Case Study: Object-oriented Refactoring of Java
Programs using Graph Transformation

Géza Kulcsar, Sven Peldszus, and Malte Lochau

TU Darmstadt
Real-Time Systems Lab
Merckstr. 25
64283 Darmstadt
{geza.kulcsar@es|sven.peldszus@stud|malte.lochau@es}.tu-darmstadt.de

Abstract. In this case study for the transformation tool contest (TTC),
we propose to implement object-oriented program refactorings using
transformation techniques. The case study proposes two major chal-
lenges to be solved by solution candidates: (1) bi-directional synchro-
nization between source/target program source code and abstract pro-
gram representations, and (2) program transformation rules for program
refactorings. We require solutions to implement at least two prominent
refactorings, namely Pull Up Method and Create Superclass. Our eval-
uation framework consists of collections of sample programs comprising
both positive and negative cases, as well as an automated before-after
testing procedure.

1 Introduction

Challenges resulting from software aging are well known but remain open. An
approach to deal with software aging is refactoring. Concerning object-oriented
(O0) programs in particular, most refactorings can be formulated and applied
to a high-level structure and there is no need to go down to the instruction
level. Nevertheless, most recent implementations usually rely on ad-hoc pro-
gram transformations directly applied to the AST (Abstract Syntax Tree). A
promising alternative to tackle the challenge of identifying those (possibly con-
cealed) program parts being subject to structural improvements is graph-based
refactoring.

Here, the program is transformed into an abstract and custom-tailored pro-
gram graph representation that (i) only contains relevant program elements,
and (ii) makes explicit static semantic cross-AST dependencies, being crucial
to reason about refactorings. Nevertheless, certain language constructs of more
sophisticated programming languages pose severe challenges for a correct exe-
cution of refactorings, especially for detecting refactoring possibilities and for
verifying their feasibility. As a consequence, the correct specification and execu-
tion of refactorings for OO languages like Java have been extensively studied for
a long time in the literature and, therefore, can not serve as scope for a TTC case
study to their full extent. Therefore, we propose the challenge of graph-based

refactorings to be considered on a restricted sub-language of Java 1.4, further
limited to core OO constructs of particular interest for the respective structural
patterns.

A solution should take the source code of a given Java program as input
and apply a given refactoring to an appropriate representation of that program.
Ideally, a program graph conforming to a predefined type graph is created on
which the refactorings are executed and, afterwards, propagated back to the
source code. However, refactorings on other representations of the source code are
also allowed as long as the source code is appropriately changed. To summarize,
this case has two main challenges in its full extent and a subset of these in the
basic case:

I Bidirectional and incremental synchronization of the Java source
code and the PG. This dimension of the case study requires special atten-
tion when it comes to maintaining the correlation between different kinds of
program representation (textual vs. graphical) and different abstraction lev-
els. Additionally, the code and the graph representation differ significantly
w.r.t. the type of information that is displayed explicitly, concerning, e.g.,
method calls, field accesses, overloading, overriding etc. As the (forward)
transformation of a given Java program into a corresponding PG represen-
tation necessarily comes with loss of information, the backward transforma-
tion of (re-)building behavior-preserving Java code from the refactored PG
cannot be totally independent from the forward transformation — a correct
solution for this case study has to provide some means of restoring those
parts of the input program which are not mapped to, or reflected in the PG.

II Program refactoring by PG transformation. In our case study, refac-
toring operations are represented as rules consisting of a left-hand side and
a right-hand side as usual. The left-hand side contains the elements which
have to be present in the input and whose images in the input will be re-
placed by a copy of the right-hand side if the rule is applied. Therefore, the
actual program refactoring part of our case study involves in any case (i)
the specification of the refactoring rules are based on refactoring operations
given in a semi-formal way, (ii) pattern matching (potentially including for-
bidden patterns, recursive path expressions and other advanced techniques)
to find occurrences of the pattern to be refactored in the input program
and (iii) a capability of transforming the PG in order to arrive at the refac-
tored state. Note that the classical approach to program refactoring (which
is used here) never goes deeper into program structure and semantics than
high-level OO building blocks, namely classes, methods and field declara-
tions; the declarative rewriting of more fine-grained program elements such
as statements and expressions within method bodies is definitely out of
scope of our case study for TTC.

Each challenge can be solved in a basic version (with an arbitrary intermedi-
ate representation), and in an extended version (using a separate, intermediate
representation that is at least isomorphic to our proposed type graph). Two ex-
emplary refactoring operations should be implemented when solving this case

study. The first one, Pull Up Method is a classical refactoring operation — our
specification follows that of [1]. Pull Up Method addresses Challenge II to a
greater extent. The second one, Create Superclass is also inspired by the lit-
erature, but has been simplified for TTC. It can be considered as a first step
towards factor out common elements shared by sibling classes into a fresh su-
perclass. In contrast to Pull Up Method, new elements have to be created and
appended to the PG. Create Superclass, therefore, comes with more difficul-
ties regarding Challenge I especially if a program graph is used.

In the following, we give a detailed description of the case study to be solved
by specifying the constituting artifacts, (meta-)models and transformations in
Section 2. The two sample refactoring operations mentioned above are elaborated
(including various examples) in Section 3. The correctness of the solutions is
tested concerning sample input programs together using an automated before-
after testing framework containing executable program test cases. Some test
cases are based on the examples of Section 3, while some of them are hidden from
the user — these cases check if the refactorings have been carefully implemented
such that they also handle more complex situations correctly. Further details
about this framework, the additional evaluation criteria, and the solution ranking
system can be found in Section 4.

Based on the demanded functionality to be implemented by all solutions for
the case study, further interesting extensions to those core tasks are mentioned
in Section 5.

2 Case Description

Before diving into the details of the actual scenario to cope with, we motivate
our case study once again by recalling the aim of refactorings. For this pur-
pose, we use the very words of Opdyke, the godfather of refactorings, which
say that refactoring is the same as “restructuring evolving programs to improve
their maintainability without altering their (externally visible) behaviors” [2].
Hence, solutions of our case study have to (and, hopefully, want to) demonstrate
the power of their chosen transformation tool by implementing refactorings as
program transformation, with optional model-to-code incremental change prop-
agation.

