

Controlled and Uncontrolled English for Ontology
Editing

Brian Donohue

CUBRC
Buffalo, NY

Douglas Kutach

CUBRC
Buffalo, NY

Robert Ganger
CUBRC

Buffalo, NY

Ron Rudnicki
CUBRC

Buffalo, NY

Tien Pham
Army Research

Lab
Adelphi, MD

Geeth de Mel

IBM
White Plains, NY

Amardeep
Bhattal

IBM
Southampton, UK

Dave Braines

IBM
Portsmouth, UK

Barry Smith
University at

Buffalo
Buffalo, NY

Abstract—Ontologies formally represent reality in a way

that limits ambiguity and facilitates automated reasoning and
data fusion, but is often daunting to the non-technical user.
Thus, many researchers have endeavored to hide the formal
syntax and semantics of ontologies behind the constructs of
Controlled Natural Languages (CNLs), which retain the
formal properties of ontologies while simultaneously
presenting that information in a comprehensible natural
language format. In this paper, we build upon previous work
in this field by evaluating prospects of implementing
International Technology Alliance Controlled English (ITA-
CE) as a middleware for ontology editing. We also discuss at
length a prototype of a natural language conversational
interface application designed to facilitate ontology editing via
the formulation of CNL constructs.

Keywords—Ontology; Controlled English; Intelligence
Collection

I. INTRODUCTION

Ontologies formally represent reality in a way that limits
ambiguity and facilitates automated reasoning and data
fusion. Many technologies are available for building,
sharing, and using ontologies, including Web Ontology
Language (OWL) and controlled natural languages (CNLs).
On the one hand, OWL provides effective representation
constructs and enables efficient reasoning procedures but is
daunting to the non-technical user. On the other hand,
CNLs, which are restricted versions of natural languages,
provide a human-friendly representation format that is easier
for non-technical users but there is no established standard
for how statements of CNLs should map onto assertions
defining an ontology.
Motivated by the accessibility of CNL, we explored how to
create software infrastructure that would enable users to
interact with an OWL knowledge base through CNL
constructs. We see the value of such an infrastructure for the
intelligence, defense and security communities as being
realized in the use of ontology-driven information collection
applications. Such applications typically have one of two
opposing shortcomings. First, users can be prevented from
entering information about an entity if that type of entity is

not represented in the underlying ontology, but this can be
perceived by users as unfriendly. Second, applications can
let users enter such information, but this allows the ontology
to be modified in ways that do not follow best practices.
 In this report, we specifically examine the interplay
between OWL 2 DL [1] and the International Technology
Alliance’s Controlled English, ITA-CE [2]-[6] to determine
the feasibility of using ITA-CE as a medium through which
ontologies can be correctly modified by non-technical users.

There are two main conclusions we have drawn from this
investigation. First, a conversational interface application
can assist users in ontology editing tasks. We developed a
prototype software application that can be used either as a
command-line application or as part of the conversational
panel found in IBM’s ITA-CE processing environment
called ‘CE Store’. Our application allows people to converse
with a computer in everyday English so that the user’s
intentions regarding ontology can be rendered into a CNL
equivalent. The CNL command can then be passed on to
additional machine agents, which modify the ontology and
store the result in an OWL file. The application can easily
be extended to ingest other data formats such as relational
databases and ontology formats other than OWL. At the
same time, we discovered that such software does not
strictly require the use of CE statements in general or of
ITA-CE statements in particular. However, within the
current implementation of the conversational interface
application, ITA-CE is presented to human users as
unambiguous confirmation prompts to ensure that the user’s
natural language commands were interpreted correctly.

The second conclusion was that ITA-CE might serve as a
convenient communication medium for analysts and
developers handling information sources in a variety of
formats, and by enabling machine agents to exploit
additional information sources when attempting to interpret
requests made by users.

The rest of the document is structured as follows. Section
II discusses existing approaches to utilizing CNL-based
approaches to modifying ontologies. Section III provides an

STIDS 2015 Proceedings Page 74

overview of ITA-CE. In Section IV, we provide a detailed
discussion of our implementation to support conversational
OWL ontology editing. In Section V, we introduce a few
illustrative scenarios to show the applicability of our work.
We conclude in Section VI by sketching future directions of
our work.

II. CONTROLLED NATURAL LANGUAGE ONTOLOGY
EDITORS

The formal underpinnings of semantic technologies are
substantial obstacles for a casual end-user. This usability
problem has been widely noted already within the Semantic
Web. For example, Rector [7] documented numerous errors
commonly made by non-expert ontology users. These
include (1) the failure to make all information explicit, (2)
ignorance of the effects of range and domain restrictions, (3)
mixing up defined and primitive classes, (4)
misunderstanding common logical constructs (‘and’, ‘or’,
‘some not’, ‘not some’), (5) presuming that classes are
disjoint by default, and (6) being insensitive to open world
reasoning. Thus, non-expert ontology users face an immense
hurdle developing and utilizing ontology-based information
sources.

In response to the usability problem, previous research [8]-
[14] has sought to hide the formal syntax and semantics of
ontologies behind CNL constructs. Several projects in
particular have sought to exploit existing CNLs, or develop
new CNLs, in order to simplify the tasks of creating,
managing, and navigating ontologies.1 Several software
applications now allow users to edit ontologies by writing
English sentences that are restricted in admissible
vocabulary and grammatical constructions, yet relatively
easily comprehended. This sets them apart from traditional
tree-structured and graph-structured ontology editors such as
Protégé and TopBraid Composer™.
To a great extent, these CNL ontology editors have helped
to bridge the gap between casual users and ontological
formalisms. However, their success is limited by at least one
of four recalcitrant problems. First, most of the editors are
not fully compliant with OWL 2 DL, the most widely used
member of the OWL family of languages. ACE View does
not currently support sentences that express data properties
and their corresponding datatypes (e.g., having a date-time
value associated with an event). GINO Editor and CLOnE
Editor restrict users to only very basic OWL constructs (e.g.,
there appears to be no support for inserting class axioms or
cardinality restrictions). The ROO Editor employs a more
expressive language than ACE View, GINO Editor, and
CLOnE Editor, but it shies away from OWL 2 DL
expressivity for simplicity [12]. Only the Fluent Editor™

1 There has been little comparative study of the vast array of CNLs actively
in use. Kuhn (2014) surveys 100 recent CNLs, and Schwitter (et al.,
2008) offers a detailed comparison of three of the more prominent CNLs in
use today: Attempto Controlled English (ACE), Ordnance Survey Rabbit,
and Sydney OWL Syntax (SOS).

2014 connects users with OWL2 DL’s full expressive
potential.

Second, some of the editors employ insufficient resources
for explaining and correcting user input error. CLOnE
Editor users, for example, complained of receiving little
guidance for inputting CNL expressions and no feedback to
explain syntactical errors [11]. Similarly, users of ROO
Editor complained of receiving no feedback on semantic
errors [13].

