lookup refers

Evidenceltem ReportedNode

GeoIPReport Region returned by database
query on IP node
HostnameReport Region returned by hostname
lookup on IP node
ReportedProbe Probe packet to which a link
delay measurement refers
DelayReport Measured delay for a probe

packet sent across a link

A property of an IP node is its location. A property of a
region is its region ID, a unique identifier used to refer to the
region. Properties of a probe packet include its starting and
ending nodes. Properties of an evidence item include the IP
node to which it refers for node local evidence, the content
of a GeolP query response, the content of a hostname lookup
result, the probe packet measured by a link delay report, and
the measured delay for a probe packet sent across a link.

Table III shows the relationships represented in the ontology.
The entity types participating in the relationship are shown.
The IsA relationship relates an entity and a type if the entity
is of the given type. The ontology includes the relationships
NodeDistance and RegionDistance to represent the dis-
tance between nodes and regions, respectively. Ideally, there
would be only one Distance attribute to represent the distance
between two spatial entities. However, the current UnBBayes-
MEBN implementation does not yet support polymorphism;
this capability is slated for the next release. Thus, the ontology
uses two different terms to accommodate the limitations of the
reasoning tool.

Fig. 2 shows the Node Geolocation probabilistic ontology.
The probabilistic ontology consists of five MFrags (Multi-
Entity Bayesian Network Fragments). Each MFrag defines a
local probability distribution for its resident random variables,
depicted by yellow ovals, conditional on their parents in
the MFrag. The context random variables, depicted by green
pentagons, represent conditions that must be satisfied for the
local distribution definitions to be meaningful. Finally, the
gray trapezoids are input random variables, which are parents
of resident random variables whose distribution is defined in
another MFrag.

The random variables in the MFrags define a joint prob-
ability distribution over properties and relationships in the

TABLE III
RELATIONSHIPS IN GEOLOCATION PROBABILISTIC ONTOLOGY

Relationship Entities Description

IsA Thing, Type Indicates that an entity is of
the referenced type

NodeDistance IPNode, IPNode Distance between two IP

nodes (real number)
Distance between two re-
gions (real number)

RegionDistance Region, Region

ontology. A random variable with a single argument cor-
responds to a property, and a random variable with two
arguments corresponds to a relationship. The arguments are
placeholders (called ordinary variables to distinguish them
from random variables) that can be filled in by the identifiers
of individuals of the appropriate types. For example, if N1 and
N2 are individuals of the IPNode type, the random variable
Location(N1) represents the uncertain location of N1, and
NodeDistance(N1,N2) corresponds to the distance between
IP nodes N1 and N2. The second argument of the IsA random
variable is always a type name, indicating the type of its
first argument. Thus, IsA(N1, IPNode) has value True and
IsA(N1,Region) has value False. Multiple instances of these
MFrags can be constructed by filling in the ordinary variables
with different entity instances. The MFrag instances can then
be assembled into a Bayesian network called a situation-
specific Bayesian network, or SSBN.

The MFrags and local distributions are described as follows.

e Node Location: This MFrag defines a distribution for
the Location random variable, representing the region
in which an IP node is located. This random variable
corresponds to the Location property of the IPNode
entity. It also corresponds to the random variable R,, in
the factor graph of Fig. 1. Its possible values are regions
and it is given a uniform distribution, meaning that all
regions are equally likely locations for any given node.

e Distance: This MFrag defines distances between regions.
The RegionDistance random variable is initialized to
a uniform distribution (or a Gaussian distribution with
mean zero and very large variance). When region in-
stances are defined, their respective RegionDistance ran-
dom variables are set to the actual distance between each
pair of regions. The NodeDistance random variable has
a deterministic distribution, being equal to the distance
between the regions in which its arguments are located.
These random variables define distributions for the Re-
gionDistance and NodeDistance relationships from Table
III.

e Probe Packet Definition: This MFrag defines random
variables StartingNode and EndingNode for probe packets
sent across links. The distributions are initialized as
uniform. When a delay measurement is received, they
are set to the starting and ending node for the the
probe packet. These random variables define distributions
for the StartingNode and EndingNode properties of a
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Fig. 2. Node Geolocation Probabilisitic Ontology

ProbePacket entity as defined in Table II.

Evidence: This MFrag defines random variables Report-
edNode and ReportedProbe for evidence items. The for-
mer defines the IP node to which a GeolP query or a host-
name lookup refers. The latter defines the probe packet
to which a given link delay measurement refers. These
random variables are initialized to uniform distributions
and are set to the appropriate values when reports are
received. These random variables define distributions for
the ReportedNode and ReportedProbe properties of
EvidenceItem entities as defined in Table II.