To describe the case study in a nutshell, we provide an intuitive example
here, describing a program state where a natural need for restructuring arises.

Ezample. Refactoring Scenario 1 shows a basic example for a refactoring of a
simple program. The source code of this program is shown in Appendix la. In
this case, we expect that a program transformation takes place which moves
method from all child classes of the class ParentClass to this same superclass.
(This is a classical refactoring which is called Pull Up Method and builds a
significant part of our case study. Pull Up Method will be further specified and
exemplified in Section 3.)

ParentClass
method(String,int)

T T
| | | |

ChildClass1 ChildClass2
method(String,int) method(String,int)

ParentClass

ChildClassl ChildClass2

(a) Class Diagram of Source Code 1 (b) Class Diagram after the Refactor-
ing of Source Code 1

Refactoring Scenario 1: Structure of the Java Program before and after the
Application of the Refactoring pum(ParentClass, method(String, int))

In the following, we give a schematic overall picture of the intended transfor-
mation chain (Figure 1) and its constituting artifacts. Solid arrows denote the
extended challenge, while the dashed arrow shows the basic challenge not using
a PG representation. The basic challenge can include an arbitrary intermediate
representation. In Section 2.1, some details regarding the input Java code and
the PG meta-model (called the type graph) are given, while Section 2.2 provides
information on the individual transformation steps and the arising difficulties.

Java Java-to-PG
Source Code PG
1
. program PG
| Tefactoring refactoring
1
refactored Java, PG-to-Java refactored
Source Code PG

Fig. 1: Sketch of the Transformation Chain

2.1 Setting of the Case Study

Java Source Code All input programs considered for refactoring for TTC are
fully functioning (although, abstract) Java programs built for the very purpose
of checking the correct and thorough implementation of the given refactoring

operations. Some test input programs are openly available and will be also de-
scribed later on, while some others serve as blind tests and are not accessible to
the solution developers.

The Java programs conform to the Java 1.4 major version. Moreover, the
following features and language elements are explicitly out of scope for this case
study:

— access modifiers (all elements have to be public)

— interfaces

— constructors

— the keywords abstract, static and final except for public static void
main(String[] args)

— the keyword super

— exception handling

— inner, local and anonymous classes

— multi-threading (synchronized, volatile, ...)

On the other hand, we would like to point out that the following Java lan-
guage elements and constructs should be considered:

inheritance

— method calls, method overloading and method overriding
field accesses and field hiding

libraries

To detect external libraries, editable classes must have an identical root pack-
age which is not the root package of any used library.

Type Graph for Representing Java Programs Figure 2 shows the type
graph meta-model that is part of the extended case study assets as an EMF meta-
model — nevertheless, other meta-modeling technologies are allowed in solutions
as well. If the solution is designed for the extended challenge, a program graph
is only allowed to contain the information visualized in Figure 2. For a technical
realization of the shown types, references, and attributes tool depended tuning
is allowed. It is not allowed to make additional information available in the PG.

In conformance with the restrictions on the considered Java programs and
with the nature of classical refactoring, the type graph does not include any mod-
eling possibilities for access modifiers, interfaces, etc. and any code constituents
lying deeper than the method level. In the following, we describe the meaning
of some of the most important nodes and edges of the type graph.

The type graph represents the basic structure of a Java program. The node
TypeGraph serves as a common container for each program element as the
root of the containment tree. The Java package structure is modeled by the
node TPackage and the corresponding self-edge for building a package tree. The
node TClass stands for Java classes and contains members (the abstract class
TMember), which can be method and field definitions (TMethodDefinition or

¢EClass»
TypeGraph

tName: EString

!

+padiagesh (/0.7

¢EClass»
TPackage

+subpackage
0.-

tName: EString

+package

o |

+parent

+parentClass

1

+childClasses

+containedClasses

0.1

0.1 0.°
. ¢EClass»
= TClass b
- tName: EString
+paramlList +Hype 1
0.= +returnType|0..1
+methods .- {=quence} +ield 0
1elas o
¢EClass» ¢EClass»
Thiethod TField
- tName: ESfring - tName: EString
+method 1 +ield 1
+signatures’[/0..% +signature (/0" Flgnaturesly 0.7
4EClass» «EClass» «EClass»
TMethodSignature —H> TSignature |<}-{ TFieldSignature
Feignaturs /(41 +signature 1
+ovemidgeny +definitions | /0. +definitions .-
2.~ «EClass» — «EClass» «EClass»
TMethodDefinition 1> TMember TFieldDefinition
+overiding 0..1

+owverloadedBy
0.=

.-"-\ i"\ +overlcading D"F--::IEfines

.-
+acoess 0.7

+hiddenBy
o=

/ f i “+hiding 0..1

Fig. 2: Meta-model of the Proposed Type Graph

TFieldDefinition, respectively). In addition, a TClass refers to the abstract
class TSignature, which is the common ancestor of method and field signatures.

Methods and fields are represented by a structure consisting of three ele-
ments:

— The name of the method (field) contained in the attribute tName of TMethod
(TField), which is globally visible in the PG.

— The signatures of the methods (fields) of this name, represented by the class
TMethodSignature (TFieldSignature). The signature of a method consists
of its name and its list of parameter types paramList, while the signature
of a field consists of its name and its type. Different signatures having the
same name (i.e., a common container TMethod or TField) allow overloading.
Signatures have a central role in the Java language, as all method calls and
field accesses are based on signatures.

— TMethodDefinition (TFieldDefinition) is an abstraction layer represent-
ing the instruction level of Java. Relevant information is expressed by ref-
erence edges in the type graph. Overloading and overriding is declared by
the corresponding edges between definition instances, although the overload-
ing/overriding structure is also implicitly given through signatures, defini-
tions and inheritance. The access edges between member instances repre-
sent dependencies between one member and the other members. This single
edge type stands for all kinds of semantic dependencies among class mem-
bers, namely read, write and call.