Third, the documented experiments conducted with CNL
ontology editors suggest that all but the simplest editing
tasks lie beyond the ordinary capabilities of the CNL
ontology editor user. Of the editors surveyed above, GINO,
CLOnE, and ROO ran experiments with non-expert
ontology users. In each case, however, users were successful
only in performing basic tasks (e.g., most users could create
a class, property, or instance), and for the most part
unsuccessful in executing any more sophisticated task (e.g.,
correctly adding an axiom). If the usability problem is to be
solved altogether, then end-users will need an interface that
relieves much of the burden of expressing the wide array of
OWL constructs.

Fourth, all of the editors require end-users to master the
stringent lexical and syntactic rules governing the
implemented CNL. For instance, users must be sensitive to
quantifiers (‘every’, ‘some’), disallowed terms (‘or’, ‘not’),
and peculiar lexical conventions (e.g., in ACE, dashes
between multiple elements of a term, e.g., ‘stretch-of-river’).
Although the GINO and Fluent editors assist users in
entering CNL through predictive mechanisms, and although
CLOnE and ROO employ less stringent lexical and syntactic
restrictions, the fact remains that users are expected to write
impeccable CNL sentences. Thus, even if CNL-based
editors are more human friendly than traditional tree-
structured or graph-structured ontology editors, they
nevertheless run the risk of alienating the non-expert user, as
put forward by Smart [15].

Related projects include formulations of alternative OWL
syntaxes, aimed at simplifying OWL for non-expert users,
and resulting in an ontology language that resembles, in
many of its properties, a CNL. In particular, we note
Manchester OWL Syntax [16], which is recognized by
W3C, and Sydney OWL Syntax [17].
The software discussed in this paper aims to overcome the
usability problem in a different way. If it were fully
developed, it would minimize people’s direct interaction
with CNLs and eliminate altogether the requirement for
them to write syntactically correct sentences of a CNL.
Instead, a non-technical user could engage in ontology
creation, editing, and management entirely by means of a
natural language human-machine conversation. At most a
user would need to read a sentence of CNL in order to
confirm that the conversational agent has correctly
interpreted the natural language input. Behind the scenes,
the conversational agent would translate the user’s

STIDS 2015 Proceedings Page 75

commands into a CNL, which would then be passed along
to other agents that have access to particular knowledge
representation documents, e.g., an OWL/XML file. In our
current preliminary implementation of this idea, all of the
interaction can take place within the CNL processing
environment designed by the International Technology
Alliance (ITA) and within the context of previous ITA
research on CNL-based tools and their military applications.

III. OVERVIEW OF ITA CONTROLLED ENGLISH

In 2010, the International Technology Alliance (ITA) began
developing a CNL known as ITA Controlled English (ITA-
CE) for the purpose of supporting tasks within the Data-to-
�'�H�F�L�V�L�R�Q�V�����'���'�����I�U�D�P�H�Z�R�U�N�����³�V�S�H�F�L�I�L�F�D�O�O�\���W�R���D�V�V�L�V�W���F�R�D�O�L�W�L�R�Q��
decision makers in distributed information environments
through automated or semi-�D�X�W�R�P�D�W�H�G���I�X�V�L�R�Q���S�U�R�F�H�V�V�H�V�´���>���@����
Previous ITA-CE research has addressed the problem of the
miscommunication between US and UK military personnel
rooted in lexical and cultural discrepancies and the problem
of enhancing shared understanding and communication for
military decision-making, especially through the
exploitation of sensor resources. An example of this is
MOIRA (Mobile Intelligence Reporting App), which aims
to expedite data requisition within ISR missions.

At base, the syntax and semantics of ITA-CE are adopted
�I�U�R�P�� �6�R�Z�D�¶�V�� �&�R�P�P�R�Q�� �/�R�J�L�F�� �&�R�Q�W�U�R�O�O�H�G�� �(�Q�J�O�L�V�K�� �>�����@-[19],
which in turn aligns itself closely to first-order logic. As
with most CNLs, the resultant expressions of the language
are readily comprehensible to ordinary English speakers.
For example:
there is a person named Steve.
the person Steve is married to the person Jane.
the person Steve has the person Jane as spouse.

By writing ITA-CE sentences, users can gradually construct
a model, in which all pertinent entities within that model �±
including types, properties, relations, and individuals �± are
specified. Thus, to construct a model, a user would write
sentences defining the objects, properties, and relationships
within that domain.

New terms are introduced to the model by means of
�³�F�R�Q�F�H�S�W�X�D�O�L�V�H�´���V�W�D�W�H�P�H�Q�W�V�����)�R�U���H�[�D�P�S�O�H��
conceptualise a ~ Chihuahua ~ C that is a dog.
conceptualise the Chihuahua C ~ barks at ~ the
person P1.
conceptualise the Chihuahua C has the person P2 as
~ owner ~.

The term being added or modified is set off by tildes (~),
and if the new term is a noun, it is followed by an uppercase
variable name.

Additionally, users can write rules of inference to the model
�L�Q���W�K�H���I�R�U�P���R�I���³�L�I-�W�K�H�Q�´���V�W�D�W�H�P�H�Q�W�V�����)�R�U���H�[�D�P�S�O�H��
if
 (the person P1 is married to the person P2)
then
 (the person P2 is married to the person P1) .

�7�K�L�V�� �U�X�O�H�� �V�W�D�W�H�V�� �W�K�D�W�� �W�K�H�� �³�L�V�� �P�D�U�U�L�H�G�� �W�R�´�� �U�H�O�D�W�L�R�Q�� �L�V��
symmetric. If a user includes this rule in a model and also
�L�Q�F�O�X�G�H�V�� �W�K�H�� �V�H�Q�W�H�Q�F�H�� �³�W�K�H�� �S�H�U�V�R�Q�� �6�W�H�Y�H�� �L�V�� �P�D�U�U�L�H�G�� �W�R�� �W�K�H��
�S�H�U�V�R�Q�� �-�D�Q�H���´�� �W�K�H�Q�� �V�R�I�W�Z�D�U�H�� �Fan easily and correctly infer
�³�W�K�H���S�H�U�V�R�Q���-�D�Q�H���L�V���P�D�U�U�L�H�G���W�R���W�K�H���S�H�U�V�R�Q���6�W�H�Y�H���´

Models can be defined and extended using the ITA-CE
�S�U�R�F�H�V�V�L�Q�J�� �H�Q�Y�L�U�R�Q�P�H�Q�W���� �F�D�O�O�H�G�� �µ�&�(�� �6�W�R�U�H�¶�� �>���@��2 ITA-�&�(�¶�V��
CE Store software allows users to define and execute
�F�X�V�W�R�P�� �³�&�(�� �D�J�H�Q�W�V���´�� �L�Q�F�O�X�G�L�Q�J�� �F�R�Q�Y�H�U�V�D�W�L�R�Q�D�O�� �D�J�H�Q�W�V�� �Z�L�W�K��
which users can converse in ordinary English. Below, we
present a pair of CE agents, one of which assists the user in
formalizing natural language expressions and the other of
which retrieves and emends information within OWL files.

