
Submitted to:
TTC 2015

c� G. Szárnyas et al.
This work is licensed under the
Creative Commons Attribution License.

Train Benchmark Case: an EMF-INCQUERY Solution

⇤

Gábor Szárnyas Márton Búr István Ráth
Budapest University of Technology and Economics

Department of Measurement and Information Systems
H-1117 Magyar tudósok krt. 2, Budapest, Hungary

szarnyas@mit.bme.hu, marton.bur@inf.mit.bme.hu, rath@mit.bme.hu

This paper presents a solution for the Train Benchmark Case of the 2015 Transformation Tool Con-
test, using EMF-INCQUERY.

1 Introduction

This paper describes a solution for the TTC 2015 Train Benchmark Case [6]. The source code of the
solution is available as an open-source project.1 There is also a SHARE image available.2

2 EMF-INCQUERY

Automated model transformations are frequently integrated with modeling environments, requiring both
high performance and a concise programming interface to support software engineers. The objective
of the EMF-INCQUERY [2] framework is to provide a declarative way to define queries over EMF
models. EMF-INCQUERY extended the pattern language of VIATRA2 with new features (including
transitive closure, role navigation, match count) and tailored it to EMF models [4]. EMF-INCQUERY is
developed with a focus on incremental query evaluation, however, the most recent version is also capable
of evaluating queries with a local search-based algorithm.

2.1 Incremental Pattern Matching

EMF-INCQUERY uses the Rete algorithm [1] to perform incremental pattern matching. The Rete algo-
rithm uses tuples to represent the model objects, attributes, references and partial matches in the model.
The algorithm defines an asynchronous network of communicating nodes. The network consists of three
types of nodes. Input nodes are responsible for indexing the model by type, i.e. they store the appropriate
tuples for the objects and references. They are also responsible for producing the update messages and
propagating them to the worker nodes. Worker nodes perform a transformation on the output of their
parent node(s) and propagate the results. Partial query results are represented in tuples and stored in the
memory of the worker node, thus allowing for incremental query reevaluation. Production nodes are ter-
minators that provide an interface for fetching the results of the query and the changes introduced by the
latest transformation. Moreover, parallelization possibilities of the algorithm were already investigated
in [3].

⇤This work was partially supported by the MONDO (EU ICT-611125) project and Red Hat Inc.
1
https://github.com/FTSRG/trainbenchmark-ttc

2
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_

TrainBenchmark-EIQ.vdi

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/FTSRG/trainbenchmark-ttc
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_TrainBenchmark-EIQ.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_TrainBenchmark-EIQ.vdi


2 Train Benchmark Case: an EMF-INCQUERY Solution

The incremental pattern matcher provides quick reevaluation for complex queries. However, it does
so at the expense of high memory consumption as the partial results are stored in the Rete network.

2.2 Local Search-Based Pattern Matching

Local search-based pattern matching (LS) is commonly used in graph transformation tools. Along with
the incremental query engine, EMF-INCQUERY also provides a local search-based pattern matcher.

The matching process consists of four steps. (1) At first, in a preprocessing step the patterns are
normalized: the constraint set is minimized, variables that are always equal are unified and positive
pattern calls are flattened. These normalized patterns are evaluated by (2) the query planner, using
a specified cost estimation function to provide search plans: totally ordered lists of search operations
used to ensure that the constraints from the pattern definition hold. From a single pattern specification
multiple search plans can be derived, thus pattern matching includes (3) plan selection based on the
input parameter binding and model-specific metrics. Finally, (4) the search plan is executed by a plan
interpreter evaluating the different operations of the plans. If an operation fails, the interpreter backtracks;
if all operations are executed successfully, a match is found.

Compared to the incremental query engine, the search-based algorithm requires less memory [7] and
is therefore capable of performing queries on larger models if there is not enough memory available for
the incremental engine.

2.3 Defining the Pattern Matching Strategy

Currently, the pattern matching strategy has to be determined by the developer by specifying the query
backend of EMF-INCQUERY. Developing a hybrid pattern matching engine is subject to future work.
This will allow the user to use annotations to define the evaluation strategy for each pattern. There are
also plans to develop an adaptive query engine (Section 5).