2.2 Transformations

The transformation chain for the extended challenge consists of three consecutive
steps which are detailed here. For the basic challenge, no obligatory transforma-
tion chain is demanded.

First Step: Java Code to Program Graph Given a Java program as de-
scribed in Sec. 2.1, it has to be transformed into an abstract PG representation
conforming to the type graph meta-model (ibid.). Important note: the fact that
some information necessarily disappears during this transformation calls for a
solution where some preservation technique is employed, i.e., it is possible to
rebuild those parts in the third step (see below) which are not present in the
PG.

We remark that any intermediate program representations like JAMoOPP!,
MoDisco?, AST models etc., are allowed to facilitate the Java-to-PG and PG-
to-Java transformations.

! http://www. jamopp.org
2 http://eclipse.org/MoDisco/

http://www.jamopp.org
http://eclipse.org/MoDisco/

Second Step: Refactoring of the Program Graph This step essentially
consists in an endogenous (PG-to-PG) restructuring of the program graph, ac-
cording to the specifications of the refactoring operations Pull Up Method resp.
Create Superclass. For those specifications and actual refactoring examples,
see Sec. 3.

Third Step: Program Graph to Java Code As already mentioned at the
first step (Java-to-PG), one of the most difficult tasks is to create a solution which
provides a means to recover the program parts not included in the PG when
transforming its refactored state back into Java source code. In other words, it
is impossible to implement the Java-to-PG and the PG-to-Java transformations
(the first and the third step) independently of each other. Furthermore, over
the challenges posed by the abstraction level of the PG, one has to pay extra
attention if a newly created PG element has to appear in the refactored code.

The resulting Java code has to fulfill the requirements of (i) having those code
parts unchanged which are not affected by the refactoring and (ii) retaining the
observable behavior of the input program. These properties are checked using
before-after testing (as usual in the case of behavior-based test criteria) provided
by the automated test framework that is part of the case study and is further
described in Section 4.

After this brief overview of both the static and the dynamic ingredients of the
transformation scenario to be dealt with, we proceed as follows: In Section 3,
we put the second step in Sec. 2.2 under the microscope and present the two
aforementioned refactoring operations with associated examples to also provide
an intuition how and why they are performed. Thereupon, in Section 4, we
describe our automated before-after testing framework for checking the correct-
ness of the implementations, which also serves as a basis for the solution ranking
system described in the same section including further evaluation criteria.

3 Refactorings

In the following, we provide an informal specification of the requested refactor-
ings.

3.1 Pull-up Method

First, we provide an intuition of Pull Up Method textually. Additionally, we
give some further information and examples to clarify the requirements.

Situation and action. There are methods with identical signatures (name and
parameters) and equivalent behaviours in direct subclasses of a single superclass.
These methods are then moved to the superclass, i.e., after the refactoring, the
method is a member of the superclass and it is deleted from the subclasses.

Graphical representation. Figure 3 shows a schematic representation of how Pull
Up Method is performed. We use the elements of the type graph introduced
in Sec. 2.1 and a notation with left- and right-hand sides as usual for graph
transformation. Here, the left-hand side shows which elements have to be present
or absent in the PG when applying the refactoring to it; an occurrence of the
left-hand side is replaced by the right-hand side by preserving or deleting the
elements of it and optionally creating some new elements and gluing them to
the PG. It is implicitly given through object names which parts are preserved.
In addition, we explicitly show the parts to be deleted on the left-hand side in
red and marked with -- and the parts to be created on the right-hand side in
green and marked with ++. The left-hand side also includes a forbidden pattern
or NAC, which in this case consists of a single edge and is shown crossed through
and is additionally highlighted in blue. This edge has to be absent in the input
graph for the refactoring to be possible. Patterns within stacked rectangles may
match multiple times.

parent: parent:
inheritance TClass inheritance inheritance TClass inheritance
k— k—
—
| childl: childN: L childl: childN:
TClass TClass TClass TClass
- - ++
defines defines defines
definitionl: definitionN: definitionl:
TMethodDefinition TMethodDefinition TMethodDefinition
definitions definitions definitions
signature signature
. — — .
signature signature: signature signature signature:
TMethodSignature —— TMethodSignature
signature signature

Fig. 3: Schematic Representation of a Pull Up Method Refactoring - Left-Hand
and Right-Hand Side

Definition. In this case study, a Pull Up Method refactoring is specified as
pum(parent, signature) with the following components:

— a superclass parent, whose direct child classes are supposed to contain at
least one equivalent method implementation, and

10

— the method signature signature of such an equivalent method implementa-
tion, which represents the method to be pull-upped to parent.

Note that a signature consists of a name and a parameter list. The return
type is not part of the signature. Anyway, within a class hierarchy, all return
types of the method definitions of a signature have to be covariant.

Two equivalent implementations of a signature do not necessarily have iden-
tical implementations. Only their behavior is crucial. As proving that two imple-
mentations have identical behavior is undecidable, this decision has to be taken
by a developer before initiating the refactoring.

In case the application conditions (see below) are fulfilled, the method sig-
nature signature as well as a corresponding method definition will be part of
the parent. The copies of the other definitions of signature will be deleted
from all child classes. Note that a Pull Up Method instance does not necessarily
represent a valid refactoring - it marks merely a part of the input program where
it is looked for a possible pull-up action.

Application conditions. In addition to the conditions shown in Figure 3, the
following preconditions have to be fulfilled for a Pull Up Method refactoring
instance pum(parent, signature):

1. Each child class of the class parent has at least one common method signa-
ture signature with the corresponding method definitions (de finition; for
the i-th child class) having equivalent functionality.

2. Each definition; of signature in the child classes is only accessing methods
and fields accessible from parent. Methods and fields defined in the child
classes are not direct accessible .

3. The parent does not belong to a library and is editable.

Important remarks. Although it is not explicitly shown in Figure 3, all access
edges in the PG pointing to a method definition deleted by the refactoring have
to be redirected to point to the one which is preserved, so that subsequent
refactorings are able to consider a coherent state of the PG. The actual choice
of the preserved definition is irrelevant and the definitions can be arbitrarily
matched, as the actual method implementations are out of scope for this case
study. If methods have different return types, then a conservative behavior, such
as the denial of the refactoring is allowed.