IV. CONVERSATIONAL INTERFACE APPLICATION

The conversational interface application that we coded
cooperates with the CE Store software, which takes the form
of a web application that accepts ITA-CE sentences as input
and responds by remembering the ITA-CE sentence and
possibly triggering other behavior based on the content of
the ITA-CE sentence. Our software is an add-on to the CE
Store in the sense that it is a WAR file that can be placed in
the same folder as the CE Store's WAR files and is
configured by storing a few CE statements in the CE Store.

Given the suitability of the CE Store for incorporating
ontology information, one possible strategy for editing
ontologies by means of ITA-CE is first to translate the
English into ITA-CE and then ITA-CE into OWL. In
practice, however, such a strategy faces some obstacles.

To see why, first observe that in order for the software to
guide the user in editing an ontology, it must somehow
access all the relevant information about the ontology.
Because the CE Store software stores its data in the form of
ITA-CE statements, the ontology would first need to be
loaded into CE Store. This would incur some data
redundancy and would require the addition of some rules to
draw inferences not explicitly asserted by the ontology.
Neither of these is a sizable obstacle. However, if we were
to adopt this strategy, and then a user made changes to the
ontology, then the previous statements might become false.
For example, an ontology might define a hierarchy in which
Z is a direct subtype of X. If a user chooses to insert a new
type Y so that X is a parent of Y and Y is a parent of Z, the
previous statement will need to be deleted. Deletion can
pose a problem for the CE Store because new statements are
sometimes automatically inferred according to the rules
already present in the store.

Although limited deletion of sentences is no obstacle, some
kinds of changes to an ontology (that ought to be allowed)
could potentially require identifying and deleting sentences
en masse, at least if there are already statements about
instances of the classes in the ontology. For example, we

2 An alpha version is publically available for download at
http://ibm.co/RDIa53.

STIDS 2015 Proceedings Page 76

http://ibm.co/RDIa53

�P�L�J�K�W���K�D�Y�H�� �D���U�H�O�D�W�L�R�Q�� �³�U�H�F�H�L�Y�H�V�� �L�Q�I�R�U�P�D�W�L�R�Q�� �I�U�R�P�´�� �E�H�W�Z�H�H�Q��
�D�U�W�L�I�D�F�W�V���� �Z�L�W�K�� �V�R�P�H�� �L�Q�V�W�D�Q�F�H�V�� �O�L�N�H�� �³�W�K�H�� �P�D�F�K�L�Q�H�� �.�5�)��������
�U�H�F�H�L�Y�H�V�� �L�Q�I�R�U�P�D�W�L�R�Q�� �I�U�R�P�� �W�K�H�� �P�D�F�K�L�Q�H�� �(�(�/�5���´�� �D�Q�G�� �³�W�K�H��
machine KRF343 receives information from the machine
�.�5�)���������´���1�R�Z���V�X�S�S�R�V�H���W�K�D�W���V�R�P�H�R�Q�H���D�O�W�H�U�V���W�K�H���R�Q�W�R�O�R�J�\���E�\��
�P�D�U�N�L�Q�J�� �W�K�H�� �³�U�H�F�H�L�Y�H�V�� �L�Q�I�R�U�P�D�W�L�R�Q�� �I�U�R�P�´�� �U�H�O�D�W�L�R�Q�� �D�V��
reflexive, which triggers (for every artifact X) the addition
�R�I�� �D�� �V�W�D�W�H�P�H�Q�W���� �³�;�� �U�H�F�H�L�Y�H�V�� �L�Q�I�R�U�P�D�W�L�R�Q�� �I�U�R�P�� �;���´�� �7�K�H�Q���� �L�I��
the reflexivity of this relation is removed, the proper
behavior would not be to have all such statements removed,
but to remove only those that statements whose existence
were generated by the rule. In that case, we might need to
�N�H�H�S�� �³�W�K�H�� �P�D�F�K�L�Q�H�� �.�5�)�������� �U�H�F�H�L�Y�H�V��information from the
�P�D�F�K�L�Q�H�� �.�5�)���������´�� �E�H�F�D�X�V�H���� �V�D�\���� �L�W�� �L�V�� �D�� �V�S�H�F�L�D�O�� �U�D�G�L�R�� �W�K�D�W��
broadcasts messages and also records what it broadcasts in
addition to what it receives from other broadcasters. The CE
Store can keep track of which rules its sentences are derived
�I�U�R�P�� ���D�V�� �³�U�D�W�L�R�Q�D�O�H�� �J�U�D�S�K�V�´������ �H�Y�H�Q�� �W�K�H�Q���� �K�R�Z�H�Y�H�U���� �W�K�H�U�H��
remains a problem of managing which information should
be deleted.

A second related worry is that the ontology editing software
does not have exclusive control over the CE Store, nor can it
verify ahead of time whether all the rules CE Store will be
compatible with changes that a user makes. If a user
accidentally adds a statement to the ontology which renders
it inconsistent, it is possible that rules that trigger on the
statements in the ontology will generate conflicting
assertions, which can trigger further undesired effects that
might be hard to predict and difficult to undo.

A third deficiency of the CE Store for maintaining the
ontology information that users are editing is that it does not
�S�U�R�Y�L�G�H�� �D�� �P�H�D�Q�V�� �I�R�U�� �N�H�H�S�L�Q�J�� �G�L�I�I�H�U�H�Q�W�� �X�V�H�U�V�¶�� �R�Q�W�R�O�R�J�\��
changes separate. In its current state, the CE Store does not
allow any name spaces, which could differentiate between
conflicting definitions of an entity.
Consequently, we found it advisable to adopt two design
policies. First, it should not be required for the CE Store to
ingest the ontology information, which is already in the
OWL file. Second, we should not require the content of the
OWL file match what ontology information (if any) kept in
the CE Store. At the same time, we determined that we
could still use the CE Store by inserting ITA-CE statements
�D�E�R�X�W�� �W�K�H�� �X�V�H�U�¶�V�� �L�Q�W�H�Q�W�L�R�Q�� �W�R�� �P�D�N�H�� �D�Q�� �R�Q�W�R�O�R�J�\�� �F�K�D�Q�J�H�� �R�U��
about what information about the ontology the user would
like to obtain.
The structure of the resultant application is such that a user
types ordinary English sentences into either a terminal
window or the conversational interface of the CE Store,
which triggers a response from a specially designed Java
class, OntologyAgent. This Java class parses English input
in attempt to infer the user's intentions regarding the loaded
ontology. In the special case where the user's input is in
controlled English, the OntologyAgent can act on it without
needing to ask the user for further clarification, but when the
user states a command in ordinary English, the
OntologyAgent will do its best to interpret the input,