2.4 Pattern Match Representation

For each query, EMF-INCQUERY generates a set of utility classes. These classes store the model objects
in the match and provide a convenient interface for reading and transforming the matches. These classes
are used for implementing the transformation operations (Section A.1).

3 Solution

The case defines a well-formedness validation scenario set in the domain of railway systems [6]. The
case provides a synthetic instance model generator which is capable of generating models of various
sizes. For the solution, we used the metamodel defined in the case description without any modifications
or extensions.

The solution was developed in the Eclipse IDE. For setting up the development environment, please
refer to the readme file. The projects are not tied to the Eclipse environment and can be compiled with
the Apache Maven build automation tool. This offers a number of benefits, including portability and
the possibility of continuous integration. The solution is written in Java 7. The patterns are defined in
INCQUERY Pattern Language (IQPL) [4].



G. Szárnyas et al. 3

3.1 Example Query: RouteSensor

definedBy
«new» switch

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
sensor

We describe the implementation of the RouteSensor

query in detail. The other queries and transforma-
tions are implemented in a similar manner. The imple-
mented application uses the Java classes generated by

EMF-INCQUERY and the hand-coded transformation logic introduced below. First it finds the matches
of the queries, then the corresponding transformation step is applied for each match. The code of patterns
and the transformation definitions are listed in Section A.1.

1 pattern routeSensor(route, sensor, switchPosition, sw)
2 {
3 Route.follows(route, switchPosition);
4 SwitchPosition.^switch(switchPosition, sw);
5 TrackElement.sensor(sw, sensor);
6 neg find definedBy(route, sensor);
7 }
8
9 pattern definedBy(route, sensor)

10 {
11 Route.definedBy(route, sensor);
12 }

Listing 1: Pattern of the RouteSensor query.

The RouteSensor query looks for sensors
that are connected to a switch, but the sensor
and the switch are not connected to the same
route. The query in IQPL is listed in Listing 1.
The positive conditions are defined by using
the appropriate classes and references, while the
negative application condition (NAC) is defined
as a negative find operation (neg find) for a
separate query.

During the repair operation, for the selected
matches, the missing definedBy edge is inserted
by connecting the route to the sensor. The Java

transformation code implementing the transformation is listed in Listing 2. The transformation uses the
match object returned by EMF-INCQUERY.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final RouteSensorMatch rsm = (RouteSensorMatch) match;
4 rsm.getRoute().getDefinedBy().add(rsm.getSensor());
5 }
6 }

Listing 2: Transformation of the RouteSensor query.

3.2 Query Evaluation Strategies for the RouteSensor Pattern

We use the RouteSensor query to provide an overview of the various query evaluation strategies used in
EMF-INCQUERY.

3.2.1 Incremental Evaluation

The Rete network derived from the RouteSensor query is shown in Figure 7. For the sake of clarity,
we simplified the Rete network by removing some implementation-specific details. The evaluation in
the Rete network starts with the input nodes (switch, follows, sensor, definedBy), which are indexing
the model by collecting the appropriate tuples. The worker nodes are responsible for performing the
relational operations, join and antijoin in this case. The join nodes have a pair of tuple masks (e.g. h2,3i
and h0,1i) to determine the attributes used in the join operation. The match set of the pattern is stored in
the production node.



4 Train Benchmark Case: an EMF-INCQUERY Solution

3.2.2 Local Search-Based Evaluation

The search plan generated for evaluating the RouteSensor query is shown in Figure 8. This screenshot
is taken from the Local Search Debugger view of EMF-INCQUERY. The search plan is presented in the
upper-left part, while the found matches with the variable substitutions are shown below the search plan
in a table viewer. The Zest-based graph viewer in the right visualises a match based on the selection of
the table viewer.

4 Evaluation

In this section, we present the benchmark environment and evaluate the results.

4.1 Benchmark Environment

The benchmarks were performed on a 64-bit Ubuntu Server 14.04 virtual machine deployed on a private
cloud. The machine used a quad-core 2.50 GHz Xeon L5420 processor and 16 GB of memory. We used
Oracle JDK 8 and set the available heap memory to 15 GB.

4.2 Benchmark Results

To present the results, we use the reporting framework of the Train Benchmark. The framework generates
plots to visualise the execution time of the phases defined in the benchmark. The plots showing each
query are included in Section A.2. On each plot, the x axis shows the problem size, i.e. the size of the
instance model, while the y axis shows the aggregated execution time of a certain phases, measured in
milliseconds. Both axes use logarithmic scale.