Examples

Ezample 1. Our first and most basic example for Pull Up Method is the one we
have already shown as a general motivation for refactoring in the introduction
part of Section 2.

11

Ezxample 2. Given the program in Refactoring Scenario 2, the Pull Up Method
refactoring pum(ParentClass, method(String, int)) seen in the previous ex-
ample is not possible. In ParentClass, a method with the given signature is al-
ready present which is overridden by methods in ChildClass1 and ChildClass2.
Accordingly, the NAC shown on the left-hand side of Figure 3 is violated.

ParentClass
method(String,int)

T
| |

ChildClassl ChildClass2
method(String,int) method(String,int)

Refactoring Scenario 2: Refactoring pum(ParentClass, method(String,
int)) not possible — method (String, int) already exists in ParentClass

Ezxample 3. Given the program in Refactoring Scenario 3, the Pull Up Method
refactoring pum(parent, method(String, int)) is not possible. In this case,
Precondition 1 is not fulfilled as ChildClass3 does not contain the common
method with the signature method (String, int).

ParentClass
ChildClassl ChildClass2 HidC
method(String,int) method(String,int) ChildClass3

Refactoring Scenario 3: Refactoring pum(ParentClass, method(String,
int)) not possible — one of the child classes does not have method (String, int)

All examples shown here also have a corresponding test case in our test frame-
work which is described in Sec. 4, with the example programs being accessible to
the solution developers. In addition, there are some built-in test cases that are
hidden in the framework and check trickier situations. For each of these hidden
test cases, a textual hint for its purpose is provided by the test framework.

3.2 Create Superclass

The refactoring operation Create Superclass is described in a similar fashion
as the Pull Up Method refactoring above.

12

Situation and action. There is a set of classes with similar features. As a first
step towards an improved program structure, a new common superclass of these
classes is created.

Graphical representation. Figure 4 shows a schematic representation of how the
Create Superclass refactoring is performed with the same notation as by the
Pull Up Method refactoring above. The classes either has to have the same
superclass in the PG or none of them has a superclass modeled in the PG. (Note
that from a technical point of view, each Java class has a superclass. Also, the
distinction above refers to the representation in the PG.) Here, both cases are

shown.

inheritance
—

child1:
TClass

inheritance
]

D inheritance
. -+ . -+
new-_s : CIELSSZ E inheritance ncvv?s\j;)trclassz inheritance

as ‘lass
childN: child1: childN:
TClass TClass TClass

(a) The classes have no superclass in the PG
parent: inheritance parent:
TClass TClass
inheritance
++

new.s

Tas

Class:

++

inheritance

child1:
TClass

—

new_superclass:

TClass

—

++

inheritance
e

childN:
TClass

child1:
TClass

childN:
TClass

(b) All classes have the same superclass in the PG

Fig.4: Schematic Representation of a Create Superclass refactoring — Left-
Hand Side and Right-Hand Side

13

Definition. In this case study, a Create Superclass instance is defined as
csc(classes, new_superclass) consisting of the following components:

— a list of classes classes, where all classes have identical inheritance relations
(i.e., each of them inherits from the same class or they do not inherit from
any class in the PG), and

— a superclass new_superclass, which does not exist before the refactoring
and has to be generated.

In case the application pre- and postconditions (see below) are fulfilled, a new
class new_superclass will be created which becomes the superclass of the classes
in classes. Note that a Create Superclass refactoring does not necessarily
represent a valid refactoring - it marks merely a part of the input program
where it is looked for a possible refactoring operation.

Application conditions. In addition to the conditions shown in Figure 4, the
following precondition has to be fulfilled for a Create Superclass instance
csc(classes, new_superclass):

1. The classes contained in classes are implementing the same superclass.
Note that classes with no explicit inheritance reference in Java are imple-
menting java.lang.Object — modeling this class explicitly in the PG is
a developer decision which does not influence the conditions for Create
Superclass.

Additionally, the result of csc(classes, new_superclass) has to fulfil the fol-
lowing postconditions:

1. Each class in classes has an inheritance reference to new_superclass.

2. In case the classes in classes had an explicit inheritance reference to a su-
perclass parent before the refactoring, their new superclass new_superclass
has an inheritance reference to parent.

Examples

Ezxample 1: Refactoring Scenario 4 shows the most basic example on which
Create Superclass is applicable. The refactoring operation csc({ChildClass1,
ChildClass2}, NewSuperclass) is possible as the desired new class does not
exist yet.

14

NewSuperclass

T
| |

ChildClass1 ChildClass2 ChildClass1 ChildClass2

(a) Class Diagram before the Refactor- (b) Class Diagram after the Refactor-

ing ing
Refactoring Scenario 4: Structure of the Java Program before and after the Appli-
cation of the Refactoring csc({ChildClass1,ChildClass2}, NewSuperclass)

As demonstrated by the previous example, the Create Superclass refactor-
ing itself is relatively uncomplicated, however, there are additional hidden test
cases in the framework for Create Superclass as well. Note that, as already
stated before, the main challenge by this refactoring is not to restructure the
PG, respectively the chosen intermediate representation in the basic challenge,
but to propagate the new element into the Java source code.

4 Evaluation

In this section, we introduce our test framework ARTE (Automated Refactoring
Test Environment) for checking the correctness of implementations (Sec. 4.1) and
the criteria and the scoring system which will be used to evaluate and rank the
submitted solutions (Sec. 4.2).

4.1 Test Framework

before ——m —— | after
execute execute test cases execute
program program

output output

compare

OO « g [

Fig. 5: Schematic Process of Before-after Testing

To enable the evaluation and ranking of the solutions for our case study,
we have created an automated refactoring testing environment called ARTE,

15

whose mechanism is sketched in Figure 5. This test framework relies on the well-
known principle of before-after testing, which is often used in behavior-critical
scenarios: the behavior of the input is determined by stimulating it through the
test environment and it is then checked if the output of the transformation reacts
identically to the same stimulation.