sometimes responding with advice or questions. The output
to the user is often in ordinary English, but when the
OntologyAgent is prompting the user for confirmation, it
provides a controlled English statement to coach the user so
that on future occasions, the user can use controlled English
for quicker unambiguous communication.
When the OntologyAgent needs information about the
current state of the ontology, it sends out requests for
information by placing appropriately structured ITA-CE
sentences in the CE Store, which in turn trigger a response
by another specially designed Java class, OwlAgent, which
loads OWL ontology files and operates automated reasoners
to answer questions about the inferred ontology, sending
answers back to the OntologyAgent through ITA-CE
statements placed in the CE Store. Information is shuttled
back and forth between the OwlAgent and OntologyAgent
until the OntologyAgent feels confident about the meaning
�R�I���W�K�H���X�V�H�U�¶�V���L�Q�L�W�L�D�O���U�H�T�X�H�V�W�����2�Q�F�H���W�K�H���X�V�H�U���K�D�V���F�R�Q�I�L�U�P�H�G���W�K�H��
�D�F�F�X�U�D�F�\���R�I���W�K�H���2�Q�W�R�O�R�J�\�$�J�H�Q�W�¶�V���L�Q�W�H�U�S�U�H�W�D�W�L�R�Q�����L�W���S�D�V�V�H�V���D�Q��
ITA-CE string to an OwlAgent via the CE Store
conversational interface, the OwlAgent analyzes the
requested modification, and, so long as it protects the
integrity of the OWL file, updates the ontology accordingly.
Given this structure, the program can (and does) log changes
to all ontologies, keeps different users' ontologies separate,
and saves changes to the ontologies incrementally to allow
users to undo changes.
In order to enhance its interpretive capabilities, the
OntologyAgent attempts to leverage information already
present within the OWL file. It does so by posing queries to
the OwlAgent (again, via �W�K�H���&�(�� �6�W�R�U�H������ �V�X�F�K���D�V���� �µ�'�R�H�V���W�K�H��
�F�O�D�V�V���&���H�[�L�V�W���L�Q���W�K�H���R�Q�W�R�O�R�J�\�"�¶���D�Q�G���µ�'�R�H�V���W�K�H���X�V�H�U�¶�V���U�H�T�X�H�V�W��
violate any domain or range restrictions on object
�S�U�R�S�H�U�W�L�H�V�"�¶���7�K�H���2�Z�O�$�J�H�Q�W�����Z�K�R���P�D�Q�D�J�H�V���F�K�D�Q�J�H�V���W�R���2�:�/��
�I�L�O�H�V���� �D�Q�V�Z�H�U�V�� �W�K�H�� �2�Q�W�R�O�R�J�\�$�J�H�Q�W�¶�V�� �T�X�H�U�L�H�V���� �I�R�U�� �H�[�Dmple,
�µ�7�K�H�U�H���L�V���Q�R���V�X�F�K���F�O�D�V�V���L�Q���W�K�H���2�:�/���I�L�O�H�¶���R�U���µ�7�K�D�W���U�H�T�X�H�V�W�H�G��
�F�K�D�Q�J�H���Z�R�X�O�G���Y�L�R�O�D�W�H���D���G�R�P�D�L�Q���U�H�V�W�U�L�F�W�L�R�Q�¶���� �$�V���D���U�H�V�X�O�W�����W�K�H��
OntologyAgent can make suggestions based on the
information already contained within the OWL file and thus
provide guidance to users wishing to modify an ontology.
Currently, the software allows users to add classes anywhere
in the class hierarchy and to add any desired existential
restrictions. With the basic framework having been coded, it
is straightforward to expand the software to allow other
types of ontology changes.

�&�R�Q�V�L�G�H�U���D�Q���H�[�D�P�S�O�H�����7�K�H���X�V�H�U�����Z�K�R���L�V���O�R�J�J�H�G���L�Q���D�V���µ�6�W�H�Y�H�¶��
�W�\�S�H�V�� �³�,�� �Z�D�Q�W�� �W�R�� �D�G�G�� �&�L�W�L�]�H�Q���D�V�� �D�� �V�X�E�F�O�D�V�V�� �R�I�� �3�H�U�V�R�Q���´�� �L�Q�W�R��
the conversational interface. The OntologyAgent is part of

 the CUBRC software and conducts some basic natural
language processing to identify that the string matches one
of the allowed forms for stating that that one class X should
be made a subclass of another class Y. The user could have
�M�X�V�W���W�\�S�H�G���³�F�L�W�L�]�H�Q���L�V��pers�R�Q�´���D�Q�G���J�R�W�W�H�Q���W�K�H���V�D�P�H���U�H�V�X�O�W����The
interface is designed to be very forgiving about what it
accepts. After getting confirmation from the user, the

STIDS 2015 Proceedings Page 77

�2�Q�W�R�O�R�J�\�$�J�H�Q�W�� �S�D�V�V�H�V�� �W�K�H�� �X�V�H�U�¶�V�� �F�R�P�P�D�Q�G�� �L�Q�W�R�� �W�K�H�� �&�(��
Store using a controlled English statement
!"#$#%&'%(%$#)*#'!%+($,%-(.#,%/.'012/%!"(!%&'%3$4.%
!"#%'#$5&+#%/6-!4740890#-!/%(-,%&'%!4%!"#%
&-,&5&,*(7%/6:790#-!/%(-,%"('%(-,%"('%/+&!&;#-/%('%
($0*.#-!%4-#%(-,%"('%/<#$'4-/%('%($0*.#-!%!:4%(-,%
"('%/=!#5#/%('%"*.(-%(-,%"('%/>4..(-,19,,>7(''/%('%
+4..(-,%(-,%"('%/+4-+#<! *(7&'#%(%?%+&!&;#-%?%>%
!"(!%&'%(%<#$'4-@/%('%+4-!#-!@

This string, when it enters the CE Store is recognized as a

legitimate CE statement. Because it is recognized as a card
�W�R�� �W�K�H�� �L�Q�G�L�Y�L�G�X�D�O�� �µ�2�Z�O�$�J�H�Q�W�¶���� �W�K�H�� �2�Z�O�$�J�H�Q�W�� �F�R�G�H�G�� �D�V�� �S�D�U�W��
of the CUBRC software is passed the string through a Java
method. The OwlAgent then parses the string to find that it
�V�K�R�X�O�G���F�K�H�F�N���Z�K�H�W�K�H�U���µ�F�L�W�L�]�H�Q�¶���F�D�Q���E�H���D�G�G�H�G���D�V���D���V�X�E�F�O�D�V�V���R�I��
�µ�S�H�U�V�R�Q�¶���� �,�W�� �G�R�H�V�� �V�R�� �E�\�� �P�D�N�L�Q�J�� �F�D�O�O�V�� �W�R��a layer of the
CUBRC software that keeps track of which ontologies are
being edited by which humans and limits the kind of
ontology changes permitted. This OWLAPI wrapper then
makes calls to a publicly available Java API called
OWLAPI, which is more complex and permits a much
wider range of operations on ontologies, especially those
stored as OWL files.