4.2.1 Benchmark Results for the RouteSensor Query

For the sake of conciseness, we only discuss the results for the RouteSensor query in detail.
The results for the batch validation are shown in Figure 1. The results suggest that—given enough

memory—both the incremental and the local search-based (LS) strategies are able to run the query and
the transformation for the largest model. The first validation takes consistently longer for the incremental
strategy as for the LS strategy. This is caused by the fact that the incremental strategy builds the Rete
algorithm during the read phase. However, the difference is small as the first validation time largely
consists of deserializing the EMF model.

The execution times of the revalidation are shown in Figure 2. The execution time of the incremental
strategy linearly correlates with the size of the change set. This implies that for a fixed change set, the
incremental strategy is able to perform the transformation in constant time, while execution time for the
LS strategy correlates with the model size. For the proportional change set, the revalidation time is a
low-degree polynomial of the model size for both strategies, however, it is an order of magnitude faster
for the incremental strategy than for the LS.

4.3 Comparison of the Query Evaluation Strategies

Section A.2 shows the detailed results for all queries and both evaluation strategies. In the first validation

(Figure 3 and Figure 5), the evaluation strategies show similar performance characteristics as both have



G. Szárnyas et al. 5

to compute the complete result set of the query. The execution times for both strategies show that the
most complex query is SemaphoreNeighbor, while the simplest one is SwitchSensor.

As expected, the execution times of the revalidation are different for the two strategies. Figure 4
shows that for the incremental strategy the execution time correlates with the size of the match set (instead
of the model size). This can be observed when comparing the execution times for the fixed and the
proportional change sets. Figure 6 shows that the execution time for the LS strategy is determined by
the model size and is not affected by the size of the change set.

These results imply that the optimal evaluation strategy depends on the specific workload profile. If
there is enough memory available and the transformations operate on a small amount of model elements,
it is recommended to use the incremental strategy. If the transformations often change a large proportion
of the model elements, the LS strategy is recommended.

5 Summary and Future Work

The paper presented a solution for the Train Benchmark case of the 2015 Transformation Tool Contest.
There is ongoing work to develop a hybrid query engine [5] for EMF-INCQUERY. This will allow

the user to use annotations on the patterns for specifying the desired query evaluation strategy. There are
also plans to develop an adaptive query engine which will use query optimisation heuristics to determine
the appropriate strategy based on the query, the model and the available resources.

Acknowledgements. The authors would like to thank Zoltán Ujhelyi for providing valuable insights
into EMF-INCQUERY.

References

[1] Gábor Bergmann (2013): Incremental Model Queries in Model-Driven Design. Ph.D. dissertation, Budapest
University of Technology and Economics, Budapest. Available at http://home.mit.bme.hu/~bergmann/
download/phd-thesis-bergmann.pdf.

[2] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán Balogh & András Ökrös
(2010): Incremental Evaluation of Model Queries over EMF Models. In: MODELS, Springer, Springer,
doi:http://dx.doi.org/10.1007/978-3-642-16145-2_6.

[3] Gábor Bergmann, István Ráth & Dániel Varró (2009): Parallelization of Graph Transformation Based on

Incremental Pattern Matching. Electronic Communications of the EASST, Proceedings of the Eighth In-
ternational Workshop on Graph Transformation and Visual Modeling Techniques 18. Available at http:
//eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/265/249.

[4] Gábor Bergmann, Zoltán Ujhelyi, István Ráth & Dániel Varró (2011): A Graph Query Language for EMF

Models. In: Theory and Practice of Model Transformations, Fourth Intl. Conf., LNCS 6707, Springer.
[5] Ákos Horváth, Gábor Bergmann, István Ráth & Dániel Varró (2010): Experimental Assessment of Combining

Pattern Matching Strategies with VIATRA2. International Journal on Software Tools for Technology Trans-
fer 12(3-4), pp. 211–230, doi:10.1007/s10009-010-0149-7. Available at http://dx.doi.org/10.1007/
s10009-010-0149-7.