In our framework, before-testing consists in compiling and executing the pro-
gram and recording its console output. On the other hand, after-testing consists
in compiling and executing the refactored program created by the actual solu-
tion under test, and comparing its console output to the one recorded in the
before-testing phase.

The testing procedure is described in test cases. A test case consists of the
following:

— a Java program assigned to it, on which the transformation takes place (one
program can be assigned to multiple test cases) and

— a sequence of commands which can be (i) actual transformation operations
or (ii) assertions to check if the transformations provided the expected result
(e.g., nothing has changed if there is no correct refactoring possible). Note
that a transformation operation cannot be executed without a corresponding
assertion check for success.

The execution of a test case comprises the following steps:

— the before-testing phase as described above,
— the execution of the commands in the test case and
— the after-testing phase as described above.

For further details on how to use our testing framework ARTE and how to
write individual test cases, please refer to the ARTE handbook.

Beyond the ones mentioned above, the number of imaginable extensions regard-
ing the supported refactorings or the framework is unlimited. The reviewers can
also reward some other creative extension approaches using the extension score.

4.2 Ranking Criteria and Scoring System

In this section, we propose a systematic way of evaluating and ranking the so-
lutions for the case study.

There is a total of 100 points that can be achieved by a solution. These 100
points are composed as follows (with a detailed description of the various aspects
thereafter):

— max. 60 points: correctness and completeness (successful execution of test
cases)

— max. 10 points: comparison of the execution times of the solutions

— max. 30 points: quality of the solution, verified by the reviewers (15 points
per reviewer assuming 2 reviewers per solution)

— ...and a maximum of 15 points beyond the total of 100 by comparing how
much of the case extensions described in Section 5 has been implemented

16

Correctness and completeness - 60 points. By the final ranking of the solutions,
there are three kinds of test cases considered: (i) the public ones, which are part
of the test framework ARTE and have been also discussed in Sec. 3, (ii) the
hidden ones, also being part of ARTE but being not further specified except for
some hints within ARTE and (iii) some additional test cases which will not be
announced until the final evaluation occurs. There is a fixed amount of points
assigned to each test case; these numbers are not public, however, the developers
may assume that the point distribution reflects the levels of difficulty. The solu-
tion developer should provide: a simple summary of the test cases accomplished
by the solution. As the basic challenge offers fewer possibilities, we will give 2/3
of all points that can be achieved in this category.

Execution times - 10 points. The test framework ARTE provides an execution
time measurement (per test case), whose result is then displayed on the console
in the test summary. Based on the final test set, the fastest solution gets 10
points and the slowest 1 point, while the remaining ones will be distributed
homogeneously on this scale.

Reviewer opinion - 2 x 15 points. Each of the reviewers has 15 points to award
to the solution according to how much they like it.

To make the reviewers get a better insight into your solution beyond its
objective correctness, it is generally a good idea to name some strong and some
weak spots of the solution. It is definitely the developer itself who can contribute
the most to this topic.

The soft aspects listed below serve as guidelines or hints for the solution
developers to comment on their solution beyond the scope of the actual test
cases in the contest. It is not mandatory, but we are excited to learn more about
the way your tool works and what it can achieve!

— Comprehensibility: we think that the question if a solution works with
an understandable mechanism which is not exclusively accessible for the
high priests of a cult is of high importance, especially in the scope of the
Transformation Tool Contest where such a comprehensible solution facili-
tates discussion and contributes to a profitable event.

— Readability: in contrast to comprehensibility, this aspect refers to the outer
appearance of the tool - whether it has a nice and/or user-friendly interface,
can be easily operated, maybe even with custom-tailored commands or a
DSL, ...

— Communication with the user: although related to readability, this as-
pect refers to the quality, informativeness and level of detailedness of the
actual messages given to the user while implementing a solution. In other
words: Am I as user informed that everything went smoothly? In case of
some failure or malfunction, am I thoroughly informed what actually went
wrong?

— Robustness: this classical software quality aspect characterizes how a soft-
ware behaves if put into an erroneous environment, getting malformed input,

17

... E.g., what happens if some out-of-scope keywords appear in a Java pro-
gram to be refactored?

— Extensibility: this one also examines the inner structure of the solution
concerning its possibilities to expand in the future. E.g., would it be easily
feasible to build in the support of additional Java constructs or new refac-
torings?

— Debugging: in contrast to readability, this aspect refers solely to the de-
bugging capabilities of the tool used to create the solution. In case a problem
is uncovered through erroneous behavior, what means are provided to locate
the cause of a design failure? Does the tool provide suggestions for fixing
errors? How precise are the debug messages?

We have created a simple online form? for the reviewers to send in their opinion
regarding the aspects above.

5 Case Extensions

While the core case described in Sections 1-4 is already a full-fledged refactoring
use-case on its own right, it can still be extended in various ways inspired by
the theory and practice of refactorings. Here, we mention some interesting pos-
sibilities for extending a solution beyond the requirements of the core case. New
ideas are of course welcome and will be taken into account. There is a bonus
of 15 points, which can be achieved by providing some (maybe partial) answers
to one or more extensions or at least outlining a concept with relation to the
core case solution. One convincing extension is enough to achieve the full bonus.
These points are awarded according to the reviewers’ opinion and we only give
some recommendations which may serve as scoring guidelines. The final bonus
score is calculated as the average of the reviewers’ scores.

5.1 Extension 1: Extract Superclass

The two refactoring operations considered in the core case, namely Pull Up
Method and Create Superclass, are simple actions compared to some complex
operations which are still described as a single refactoring step in the literature.
A classical example for such a more complex refactoring is Extract Superclass,
which can be specified as a combination of Create Superclass and Pull Up
Method (and its pendant for fields, Pull Up Field). After executing a Create
Superclass for some classes, one can use Pull Up Method resp. Pull Up Field
on the newly created parent class to move the common members there.