Note, however, that the OntologyAgent sends redundant
information to the OwlAgent. In the content string it sends a
statement that obeys the syntax and semantics of ITA-CE:
+4-+#<!*(7&'#%(%?%+&!&;#-%?%>%!"(!%&'%(%<#$'4 -@

In the command, argument one, and argument two strings, it
conveys in effect the same information:
>4..(-,19,,>7(''%/>&!&;#-/%/A#$'4-/

The reason for passing two strings to the OwlAgent that
express the same command is that (1) it is easy for the
OntologyAgent to generate a tiny amount of additional text
to express the same command in different formats, and (2)
any agents that are coded to receive commands from an
OntologyAgent can be coded to respond to whichever
format is easiest to parse. In our conversational interface
software, the Java methods called by the OwlAgent
correspond exactly with the command strings that the
OntologyAgent sends to the OwlAgent. The correspondence
exists because there are only a small number of types of
ontology alterations that it is reasonable to allow. Because
OntologyAgents and OwlAgents understand that adding
class X as a subclass of class Y is something a user probably
wants to do, an OntologyAgent could encode that command
in ITA-CE and have an OwlAgent decode it, but it is a bit
simpler for the CUBRC software (and no harder for the CE
Store) to have the OwlAgent ignore the ITA-CE altogether
and check the command string and its arguments directly.

This raises interesting questions about what role, if any,
controlled English can or should play in a conversational
interface for editing ontologies. In the current version of the
software, ITA-CE strings are used to provide a logically
unambiguous yet human-readable confirmation prompt, but
are not needed for processing the ordinary English input.
Three questions in particular arise. Should some CNL be
used even for the confirmation prompt? Should some CNL
be used in this software for transmitting messages between
the OntologyAgent and OwlAgent? And is ITA-CE the best
form of CE to be used if we do use CE for user
confirmation?

Concerning the first, the simplicity and lack of ambiguity
provides a reason to use it for a command confirmation. But
this alone is not a strong reason because it is often possible
to make CNL statements even clearer in meaning by
dropping some of the formality. For example, instead of the
formula in ITA-CE:
+4-+#<!*(7&'#%(%?%+&!&;#-%?%>%!"(!%&'%(%<#$'4-@

the computer could offer
+4-+# <!*(7&'#%(%+&!&;#-%!"(!%&'%(%<#$'4-@

without any loss of content. The tildes and the variables just
indicate which concept is being defined, which is often clear
from context or can be emphasized with boldface if desired.
A stronger reason for using CNL is that it helps to coach the
user so that the next time the user wants to enter the same
kind of request, the user can use the sort of phrasing that
appeared in previous prompts.

Concerning the second question of whether CNL should be
used for the transmission of messages, there are some good
arguments for its use. In our particular software, we
controlled both ends: the natural language processing and
the ontology processing. But if we think more broadly about
how the conversational interface could be used, we find that
an OntologyAgent could potentially get clues about how
best to advise the human user from a wide range of

STIDS 2015 Proceedings Page 78

additional sources beyond what is kept in the edited
ontology. Given the existing software framework, one could
code agents that respond �W�R���D�Q���2�Q�W�R�O�R�J�\�$�J�H�Q�W�¶�V���L�Q�I�R�U�P�D�W�L�R�Q��
requests by looking at a relational database, dictionaries, or
even special purpose ontology advisors. Or one could code
agents that edit ontologies stored in Open Biological and
Biomedical Ontology (OBO) files rather than OWL files.
The separation of the functions requires some sort of
common communication format. Because CNL is relatively
easy to parse and easy to extend in order to add additional
functionality, it could serve well in this role. A further
benefit of allowing CNL to play this role would be that one
could easily set up logging and auditing software to work
with the CE Store in order to keep track of which ontology
changes were being made and by whom. Such information
could be handy for later analysis to ascertain common
ontology editing patterns, which could then be used to
automate revisions to ontologies.
Concerning the third question, it is important to keep in
mind that ITA-CE is severely restricted in its core lexicon
and syntax. For example, the words �µ�H�Y�H�U�\�¶���� �µ�V�R�P�H�¶���� �µ�R�U�¶����
�D�Q�G���µ�Q�R�W�¶���D�U�H���Q�R�W���F�R�Q�V�L�G�H�U�H�G���J�U�D�P�P�D�W�L�F�D�O�����:�K�L�O�H���W�K�H�V�H���V�D�P�H��
ideas can be expressed indirectly, the resultant statements
and rules necessary for that expression tend to be too
�D�Z�N�Z�D�U�G�� �I�R�U�� �F�D�V�X�D�O�� �X�V�H�U�V�� ���H���J������ �µ�R�U�¶�� �L�V�� �G�H�I�L�Q�H�G�� �L�Q�� �W�H�U�P�V�� �Rf
�F�R�P�S�O�H�[�� �V�W�D�W�H�P�H�Q�W�V���L�Q�Y�R�O�Y�L�Q�J���Q�X�P�H�U�R�X�V���F�D�V�H�V���R�I�� �µ�D�Q�G�¶���D�Q�G��
�µ�L�W���L�V���I�D�O�V�H���W�K�D�W�¶�������7�K�X�V�����H�[�W�H�Q�G�L�Q�J���W�K�H���O�H�[�L�F�R�Q���D�Q�G���V�\�Q�W�D�[���R�I��
ITA-CE would greatly facilitate user understanding if these
terms could appear in the confirmation prompts and in any
communication to reduce complexity. In this way, ITA-CE
could emulate some of the existing CNL-based ontology
editors mentioned above, insofar as these editors utilize
CNL constructs that more closely resemble OWL
constructs.