Link Delay: This MFrag defines the distribution for a link
delay measurement conditional on the distance between
the starting node and ending node for the corresponding
probe packet. The DelayReport random variable corre-
sponds to the random variable Y,,,, in the factor graph
of Fig. 1. It has the normal distribution given by (4),
or a mixture of normal distributions if router delay is
being considered in the model. This random variable
defines the distribution for the DelayReport property of
an EvidenceIten entity as presented in Table II.

Node Local Information: This MFrag represents evidence
local to a given node. The resident nodes GeolPReport
and HostnameReport correspond to the random vari-

ables G,, and H,, respectively, in the factor graph of
Fig. 1. The local distributions for GeolPReport and
HostnameReport are given by (2) and (3), respectively.
These random variables define distributions for the
GeoIPReport and HostnameReport properties of an
IPNode entity shown in Table II.

The probabilistic ontology is applied to a given network
topology and set of measurements as follows. Assume that we
are given a set of nodes, a set of regions, a network topology
defining node connectivity, link delay measurements for nodes
connected by the topology, and GeolP query and hostname
lookup results for some or all of the nodes. Inference about
node locations proceeds as follows.

1y

2)

3)

Create an instance of Region for each region. Define the
regions as mutually exclusive. Give each region an ID,
and set the value of RegionID to the region’s ID. For
each pair of regions, set the value of RegionDistance
to the distance between the regions.

Create an instance of IPNode for each node in the
network. Define the nodes as mutually exclusive.
Create an instance of ProbePacket for each probe
packet for which the propagation delay has been
measured. Set the properties StartingNode and
EndingNode to the instances of IPnode corresponding
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Fig. 3. Constructed Bayesian network for geolocating a pair of IP nodes

to the endpoints of the link.

4) Create an instance of Evidenceltem for each GeolP
query result. For each report, set the property
ReportedNode to the IPnode instance to which the
report refers, and the property GeoIPReport to the
region indicated by the report.

5) Create an instance of EvidenceItem for each host-
name lookup result. For each report, set the property
ReportedNode to the IPnode instance to which the
report refers, and the property HostnameReport to the
region indicated by the report.

6) Create an instance of EvidenceItem for each link
delay measurement. For each report, set the property
ReportedProbe to the instance of ProbePacket to
which the report refers. Set the property DelayReport
to the measured delay across the link.

7) Run a query to find the posterior distribution of the
NodeLocation properties. This involves assembling a
situation-specific Bayesian network containing the ran-
dom variable instances created in the above steps. The
MFrags containing the random variable instances are re-
trieved and instantiated, and then combined by unifying
on common random variables. The result is a Bayesian
network to reason about IP node locations.

Fig. 3 shows the situation-specific Bayesian network pro-
duced by the UnBBayes software for the case of a network
with two nodes connected by a single link. The Bayesian
network of Fig. 3 and the factor graph of Fig. 1 encode the
identical joint distribution for node locations and evidence.
The model of (5) and the probabilistic ontology of Fig. 2
encode formally equivalent joint distributions over node lo-
cations, node local evidence and transmission delay evidence.

The SSBN of Fig. 3 is a hybrid Bayesian network containing
both discrete and continuous random variables. The distance
random variables are real-valued and continuous; the other

random variables are discrete. The graph of Fig. ?? is a
polytree, and exact inference is possible using an algorithm
for conditional linear Gaussian (CLG) Bayesian networks.
For larger networks with complex network topologies, the
graph will contain cycles and exact inference is intractable.
Approximate inference algorithms such as the one presented
in [24] can be applied.

V. CONCLUSION

Explicitly representing domain semantics in computable
form supports maintainability, interoperability and extensibil-
ity of systems. For problems characterized by reasoning under
uncertainty, a semantically rich representation for sources
of uncertainty should be appropriately integrated with the
domain ontology. This paper presented a case study of a
probabilistic ontology for large-scale IP address geolocation.
The probabilistic ontology integrates an existing factor graph
model for IP geolocation with a domain ontology representing
geolocation knowledge. Random variables in the factor graph
model correspond to uncertain properties and relationships
in the domain ontology. The model is represented as a PR-
OWL probabilistic ontology that augments an OWL domain
ontology by defining probability distributions for uncertain
properties and relationships. Reasoning with the probabilistic
ontology is performed by creating instances of the relevant
entities, instantiating copies of the random variables by filling
in their arguments with appropriate entity instances, and
assembling them into a Bayesian network to reason about the
particular problem instance. The model can be used to reason
about arbitrary numbers of IP nodes and regions, arbitrary
network topologies, and arbitrary numbers of evidence items.
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