Recommendation. 15 points for a full-fledged implementation which can be exe-
cuted on an appropriate example program; 9 points for a working implementation
which misses Pull Up Field; 1-3 points for a concept sketch using the actual
rule implementations.

3 nttp://goo.gl/forms/8VIuiD82Sg

http://goo.gl/forms/8VJuiD82Sg

18

5.2 Extension 2: Propose Refactoring

In our core refactoring use-case, the hypothetical user already realized the need
of refactoring and also identified the spot where it would be possible and the kind
of action to be executed. Nevertheless, one can imagine a somewhat orthogonal
approach where an automatic refactoring environment permanently monitors
an evolving software and proactively proposes refactorings being feasible on the
code base. To be more concrete, as a first step towards such a system, one might
implement a method which takes as input the whole program and returns one
(or more) feasible refactoring(s).

Recommendation. 15 points for a full-fledged implementation which can be exe-
cuted on an appropriate example program; 5-15 points for an alternative way of
implementation according to its scope and usability; 1-5 points for a plausible
concept sketch according to its ambition and clarity.

5.3 Extension 3: Detecting Refactoring Conflicts

From a practical point of view, it is not unlikely that two developers of the
same software might want to execute refactorings independently of each other.
In this case, it can happen that the refactored code states are not compatible to
each other any more and a merge is not possible. Concerning only two alternative
refactorings, it is equivalent with stating that the result of the refactorings is not
independent of their execution sequence. As a concrete step towards a conflict
detection for refactorings, one can e.g. think of extending the framework so that
it checks consequent refactoring operations and notifies the user if their execution
sequence is considered as critical.

Recommendation. 15 points for a full-fledged implementation which can be ex-
ecuted on an appropriate pair of refactorings; 9-15 points for an alternative way
of implementation according to its scope and usability; 1-9 points for a plausible
concept sketch according to its ambition and clarity.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)
2. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. Tech. rep. (1992)

19

A Appendix: Handbook of the Automated Refactoring
Test Environment ARTE

ARTE is a Java terminal program which executes test cases specified in a Do-
main Specific Language (DSL) on solutions of the OO Refactoring Case Study
of the Transformation Tool Contest 2015. A test case comprises a sequence of
refactoring operations on a Java program as well as the expected results. The
test cases are collected in a test suite in ARTE. The tests aim at checking the
correct analysis of pre- and postconditions for refactorings and the execution of
these refactorings.

For executing the provided test framework, Java JDK 1.7 is needed and the
path variable has to be set to point to the JDK and not to a JRE. With a
JRE and no JDK, the test framework will still start but the compilation of Java
programs during testing will fail.

ARTE has been tested on Windows command line and in Bash. However,
ARTE should be executable in every Java-capable terminal.

A.1 Case Study Solutions and ARTE

A solution for the case study has to implement an interface that specifies method
signatures which ARTE relies on. This interface is called TestInterface and is
provided in the file TTCTestInterface. jar.

Additionally, the solutions have to be exported as a simple (not executable)
JAR file. This file has to contain a folder META-INF/services with a file called
ttc.testsuite.interfaces.TestInterface. This latter file has to contain the
fully qualified name of that class which implements the TestInterface. In the
TTCSolutionDummy project, a dummy implementation of this interface is demon-
strated.

An implementation fulfilling these conditions can be dynamically loaded into
ARTE using the Java ServiceLoader. Further information can be found on the
Oracle website 5.

The single methods which have to be implemented are:

getPluginName():
Returns the name of the actually loaded solution.
setPermanentStoragePath(File path):
Is called by ARTE to hand over a location at which data can be stored
permanently by the solution.
setTmpPath(File path):
Is called by ARTE to hand over a location at which data can be stored
temporally. All contents written to this location will be automatically deleted
by closing ARTE.

4 http://www.oracle.com/technetwork/articles/javase/extensible-137159.
html
® http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

http://www.oracle.com/technetwork/articles/javase/extensible-137159.html
http://www.oracle.com/technetwork/articles/javase/extensible-137159.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

20

setLogPath(File path):
Is called by ARTE to hand over a location at which logs can be stored
permanently. ARTE will store reports at this location as well.
usesProgramGraph():
Is called by ARTE to determine whether the solution uses the program graph
of the extended case.
setProgramLocation(String path):
Is called in the basic case by ARTE to hand over the location of the Java
program which will be refactored next.
createProgramGraph(String path):
Is called in the extended case by ARTE to instruct the solution to build the
program graph for the Java program located at path.
applyPullUpMethod(Pull Up_Refactoring refactoring):
Is called by ARTE for a Pull Up Method refactoring to be performed. The
structure of the type Pull Up_Refactoring is explained in the following
DSL part — its fields have similar names as the corresponding keywords of
the DSL. Note that name fields contain names of variables inside the DSL
and not method or class names.
applyCreateSuperclass(Create_Superclass_Refactoring refactoring):
Is called by ARTE for a Create Superclass refactoring to be performed.
For the type Create_Superclass_Refactoring holds the same as for the
type Pull_Up_Refactoring above.
synchronizeChanges():
Is called by ARTE to instruct the loaded solution to synchronize the Java
source code with the PG. This means that the changes made on the PG have
to be propagated into the Java program.

A.2 Defining Test Cases

We provide a custom DSL to make the creation of new test cases more conve-
nient. For developing test cases, we provide an Eclipse plug-in which supports
syntax highlighting and basic validation of the test files. However, test files can
be written using any text editor.

In the following, we show on a Pull Up Method and on an Create Superclass
example how our DSL can be used to create test cases and how to perform tests
using ARTE. We explain the commands within the examples in a practical,
step-by-step fashion. For further information about commands not covered by
these simple examples, refer to the in-line explanations and to Appendix C where
a full command list is provided.

T W N

o 3

11
12
13
14

21

A.3 DSL Example - Pull Up Method

As Pull Up Method test case example, we recapitulate our Example 1 that has
been used in Section 2 of the case description to motivate refactorings. The struc-
ture of the Java program used in this example is shown in Refactoring Scenario 1
and the corresponding source code in Appendix B. On this program, we are going
to execute the refactoring pum(ParentClass, method(String, int)).