V. USE CASES: MODIFYING THE SENSOR ONTOLOGY

A. Adding New Classes

It is easy to add a new class to an ontology using the
conversational interface. The easiest way to do this is for the
�X�V�H�U���W�R���X�V�H���W�K�H���³�L�V���D�´�� �I�R�U�P���W�K�D�W���L�V���V�W�D�Q�G�D�U�G���L�Q���%�D�V�L�F���)�R�U�P�D�O��
Ontology. The user types
!"#$"%&$'#%(#$"#)*+,-./
At this point, the OntologyAgent sends a test message to the
�2�Z�O�$�J�H�Q�W���W�R���V�H�H���L�I�� �W�K�H���F�O�D�V�V���³�D�Q�L�P�D�O�´�� �F�D�Q���E�H���D�V�V�L�J�Q�H�G���D�V���D��
�G�L�U�H�F�W���V�X�E�F�O�D�V�V���R�I�� �³�R�E�M�H�F�W�´���� �,�I�� �L�W���F�D�Q���� �W�K�H���2�Z�O�$�J�H�Q�W���O�H�W�V���W�K�H��
OntologyAgent know this, and the OntologyAgent asks the
user for confirmat�L�R�Q���� �,�I�� �W�K�H�� �X�V�H�U�� �D�Q�V�Z�H�U�V���� �³�\�H�V�´���� �W�K�H��
OntologyAgent tells the OwlAgent to add the appropriate
axiom and the OwlAgent does so, logging the change in
�F�D�V�H���W�K�H���X�V�H�U���O�D�W�H�U���Z�D�Q�W�V���W�R���X�Q�G�R���L�W�����,�I���W�K�H���X�V�H�U���D�Q�V�Z�H�U�V���³�Q�R�´��
�R�U���G�R�H�V�Q�¶�W���U�H�V�S�R�Q�G���R�U���L�V�V�X�H�V���V�R�P�H���D�O�W�H�U�Q�D�W�L�Y�H��statement, The
OntologyAgent will forget about the attempt to add
�³�D�Q�L�P�D�O�´��

The user has other ways to communicate the desire to add a
class. The following statements �D�U�H�� �H�T�X�L�Y�D�O�H�Q�W�� �W�R�� �³�$�Q��
�D�Q�L�P�D�O���L�V���D�Q���R�E�M�H�F�W���´
$"%&$'#%(#)*+,-.
!"%&$'(#$0,#)*+,-.(/
1#2)3'4 #'%5,#.)#&$5,#$"%&$'#$#(3*-'$((#)6#)*+,-./
7$5,#$"%&$'#$#5%"4#)6#)*+,-./
The software also allows users to insert a new class in
between two existing classes, one of which is a direct
subclass of the other.
1"(,0.#.8,#-'$((#)09$"%(&#*,.2,,"#)*+,-.#$"4#
$"%&$'/

B. Adding Existential Restrictions

The other main capability of the software allows the user to
add a new existential restriction on a class. The user can
type something like
:;,0<#(,"()0#)*(,0;$.%)"#%(#$*)3.#()&,#4,.,-.,4#
&$.,0%$'#,".%.</
or
=,"()0#)*(,0;$.%)"(#$0,#$*)3.#4,.,-.,4#&$.,0%$'#
,".%.%,(/
When receiving such a statement, the OntologyAgent sends
�D�� �W�H�V�W�� �P�H�V�V�D�J�H�� �W�R�� �W�K�H�� �2�Z�O�$�J�H�Q�W�� �W�R�� �V�H�H�� �L�I�� �W�K�H�� �F�O�D�V�V�� �³�V�H�Q�V�R�U��
�R�E�V�H�U�Y�D�W�L�R�Q�´�� �F�D�Q�� �K�D�Y�H�� �D�Q�� �H�[�L�V�W�H�Q�W�L�D�O�� �U�H�V�W�U�L�F�W�L�R�Q�� �Z�L�W�K�� �W�K�H��
�U�H�O�D�W�L�R�Q�� �³�L�V�� �D�E�R�X�W�´�� �D�Q�G���W�K�H�� �F�O�D�V�V�� �³�G�H�W�H�F�W�H�G�� �P�D�W�H�U�L�D�O�� �H�Q�W�L�W�\�´����
If it can, the OwlAgent lets the OntologyAgent know this,
and then the OntologyAgent asks the user for confirmation.
�,�I�� �W�K�H�� �X�V�H�U�� �D�Q�V�Z�H�U�V���� �³�\�H�V�´���� �W�K�H�� �2�Q�W�R�O�R�J�\�$�J�H�Q�W�� �W�H�O�O�V�� �W�K�H��
OwlAgent to add the appropriate axiom and the OwlAgent
does so, logging the change in case the user later wants to
�X�Q�G�R�� �L�W���� �,�I�� �W�K�H�� �X�V�H�U�� �D�Q�V�Z�H�U�V�� �³�Q�R�´�� �R�U�� �G�R�H�V�Q�¶�W�� �U�H�V�S�R�Q�G�� �R�U��
issues some alternative statement, the OntologyAgent will
forget about the attempt to add the existential restriction.

C. Adding Existential Restrictions in the Face of
Obstacles

In order to demonstrate some of the more sophisticated
capabilities of our application, we created a use case with
the following vignette:

Your current version of the CUBRC Sensor Ontology
�L�Q�F�O�X�G�H�V�� �D�� �F�O�D�V�V�� �F�D�O�O�H�G�� �µ�'�H�W�H�F�W�H�G�� �0�D�W�H�U�L�D�O�� �(�Q�W�L�W�\�¶�� �E�X�W��
does not include any additional information about it.
�<�R�X�� �Z�D�Q�W�� �W�R�� �L�Q�W�U�R�G�X�F�H�� �D�� �F�O�D�V�V�� �F�D�O�O�H�G�� �µ�6�H�Q�V�R�U��
�2�E�V�H�U�Y�D�W�L�R�Q�¶���D�Q�G���P�D�N�H���W�K�H���R�Q�W�R�O�R�J�\���X�Q�G�H�U�V�W�D�Q�G���W�K�D�W���D��
sensor observation is the kind of thing that is about
detected material entities. The ontology already has an
�µ�L�V�� �D�E�R�X�W�¶�� �U�H�O�D�W�L�R�Q�V�K�L�S�� �E�X�W�� �G�R�H�V�� �Q�R�W�� �N�Q�R�Z�� �W�K�H�� �W�H�U�P��
�µ�6�H�Q�V�R�U���2�E�V�H�U�Y�D�W�L�R�Q�¶��

Your goals, then, are (1) to add a new class for sensor
observations, (2), correctly situate that class within the
existent hierarchy of classes, and (3) describe its
relationship to detected material entities.

