
The TTC 2015 Model Execution Case

Tanja Mayerhofer and Manuel Wimmer

Business Informatics Group, Vienna University of Technology, Austria
{mayerhofer,wimmer}@big.tuwien.ac.at

Abstract. This paper describes a case study for the Transformation Tool Contest
(TTC) 2015 concerning the execution of models. The case foresees the specifi-
cation of the operational semantics of a subset of the UML activity diagram lan-
guage with transformation languages. In particular, the computation of the end
result of the execution of the activity diagrams is targeted as well as the provi-
sioning of a precise trace for the complete execution. The evaluation concerns the
correctness of the operational semantics specifications, its understandability and
conciseness, as well as its performance.

1 Introduction

Executable models are being used for decades in computer science since the introduc-
tion of Petri nets and state machines to name just a few prominent examples. In the
past years, they also became with Executable Domain Specific Modeling Languages
(xDSMLs) and executable UML (xUML) an important research line in Model-Driven
Engineering (MDE) [1, 2]. As a prerequisite for having executable models, the opera-
tional semantics of the modeling languages have to be explicated. In general, there are
two approaches used for defining the operational semantics of models [5]. First, one
may incorporate the runtime concepts into the metamodel of the modeling languages
to represent execution states and define transformation rules for evolving the execution
states of a model. Second, one may delegate the execution of models by mapping the
modeling languages to some existing formalisms which already provide execution sup-
port. The second approach has been already covered in the past by previous TTC cases.
However, the first approach has not been subject to investigation for a TTC case yet.

We believe that having a dedicated TTC case for the direct specification of the
operational semantics within a language’s metamodel is of major interest for the trans-
formation community due to two reasons. First, there is already a large body of work
discussing how to implement the operational semantics for modeling languages using
different kinds of languages including also several model transformation languages (cf.
for instance [3,4,6]). Second, with efforts such as fUML [8] and xDSMLs [1], language
engineers have to reside on mature techniques to define the operational semantics for
their modeling languages in a concise, reusable, and scalable way.

To shed some light on the current state-of-the-art of defining operational semantics
with model transformations, we propose in this case description the task of specifying
the operational semantics of a subset of the UML activity diagram language covering
several control flow concepts and a simple expression language. The provided meta-
model for this subset of the UML activity diagram language already contains the nec-
essary runtime concepts. So the task for TTC attendees is to define a transformation,

which specifies the operational semantics of the UML activity diagram language by
updating the runtime state of executed UML activity diagrams. Thus, the input model
for the transformation is a UML activity diagram in its initial runtime state and the
output model of the transformation is the final runtime state of the UML activity dia-
gram including a trace of the execution. Due to these characteristics, the transformation
is considered to be in-place and endogenous [7]. Please note that the transformation is
only concerned with the abstract syntax of the models, which may trigger modifications
in the concrete syntax, e.g., for model animation. However, the latter is not in the focus
of this case.

2 The Transformation

This section describes the artifacts needed for solving this case, namely the UML activ-
ity diagram metamodel, a description of its operational semantics, as well as an example
transformation trace.

2.1 Metamodel

Figure 1 shows an excerpt of the metamodel of the activity diagram variant considered
in this case. It shows the basic concepts for modeling activities. Activities (metaclass
Activity) consist of variables (metaclass Variable), activity nodes (metaclass Activity-
Node), and activity edges (metaclass ActivityEdge).

Variables. For variables we distinguish between Integer variables and Boolean vari-
ables (metaclasses IntegerVariable and BooleanVariable). Variables may define an ini-
tial value (reference initialValue), where we again distinguish between Integer values
and Boolean values (metaclasses Value, IntegerValue, and BooleanValue). Variables can
serve as local variables or input variables of an activity (references locals and inputs of
Activity).

Activity Nodes. There are two types of activity nodes available, namely control nodes
(metaclass ControlNode) and actions (metaclass Action).

Control nodes can be used to define the start of an activity (metaclass InitialNode),
the end of an activity (metaclass ActivityFinalNode), alternative branches of an activity
(metaclasses DecisionNode and MergeNode), and concurrent branches of an activity
(metaclasses ForkNode and JoinNode).

Actions constitute the fundamental unit of executable behavior and their execution
represents some processing in the modeled system. In this case we consider so-called
opaque actions (metaclass OpaqueAction), which can define an ordered sequence of
expressions (metaclass Expression). Which kinds of expressions are supported, can be
seen in the excerpt of the metamodel depicted in Figure 2.