Test cases are wrapped in a TestFile environment that also defines the
name of the test case. This name should to be identical with the name of the file
containing this TestFile environment. If this is not the case, it is automatically
renamed during import into the test framework, which can lead to failing imports
with no obvious cause. The TestFile name has to be unique.

TestFile 1.1: PUM Example 1

TestFile public_.pum_1 {

A TestFile contains everything needed for a test execution, namely classes,
methods, refactorings and test cases. All elements used in the test cases have to
be defined in the corresponding test file. Therefore, we define all classes we want
to use in the test case.

In our example, the first class to be defined is ParentClass. To unambigu-
ously identify the class in the program during test execution, the package con-
taining the class has to be given as well. If the class is contained in the default
package, the package parameter can be omitted.

class existing_parent {
package ”"example(01”
name ”ParentClass”

As we have to check after the refactoring whether the pull-upped method is
no longer contained in the child classes, those have to be defined as well.

class childl {
package ”"example(01”
name ”ChildClass1”

}

class child2 {
package ”"example(01”
name 7 ChildClass2”

Required primitive types and classes from libraries have to be also explicitly
defined. In this example, we need these in the signature of the method to be
pulled-up.

15
16
17
18
19
20
21
22

23
24
25
26

27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42

22

class String {
package "java.lang’
name ”String”

}

class int {
name ”int”

}

)

For specifying a method signature, the name of the method and its parame-
ters are necessary. The params command is optional as a method may have an
empty parameter list. The order of the parameter list is important.

method child_method {
name ”method”
params String , int

}

According to Example 1, we are going to specify the Pull Up Method refac-
toring pum(ParentClass, method(String,int). For this purpose, we have de-
fined the necessary elements above and now, we combine them using the keyword
pullup method. (A refactoring can be used in multiple test cases within the test
file.)

pullup_method executable_pum {
parent existing_parent
method child_method

}

Each test case has a mandatory description, which will be displayed during
execution of the test case. As second argument, the name of a Java program is
given. By having a look on the file structure shown in Source Code B, it can be
seen that this program name refers to the folder containing the input program.

case pub_puml_1_paperl {
description "PUMHPOS: (paper—exl) Pull—up of two ...7
program " paper—example0l”
testflow {
assertTrue (executable_pum)

existing_parent contains child_method
child1l “contains child_method
child2 “contains child_method

0 O Ui WK

—
W= OO

14
15
16
17

23

The single steps of a test case are defined in a list starting with the keyword
testflow. A testflow environment automatically induces both before- and
after-testing. As the previously defined refactoring is supposed to succeed on the
given Java program, we assert a successful refactoring by using the assertTrue
command. Refactorings can only be executed with an accompanying assertion.

After executing the refactoring, we check if the resulting Java program has
the structure shown in Refactoring Scenario 1. Therefore we are checking if the
method has been moved to the parent and if the child classes do not contain the
method anymore.

A.4 DSL Example - Create Superclass

In the following, we describe a test case for a Create Superclass refactoring.
For this purpose, we use again our example from the case description. The ex-
ample is shown in Refactoring Scenario 4. The refactoring csc({ChildClass1,
ChildClass2}, Superclass) is expected to succeed.

Again, we first define the necessary elements for the refactoring. The classes
for which a new superclass will be created are enumerated in a list called child
by using the classes keyword. One class can be added to multiple lists and lists
can be used by multiple refactorings.

TestFile public_exs_1 {

class childl {
package ”example04”
name ” ChildClassl”

}

class child2 {
package ”example04”
name ”?ChildClass2”

}

classes child {childl, child2}

Elements defined in a TestFile do not have to exist in the input or out-
put program. However, accessing these elements will result in a failure if they
have not been created before by, e.g., a refactoring. Here, we define the vari-
able new_superclass as a “placeholder” for the class Superclass which will be
created by the Create Superclass refactoring.

class new_superclass {
package ”example04”
name ” Superclass”

}

18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34

24

For the definition of the Create Superclass refactoring, we are referencing
the elements defined before.

create_superclass refactoring {
child childs
target new_superclass

}

case pub_exsl_1 {
description "EXS-POS: Create a superclass for two...”
program ”example04”
testflow {

As we are expecting the refactoring to succeed, we use the assertTrue key-
word. If we expect a refactoring to fail, we can use the keyword assertFalse.
The additional keywords expectTrue and expectFalse can be used in ambigu-
ous cases; these result in success if the expectation is fulfilled and in a warning
instead of a failure otherwise. Additionally, these two keywords include an else-
block where static tests on the unexpected outcome can be executed. For more
details, refer to Appendix C.

assertTrue (refactoring)

The step keyword allows for grouping the different stages in a testflow but
has no influence on the execution.

At this point, we have to check whether the child class extend the new su-
perclass or not.

step{
child1l extends new_superclass
child2 extends new_superclass

}
}
}
}

It is possible to execute multiple refactorings in a single test case.

A.5 Using ARTE

On Windows, ARTE can be started by double-clicking run_windows.bat. On
Linux, the file run_linux.sh has to be executed.

[foo@bar ARTE]$ sh run_linux.sh

If ARTE has been launched for the first time, a solution has to be loaded.

load —solution /home/foo/dummy. jar

25

The entered path has to be absolute. The referenced solution will be copied to
the permanent storage path of ARTE. The same command has to be used again
to load a different version of the solution. The previous loaded solution will be
deleted.

Test cases can be loaded similarly. In contrast to the load solution command,
multiple test cases can be imported.

load —test /home/public_pum_1.ttc /home/public_exs_1.ttc

The import of the Java programs is a bit more complex. In addition to the
path where the program is located, the main class of the program has to be
given as well. The Java programs have to be structured like the example shown
in Source Code B. The referenced program folder has to contain a src folder.
The package structure is represented by further subfolders containing classes.
The referenced program folder is equivalent to an Eclipse project folder.