[6] Gábor Szárnyas, Oszkár Semeráth, István Ráth & Dániel Varró (2015): The TTC 2015 Train Benchmark Case

for Incremental Model Validation. In: 8th Transformation Tool Contest (TTC 2015).
[7] Zoltán Ujhelyi, Gábor Szőke, Ákos Horváth, Norbert István Csiszár, László Vidács, Dániel Varró & Rudolf

Ferenc (2015): Performance Comparison of Query-based Techniques for Anti-Pattern Detection. Information
and Software Technology, doi:10.1016/j.infsof.2015.01.003. In press.

http://home.mit.bme.hu/~bergmann/download/phd-thesis-bergmann.pdf
http://home.mit.bme.hu/~bergmann/download/phd-thesis-bergmann.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-16145-2_6
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/265/249
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/265/249
http://dx.doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1016/j.infsof.2015.01.003


6 Train Benchmark Case: an EMF-INCQUERY Solution

A Appendix

A.1 Patterns and Transformations

A.1.1 PosLength

1 pattern posLength(segment)
2 {
3 Segment.length(segment, length);
4 check(length <= 0);
5 }

Listing 3: Pattern of the PosLength query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final RouteSensorMatch rsm = (RouteSensorMatch) match;
4 rsm.getRoute().getDefinedBy().add(rsm.getSensor());
5 }
6 }

Listing 4: Transformation of the PosLength query.

A.1.2 SwitchSensor

1 pattern switchSensor(sw)
2 {
3 Switch(sw);
4 neg find hasSensor(sw);
5 }
6
7 pattern hasSensor(sw)
8 {
9 TrackElement.sensor(sw, _);

10 }

Listing 5: Pattern of the SwitchSensor query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SwitchSensorMatch ssm = (SwitchSensorMatch) match;
4 final Sensor sensor = RailwayFactory.eINSTANCE.createSensor();
5 ssm.getSw().setSensor(sensor);
6 }
7 }

Listing 6: Transformation of the SwitchSensor query.

A.1.3 SwitchSet

1 pattern switchSet(semaphore, route, switchPosition, sw)
2 {
3 Route.entry(route, semaphore);
4 Route.follows(route, switchPosition);
5 SwitchPosition.^switch(switchPosition, sw);
6
7 Semaphore.signal(semaphore, ::GO);
8 SwitchPosition.position(switchPosition, swPP);
9 Switch.currentPosition(sw, swCP);

10



G. Szárnyas et al. 7

11 swPP != swCP;
12 }

Listing 7: Pattern of the SwitchSet query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SwitchSetMatch ssm = (SwitchSetMatch) match;
4 ssm.getSw().setCurrentPosition(ssm.getSwitchPosition().getPosition());
5 }
6 }

Listing 8: Transformation of the SwitchSet query.

A.1.4 RouteSensor

The RouteSensor query is discussed in detail in Section 3.1.

A.1.5 SemaphoreNeighbor

1 pattern semaphoreNeighbor(semaphore, route1, route2, sensor1, sensor2, te1, te2)
2 {
3 Route.exit(route1, semaphore);
4 Route.definedBy(route1, sensor1);
5 TrackElement.sensor(te1, sensor1);
6 TrackElement.connectsTo(te1, te2);
7 TrackElement.sensor(te2, sensor2);
8 Route.definedBy(route2, sensor2);
9 neg find entrySemaphore(route2, semaphore);

10
11 route1 != route2;
12 }
13
14 pattern entrySemaphore(route, semaphore)
15 {
16 Route.entry(route, semaphore);
17 }

Listing 9: Pattern of the SemaphoreNeighbor query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SemaphoreNeighborMatch snm = (SemaphoreNeighborMatch) match;
4 snm.getRoute2().setEntry(snm.getSemaphore());
5 }
6 }

Listing 10: Transformation of the SemaphoreNeighbor query.



8 Train Benchmark Case: an EMF-INCQUERY Solution

A.2 Detailed Benchmark Results

● ●

● ●
●

●

●

●

●

●

●

●

●

●

175.86
495.67
1397.1

3937.87
11099.33
31284.69

88179.4
248543.5

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Tool
● EMFIncQuery−Incremental

EMFIncQuery−LocalSearch

fixed, RouteSensor, Function: read+check (Y: Log2) (X: Log2)

(a) Fixed change set

●

●

●

● ●

●

●

●

●

●

●

●

●

●

182.25
510.3

1428.82
4000.67

11201.83
31364.95
87821.38

245898.56

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Tool
● EMFIncQuery−Incremental

EMFIncQuery−LocalSearch

proportional, RouteSensor, Function: read+check (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 1: First validation times for the RouteSensor query.