We distinguish between Integer expressions and Boolean expressions (metaclasses
IntegerExpression and BooleanExpression). An Integer expression processes two In-
teger variables (references operand1 and operand2). Integer calculation expressions
(metaclass IntegerCalculationExpression) either perform a summation or subtraction

of these variables (enumeration IntegerCalculationOperator) and assign the resulting
value to another Integer variable (reference assignee). Integer comparison expressions
(metaclass IntegerComparisonExpression) compare the variables according to the de-
fined comparison operator (enumeration IntegerComparisonOperator) and assign the
resulting value to a Boolean variable (reference assignee). For Boolean expressions we
distinguish between unary expressions and binary expressions (metaclasses Boolean-
UnaryExpression and BooleanBinaryExpression) that assign the resulting value to a
Boolean variable (reference assignee). Unary Boolean expressions apply the logical
operator NOT (enumeration BooleanUnaryOperator) on a Boolean variable (reference
operand). Binary expressions apply the logical operators AND and OR on two Boolean
variables (references operand1 and operand2). Please note that computed values cannot
be assigned to input variables of activities.

Activity Edges. Activity edges are used to connect activity nodes with each other. Con-
trol flow edges (metaclass ControlFlow) define the flow of control among activity nodes.
They may define a Boolean variable whose value serves as guard condition for the con-
trol flow (reference guard). Guard conditions are only allowed for outgoing control flow
edges of decision nodes.

Action

ExecutableNodeControlNode

Value

Activity

ActivityNode

ControlFlow

OpaqueAction

Variable

name : EString

IntegerVariable BooleanVariable

BooleanValue

value : EBoolean

IntegerValue

value : EInt

NamedElement

name : EString

InitialNodeFinalNode

ActivityFinalNodeMergeNode

DecisionNode

ForkNode

JoinNode

target1
incoming*

edges

*activity

1

nodes

*

locals

*
inputs

*

initialValue

0..1

source 1
outgoing *

guard 0..1

ActivityEdge

OpaqueAction

Expression

expressions *

Fig. 1. Metamodel for UML activity diagrams (activities, variables, edges, nodes)

Expression

BooleanExpression

IntegerExpression

OpaqueAction

IntegerCalculationExpression

operator : IntegerCalculationOperator

IntegerComparisonExpression

operator : IntegerComparisonOperator

BooleanUnaryExpression

operator : BooleanUnaryOperator

IntegerVariable

BooleanVariable

«enumeration»
IntegerCalculationOperator

ADD
SUBRACT

«enumeration»
IntegerComparisonOperator

SMALLER
SMALLER_EQUALS
EQUALS
GREATER_EQUALS
GREATER

«enumeration»
BooleanUnaryOperator

NOT

«enumeration»
BooleanBinaryOperator

AND
OR

expressions

*
operand1 0..1

operand2 0..1 assignee 1

assignee

1

assignee 1

operand 1

operand1

1

operand2

1

BooleanBinaryExpression

operator : BooleanBinaryOperator

Fig. 2. Metamodel for UML activity diagrams (expressions)

2.2 Operational Semantics

An operational semantics defines the semantics of a modeling language by specifying
the steps of computation required for executing a model conforming to the modeling
language. This means, that an operational semantics defines an interpreter for the mod-
eling language, which can be regarded as state transition system defining how an execut-
ing model progresses from state to state. Therefore, an operational semantics consists
of two parts: (i) the definition of the runtime concepts needed for capturing the state
of an executing model and (ii) the definition of the steps of computation involved in
performing transitions of the executing model from one state to another state. Please
note that runtime concepts may include also the definition of additional input values
required for the execution of a model.

While the runtime concepts needed for defining the state of an executing model can
be defined by applying metamodeling techniques, the steps of computation progressing
the executing model to a new state has to be defined with transformation languages.

In the following, we discuss the runtime concepts and steps of computation defining
the operational semantics of the UML activity diagram language. Please note that the
defined operational semantics are based on the semantics of fUML [8].

Runtime Concepts. Figure 3 shows the metamodel defining the runtime concepts for
the UML activity diagram language considered in this case. The runtime concepts are

depicted in orange color, while the metaclasses are depicted in white color. We distin-
guish between four types of runtime concepts: runtime concepts for capturing (i) the
token flow among activity nodes, (ii) the current values of variables, (iii) the trace of an
activity diagram, and (iv) input values that may be provided to an activity diagram.

The semantics of activity diagrams is based on a definition of token flow seman-
tics similar to the token flow semantics of Petri nets (cf. [9] for a formalization of
the semantics of UML activity diagrams using Petri nets as semantic domain). Infor-
mally speaking, an activity node is executed, when all required control tokens are avail-
able through incoming control flow edges. After the execution of an activity node is
completed, control tokens are offered to the successor nodes via outgoing control flow
edges. The runtime concept Token and its subclasses ControlToken and ForkedToken
define how tokens are represented during execution. Thereby, forked tokens originate
from the execution of fork nodes, splitting a control flow (reference baseToken) into
multiple concurrent flows. Tokens are always owned by the activity node (reference
heldTokens of ActivityNode) offering the tokens via activity edges to successor nodes
(reference offers of ActivityEdge). The representation of token offers is defined by the
runtime concept Offer.