This task is more complicated than simply adding an
existential restriction, but nonetheless quickly doable for the
user who interacts with the OntologyAgent. The process

STIDS 2015 Proceedings Page 79

begins when the user enters a natural language expression
that informally captures his request to add an existential
restriction. The user could type anything like the following:
!"#$%&"&'"($)*"*+*,-".*%.',"'/.*,+$&0'%"/*"$/'1&"
.'(*"2*&*3&*2"($&*,0$4"*%&0&-5
!"#$%&"&'"($)*".*%.', " '/.*,+$&0'%"/*"$/'1&"
2*&*3&*2"($&*,0$4"*%&0&0*.5
!"#$%&".*%.',"'/.*,+$&0'%."&'"/*"$/'1&"2*&*3&*2"
($&*,0$4"*%&0&0*.5
6*%.',"'/.*,+$&0'%.".7'142"/*"$/'1&"2*&*3&*2"
($&*,0$4"*%&0&0*.5
6*%.',"'/.*,+$&0'%."$,*"$/'1&"2*&*3&*2"($&*,0$4"
%&0&0.5
$".*%.',"'/.*,+$& 0'%"0."$/'1&"$"2*&*3&*2"($&*,0$4"
*%&0&-5
With such a request, the OntologyAgent queries for the class
‘sensor observation’. Discovering – as the vignette stipulates
– that there is no class by that name in the ontology, the
OntologyAgent begins to search for any clues that will help
interpret the user’s intention. The OntologyAgent first
checks the various parts of the user’s phrase. In this case, it
sees that ‘observation’ is a word in ‘sensor observation’ and
checks whether there is a class ‘observation’ that could be a
superclass for ‘sensor observation’. When the OwlAgent
tells the OntologyAgent that ‘observation’ is also not in the
ontology, the OntologyAgent looks for restrictions upon
relations (e.g., domain or range restrictions) in this case,
whether the ‘is about’ relation already has any existential
restrictions. (Although we have not coded further
capabilities into the OntologyAgent yet, it would be easy to
extend the CUBRC software to also look for synonyms of
class names and annotations like developer comments,
definitions, and class labels.) When searching the ‘is about’
relation for restrictions, the OwlAgent reports to the
OntologyAgent the following clue: there is an axiom about
the class Information Content Entity to the effect that
Information Content Entity is equivalent to ‘is about some
entity’ (a generic class comprising all other classes). Since
the user is trying to express that sensor observations are
about detected material entities, and since being an
Information Content Entity is equivalent to being about
some Entity, the OntologyAgent formulates a guess that (a)
we need to insert a new class called Sensor Observation,
and (b) the class Sensor Observation needs to be a subclass
of Information Content Entity, though not necessarily a
direct subclass. So, the OntologyAgent gets the direct
subclasses of Information Content Entity from the
OwlAgent and presents to the user the following text.
8%&'4'9-:9*%&;"!"1%2*,.&$%2"-'1"$."#$%&0%9"&'"$22"
$%"*<0.&*%&0$4",*.&,03&0'%5"='1"$,*"&, -0%9"&'"
<>,.."&7$&"*+*,-".*%.',"'/.*,+$&0'%"0."$/'1&"
.'(*"2*&*3&*2"($&*,0$4"*%&0&-5"!"&70%)"-'1"#$%&"(*"
&'"0..1*"&7*"?'44'#0%9"3'(($%2;
3'%3*>&1$40.*"$"@".*%.',"'/.*,+$&0'%"@"A"&7$&"0."
$/'1&"&7*"2*&*3&*2"($&*,0$4"*%&0&-"B5
C'#*+*,D"&7*"'%&'4'9-"0."%'&"$# $,*"'?"#7$&"E.*%.',"
'/.*,+$&0'%E"(*$%.5"F*3$1.*"'?"&7*"E0."$/'1&E"
,*4$&0'%D"$".*%.',"'/.*,+$&0'%".7'142">,'/$/4-"/*"
$..09%*2"&'"/*"'%*"'?"&7*"?'44'#0%9;
G5":"2*.3,0>&0+*"0%?',($&0'%"3'%&*%&"*%&0&-
H5":"2*.09%$&0+*"0%?',($&0'%"3'%&*%&"*%&0&-
I5":"20,*3&0+*" 0%?',($&0'%"3'%&*%&"*%&0&-

J5":%"0%?',($&0'%"3'%&*%&"*%&0&-
!?"0."'%*"'?"&7*.*D"K1.&"4*&"(*")%'#"&7*"%1(/*,D"
',"-'1"3$%"#,0&*".'(*&70%9"'?"&7*"?',(D"L$".*%.',"
'/.*,+$&0'%"0."$"MMM5L
As it turns out, the user Steve decides to situate Sensor Ob-
servation under the parent class of Descriptive ICE, so he
types
G
The OntologyAgent responds by adding ‘sensor
observation’ as a direct subclass of the ‘descriptive
information content entity’ class. Once the OwlAgent
reports that that change has been made, the OntologyAgent
knows that the obstacles have been cleared to allow the
existential restriction to be added. So the OntologyAgent
immediately sends the command to the OwlAgent without
needing further confirmation. When the OwlAgent reports
that this further command has succeeded, the
OntologyAgent reports to the user the following:
8%&'4'9-:9*%&;"!".133*..?144-"$22*2"E.*%.',"
'/.*,+$&0'%E"$."$"20,*3&".1/34$.."'?"E2*.3,0>&0+*"
0%?',($&0'%"3'%&*%&"*%&0&-E5"!".133*..?144-"$22*2"
&7*"*<0.&*%&0$4",*.&,03&0'%"-'1",*N1*. &*25
In summary, Steve submitted a single sentence to convey his
desired ontology change. After that, Steve only needed to
select a multiple choice answer in order to clarify where the
previously unknown ‘sensor observation’ class should be
placed in the hierarchy, and all the necessary changes were
made without any further effort.

In practice, all ontology changes would be audited before
being integrated into widely shared OWL files.

VI. FUTURE WORK

Our research on this topic was merely exploratory because
of resource limitation and a number of future efforts are
warranted. Greater editing functionality should be added
first because it provides clear value and is not an ambitious
task. The harder task will be to improve the software's
ability to help the user with the most appropriate questions
and advice. Still, even these improvements can be
incremental and piece-meal, as the natural language is
meant only to help guide and coach when the user does not
know the appropriate controlled English to use.

Earlier, we showed that although our application extends the
capability of the CE Store software, it does so without
necessarily using ITA-CE to represent ontological claims.
The role played by ITA-CE might easily be played by a
more expressive CNL or a standard data format like XML or
JSON. There is potential for ITA-CE to serve as a common
format for capturing the semantic intention of natural
language user inputs. Its value in this regard will largely
depend on how much other infrastructure uses ITA-CE and
how well the information being passed back and forth can
be leveraged to automate some ontology development.

At this stage, our application is limited to assistance with
OWL-based ontology editing. It is our hope that this project
will eventually be extended further, so that ITA-CE

STIDS 2015 Proceedings Page 80

sentences can be exploited to mediate user interaction with
other ontology languages (e.g., OBO) and other formats
(SQL, relational databases). Thus, in dividing labor between
the OntologyAgent and OwlAgent, we have left open the
possibility of mapping ITA-CE to these formats and of
writing additional back-end agents, whose jobs, like the
OwlAgent’s, would be to exchange information with the
OntologyAgent and edit the appropriate document on behalf
of the user. We also leave open the possibility of alternative
OntologyAgents, who pass messages in ITA-CE only.