●

●

●
●

●

● ● ● ● ● ●
●

●

●

4.79
14.38
43.11

129.29
387.74

1162.82
3487.25

10458.14

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Tool
● EMFIncQuery−Incremental

EMFIncQuery−LocalSearch

fixed, RouteSensor, Function: repair+recheck (Y: Log2) (X: Log2)

(a) Fixed change set

● ●

●
● ●

●

●
● ●

●

●

●

●

●

0.04
0.22
1.42
9.07

57.72
367.52

2339.85
14897.01

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Tool
● EMFIncQuery−Incremental

EMFIncQuery−LocalSearch

proportional, RouteSensor, Function: repair+recheck (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 2: Revalidation times for the RouteSensor query.

● ●

●
● ●

●

●

●

●

●

●

●

●

●

205.28
565.95

1560.33
4301.83

11860.16
32698.5

90149.88
248543.5

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, fixed, Function: read+check (Y: Log2) (X: Log2)

(a) Fixed change set

● ●

● ● ●

●

●

●

●

●

●

●

●

●

202.85
559.35
1542.4

4253.13
11727.91
32339.44
89175.22

245898.56

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, proportional, Function: read+check (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 3: First validation times for the incremental query evaluation strategy.



G. Szárnyas et al. 9

●
●

●

●
●

●
●

● ●
● ●

● ●

●

0.24
0.51
1.08
2.27
4.78

10.07
21.22

44.7

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

(a) Fixed change set

●
●

● ●
●

● ●
●

●

●

●

●

●

●

0.03
0.18
0.98
5.52
30.9

173.04
969.12

5427.67

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, proportional, Function: repair+recheck (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 4: Revalidation times for the incremental query evaluation strategy.

● ● ● ●

●

●

●

●

●

●

●

●

●

●

175.86
501.62

1430.86
4081.49

11642.33
33209.41
94728.84

270211.18

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−LocalSearch, fixed, Function: read+check (Y: Log2) (X: Log2)

(a) Fixed change set

● ● ● ●

●

●

●

●

●

●

●

●

●

●

173.9
497.91

1425.62
4081.8

11686.93
33461.79
95807.13

274313.06

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−LocalSearch, proportional, Function: read+check (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 5: First validation times for the local search-based query evaluation strategy.

●

●

● ●

●

●

●

●

●

●

●

●

●

●

18.05
66.06

241.79
884.99

3239.14
11855.59
43392.68

158821.74

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−LocalSearch, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

(a) Fixed change set

●

●

●
●

●

●

●

●

●

●

●

●

●

●

18.7
67.73

245.23
887.96

3215.23
11642.1

42155.18
152640.78

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−LocalSearch, proportional, Function: repair+recheck (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 6: Revalidation times for the local search-based query evaluation strategy.



10 Train Benchmark Case: an EMF-INCQUERY Solution

A.3 Rete Network

Production

Join
 swP, sw, route 

Join
 swP, sw, 

route, sensor 

Antijoin
 swP, sw, 

route, sensor 

0 1

1 0

2, 3 0, 1

switch
 swP, sw 

follows
 route, swP 

sensor
 trackElement, sensor 

definedBy
 route, sensor 

Figure 7: The Rete network for the RouteSensor query.

A.4 Local Search Plan

Figure 8: The search plan and the matches for the RouteSensor query.


	Introduction
	EMF-IncQuery
	Incremental Pattern Matching
	Local Search-Based Pattern Matching
	Defining the Pattern Matching Strategy
	Pattern Match Representation

	Solution
	Example Query: RouteSensor
	Query Evaluation Strategies for the RouteSensor Pattern
	Incremental Evaluation
	Local Search-Based Evaluation


	Evaluation
	Benchmark Environment
	Benchmark Results
	Benchmark Results for the RouteSensor Query

	Comparison of the Query Evaluation Strategies

	Summary and Future Work
	Appendix
	Patterns and Transformations
	PosLength
	SwitchSensor
	SwitchSet
	RouteSensor
	SemaphoreNeighbor

	Detailed Benchmark Results
	Rete Network
	Local Search Plan