A Java program loaded into ARTE has to contain a class defining a main
method that is executed during testing.

load —src¢ /home/paper—example0l ——main example01l.ChildClassl1

It is possible to print out each loaded test case and Java program.

testcases —1list

programs —1list

There are three ways to execute test cases:

1. Ezecute test cases by name. This is only possible for our public test cases
and for self-written test cases. In this variant, multiple test cases can be chosen.
If the name of a test file is entered, each test case in this file will be executed.

In the example below, all cases contained in the file public_pum_1.ttc and
the test case pub_exs1_1 will be executed.

execute —test public_pum_1.ttc pub_exsl_1
2. Fxecute all hidden test cases.

execute —hidden

3. Execute all public, hidden and self-written test cases.

execute —all

It is indispensable to use the exit command after using ARTE.

Most of the presented commands can be executed in various ways. Feel free
to find your favourite. The help command will help you with this. If you, e.g.,
want to know more about test cases, try the following:

help testcases

SO W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37

26

B Appendix: Source Code of the Java Program shown in

Refactoring Scenario la

paper-example01/src/example01/ParentClass.java

package example01;
public class ParentClass {

public ParentClass(){}

paper-example01 /src/example01/ChildClassl.java

package example0l;
public class ChildClassl extends ParentClass {
public ChildClass1 (){}
public void method(String message, int repeat) {

for (int 1=0; i<repeat; i++){
System.out . println (message);

}

}

public static void main(String [] args){
ChildClassl ¢l = new ChildClassl ();
cl.method(”cl:Hello_World”, 3);
ChildClass2 ¢2 = new ChildClass2 ();
c2.method (”c2: Hello_World” , 3);

}

paper-example01/src/example01/ChildClass2.java

package example0l;

public class ChildClass2 extends ParentClass {
public ChildClass2 (){}
public void method(String string, int k) {

int i = 0;
while (i++ < k) System.out.println (string);

27

C Appendix: Command Table of the DSL

Command

Subcommand

Description

TestFile file_id {

h

A test file always starts with this command. The file

as to be called “file_id.ttc”.

file_content

C

The content of a test file can be a combination of
elements class, classes, method, pullup_method,

reate_superclass and case.

Command

Subcommand

Description

class class_id {

The class command is used to describe a Java class.

package [String]

An optional String value like ”subsubpack-
age.subpackage.package”.

name [String]

The name of the class.

Command

Subcommand

Description

classes classes_id {

The classes command is used to define sets
of classes for further use.

class_idy, ..., class_idy,

A comma separated list of classes which
should be grouped.

28

Command

Subcommand

Description

method method_id {

The method command is used
to describe a Java method signa-
ture.

name [String]

The name of the method.

param class_do, ..., class_idy,

Parameters are optional and are
an ordered list of comma sepa-
rated references to classes.

}

Command

Subcommand

Description

pullup_method refactoring-id {

The definition of a Pull Up
Method refactoring.

parent class_id

A reference to the parent class
whose childs a method should
be pulled up from.

method method_id

A reference to the method
which should be pulled up.

{

Command

Subcommand

Description

create_superclass refactoring_id {

The definition of a Create
Superclass refactoring.

classes classes_id

A reference to the set of
classes for which a superclass
should be created.

target class_id

A reference to a class vari-
able describing the superclass
which will be created.

}

Command

Subcommand

Description

case test_case_id {

A test case can be identified by the test
suite through test_case_id.

description [String]
tool.

A textual description of the test case.
This description is also shown in the test

program [String]

The name of the program on which the
test case should operate.

testflow { A container for the test commands.
An ordered list of test commands that
can contain step, assertTrue(), as-
sertFalse(), expectTrue(), expect-
teststepo, ..., test_stepn False(), ((2ontaims7 Ncogzains, ex-
tends, ~extends, synchronize and
compile.

29

Command|Subcommand Description

Allows for grouping, has no effect on the execu-

step { tion.

An ordered list of test steps which can contain
step, assertTrue(), assertFalse(), expect-
True(), expectFalse(), contains, ~contains,
extends, ~extends, synchronize and compile.

test_stepo, ..., test_stepy

Command Subcommand |Description

assertTrue(Checks whether a refactoring has been executed success-
assertFalse(ful. The result is compared with the assertion.
.. .|The refactoring which will be handed to the solution for
refactoring_id .
execution.
)
Command Subcommand Description

Checks whether a refactoring has been exe-
cuted successful. The result is compared with
the expected result. If the expected result is
not matched, the execution can still be suc-
cessful.

expectTrue(
expectFalse(

The refactoring which will be handed to the

refactoring_id . .
f g solution for execution.

H

An ordered list of test steps executed if
the expectation has been matched. The test
steps can contain step, assertTrue(), as-
sertFalse(), expectTrue(), expectFalse(),
contains, ~contains, extends, ~extends,
synchronize and compile.

test_stepo, ..., test_stepy

} else {

A message displayed if the else block has been

warning [String] entered.

An ordered list of test steps executed if the
expectation has not been matched. The test
steps can contain step, assertTrue(), as-
sertFalse(), expectTrue(), expectFalse(),
contains, ~contains, extends, ~extends,
synchronize and compile.

test_stepo, ..., test_stepy

LHS Variable|Command |RHS Variable|Description

Checks if the method or field (RHS) is con-
method_id tained in the class (LHS). The test case fails
field_id if the method or field is not contained in the
class.

class_id contains

30

LHS Variable

Command

RHS Variable

Description

class_id

~contains

method_id
field_id

Checks if the method or field (RHS) is not
contained in the class (LHS). The test case
fails if the method or field is contained in the
class.

LHS Variable

Command

RHS Variable

Description

Checks whether the LHS class extends the

class_id extends |class_id RHS class. The test case fails if LHS does not
extend RHS.

LHS Variable|Command |RHS Variable|Description
Checks whether the LHS class does not ex-

class_id ~extends|class_id tend the RHS class. The test case fails if LHS
extends RHS.

Command Description

synchronize Triggers the propagation of changes made on the program graph to the

Java source code.
compile Triggers the compilation of the Java source code.

	Case Study: Object-oriented Refactoring of Java Programs using Graph Transformation