To illustrate this proposal, consider the following two
scenarios. In Scenario #1, a user interacts with a different
OntologyAgent that outputs ITA-CE strings only, not the
command strings described earlier, and sends the messages
to an OwlAgent. The problem is that the OwlAgent does not
understand ITA-CE strings; it ingests command strings only.
In this scenario, it would be desirable to introduce a further
intermediary agent to translate ITA-CE strings into
command strings amenable to the OwlAgent’s work. By
introducing this further layer, we allow the OwlAgent to
continue interpreting messages in terms of command strings.
At the same time, this makes room for ITA-CE to act as
middleware for various other agents.

In Scenario #2, a user interacts with the OntologyAgent,
who passes messages in turn to an OwlAgent that
understands ITA-CE strings only, not command strings.
This new OwlAgent would have access to a relational
database and would query that database to provide the
OntologyAgent with information about the user’s intended
request. In this scenario, it becomes indispensable that the
OntologyAgent transmit not just command strings, but ITA-
CE strings as well. Thus, if ITA-CE is to be the common
format for various agents and information sources, we ought
to ensure that OntologyAgents are conversant in ITA-CE.

These scenarios highlight another potential benefit of
employing ITA-CE as middleware. If ITA-CE is used as a
common format, then additional agents could be
programmed to provide OntologyAgents with answers to his
queries which are based on the access they enjoy to various
information sources. In this case, ITA-CE appears to be
promising as a common format for the exchange of
information among agents.

If ITA-CE were to be harnessed in these ways, then in will
be necessary to augment the present ITA-CE core lexicon
and syntax. At present, ITA-CE does not allow the terms
‘every’, ‘some’, ‘or’, and ‘not’, which inhibits users from
facile comprehension. Thus, an extension of this project
would be to pursue methods laid out by Mott and Hendler
[2], in which new layers of generic syntax are added to the
core ITA-CE syntax. Mott and Hendler illustrate this with
the adverb ‘only’; to add ‘only’ to the syntax of ITA-CE,
they invented a language, which defines ‘only’ in terms of
the unaugmented core syntax. Further transformations could
add common quantifiers and connectives such as ‘every’,
‘some’, ‘or’, and ‘not’, thus enhancing users’ interaction
with ITA-CE expressions by rendering them more natural.

Acknowledgments
Work on ITA-CE as a middleware for ontology editing was
supported by the US Army Research Laboratory. We also
thank David Mott for his consultations on ITA-CE.

REFERENCES
[1] Bock, C., Fokoure, A., Haase, P., Hoekstra, R., Horrocks, I.,
Ruttenberg, A., Sattler, U., Smith, M. 2012. “OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax,” 2nd
[2] Mott, D. Hendler, J. 2009. “Layered Controlled Natural
Languages,” Proceedings of the Third Annual Conference of the
International Technology Alliance.
[3] Braines, D., Mott, D., Laws, S., de Mel, G., Pham, T. 2013.
“Controlled English to Facilitate Human/Machine Analytical
Processing,” in Proceedings of SPIE.
[4] Braines, D., Preece, A., de Mel, G., Pham T. 2014. “Enabling
CoIST Users: D2D at the Network Edge,” in 2014 Proceedings of the
17th International Conference on Information Fusion (FUSION).
[5] Poteet, S., Xue, P., Kao, A., Mott, D., Braines, D., Giammanco,
C. 2013. “Controlled English for Effective Communication during
Coalition Operations,” Proceedings of ICCRTS.
[6] Preece, A., Pizzocaro, D., Braines, D., Mott, D., de Mel, G.,
Pham, T. 2012. “Integrating Hard and Soft Information Sources for
D2D using Controlled Natural Languages,” Proceedings of the 15th
International Conference on Information Fusion.
[7] Rector, A., Drummond, N., Horridge, M., Rogers, J.,
Knublauch, H., Stevens, R., Wang H., Wroe, C. 2004. “OWL Pizzas:
Practical Experience of Teaching OWL-DL: Common Errors &
Common Patterns,” European Conference on Knowledge Acquisition
(EKAW-2004), Whittlebury, UK.
[8] Bernstein, A., Kaufmann E. 2006. “GINO – A Guided Input
Natural Language Ontology Editor,” in Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L. (eds.), ISWC 2006. Lecture Notes on Computer Science, Vol 4273.
[9] Bernstein, A., Kaufmann, E., Kiefer, C. 2009. “Querying the
Semantic Web with Ginseng – A Guided Input Natural Language
Search Engine,” Searching Answers: Festschrift in Honour of
Michael Hess on the Occasion of His 60th Birthday, Clematide, S.,
Klenner, M., Volk, M. (eds.). Munster: MV-Wissenschaft.
[10] Kaufmann, E., Bernstein, A. 2007. “How Useful Are Natural
Language Interfaces to the Semantic Web for Casual End-Users?”
Lecture Notes in Computer Science, Vol. 4825, 281-294.
[11] Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis,
B., Handschuh, S. 2007. “CLOnE: Controlled Language for Ontology
Editing,” Lecture Notes in Computer Science: The Semantic Web
[12] Hart, G., Johnson, M., Dolbear, C. 2008. “Rabbit: Developing a
Controlled Natural Language for Authoring Ontologies,” The
Semantic Web: Research and Applications, Lecture Notes in
Computer Science, Vol. 5021, 348-360.
[13] Kaljurand, K. 2008. “ACE View – An Ontology and Rule Editor
Based on Controlled English,” Proceedings of the Poster and
Demonstration Session at the 7th International Semantic Web
Conference (ISWC 2008), CUER Workshop Proceedings.
[14] Wroblewska, A., Kaplanski, P., Zarzycki, P., Lugowska, I.
2013. “Semantic Rules Representation in Controlled Natural
Language in FluentEditor,” The 6th Annual International Conference
on Human System Interaction (HSI).
[15] Smart, P.R. 2008. “Controlled Natural Languages and the
Semantic Web. Technical Report ITA/P12/SemWebCNL, School of
Electronics and Computer Science, University of Southampton.
[16] Horridge, M., & Patel-Schneider, P.F. 2012. “OWL 2 Web
Ontology Language Manchester Syntax,” 2nd edition.
[17] Cregan, A., Schwitter, R., Meyer T. 2007. “Sydney OWL
Syntax – toward a Controlled Natural Language Syntax for OWL
1.1,” presented at OWLED 2007, OWL: Experiences and Directions,
Third International Workshop, Innsbruck, Austria, 6-7th, June 2007.
[18] Sowa, J.F. 2007. “Common Logic Controlled English,”
http://www.jfsowa.com/clce/clce07.htm.
[19] Mott, D. 2010. “Summary of ITA Controlled English,”
https://www.usukita.org/papers/5658/details.html.

STIDS 2015 Proceedings Page 81

http://www.jfsowa.com/clce/clce07.htm
https://www.usukita.org/papers/5658/details.html