Variables defined for an activity are initialized with their initial value (cf. Figure 1,
reference initialValue of Variable), meaning that the value is copied and set as current
value of the variable (reference currentValue). The current value of variables is updated
during the execution of an activity by the execution of opaque actions defining assign-
ments to these variables.

For capturing tracing information, the runtime concept Trace is defined keeping an
ordered list of executed activity nodes (reference executedNodes).

For input variables of an activity (cf. Figure 1, reference inputs of Activity), input
values to be processed by the execution of the activity may be provided. For represent-
ing these input values, the runtime concepts Input and InputValue are defined.

Please note that the defined runtime concepts extends the metamodel of the UML
activity diagram language, i.e., they extend the metaclasses defined in the metamodel
with additional attributes and references, and add additional metaclasses to the meta-
model. This can, for instance, be done with the package merge operation known from
UML and MOF. In our reference implementation, we introduced them directly into the
metamodel of the UML activity diagram language.

Steps of Computation. The following steps of computation are defined for executing
activity diagrams.

1. Initialization of Variables. The executed activity receives input values (cf. Figure 3,
metaclass InputValue) for its defined input variables and initializes the current val-
ues of the input variables accordingly (cf. Figure 3, reference currentValue of Vari-
able). Furthermore, also the current values of the local variables are initialized ac-
cording to their initial values (cf. Figure 1, reference initialValue of Variable).

2. Setting Activity Nodes as Running. All nodes contained by the executed activity are
set as being running (cf. Figure 1, attribute running of ActivityNode).

3. Execution of Initial Node. The initial node of the activity is executed. The execution
of the initial node consists of producing a single control token, adding this control

Activity

ActivityEdge

ActivityNode

running : EBoolean

executedNodes *

trace 0..1

holder

1

heldTokens

*

offers

*

offeredTokens *

baseToken

1

Value

Variable

InputValueInput
inputValues

*

value
1

variable
1

ValueVariable
currentValue

0..1

Input

Values

Trace

Offer

Token

Trace

Tokens

ControlToken ForkedToken

remainingOffersCount : EInt

Fig. 3. Runtime concepts of UML activity diagrams

token to the initial node (cf. Figure 3, reference heldTokens of ActivityNode), and
offering it via the outgoing control flow edges of the initial node to successor nodes
(cf. Figure 3, reference offers of ActivityEdge). Please note that an activity has to
contain exactly one initial node.

4. Determination of Enabled Nodes. The currently enabled nodes of the activity are
determined. An activity node is enabled if it is set as being running and if all in-
coming control flow edges provide token offers. In the case of merge nodes, only
one of the incoming control flow edges has to provide a token offer.

5. Selection and Execution of One Enabled Node. One of the enabled nodes is selected
and executed. Executing an enabled node consists of three steps:

i Consumption of Offered Tokens. All tokens offered to the node via incoming
control flow edges (in the following also referred to as incoming tokens) are
consumed. This leads to the removal of all token offers of all incoming control
flow edges (cf. Figure 3, reference offers of ActivityEdge). Furthermore, in the
case of a consumed control token, the control token is removed from the offer-
ing (i.e., preceding) node (cf. Figure 3, reference heldTokens of ActivityNode).
In the case of a consumed forked token, the forked token’s remaining offers
count is decremented by one (cf. Figure 3, attribute remainingOffersCount) and
only if the remaining offers count is then equal to zero (i.e., every successor
node of a fork node has processed the forked token), the forked token is re-
moved from the offering node. Furthermore, if the forked token’s base token
(cf. Figure 3, reference baseToken) has not be removed from its offering node

(cf. Figure 3, reference holder of Token), the base token is removed from its
offering node (independent of the remaining offers count).
Please note, that the operational semantics does not support implicit forking.
For instance, consider an initial node having two succeeding actions (i.e., the
initial node has two outgoing control flow edges each leading to a distinct ac-
tion). In this case, the single control token produced and held by the initial node
is offered by two offers—one offer for each outgoing control flow edge—to the
two succeeding actions. However, only one of the actions can be executed, be-
cause the execution of one action will remove the token from the initial node
making the offer to the other action obsolete, i.e., the token cannot be consumed
by this second action anymore and it can thus not be executed.

ii Execution of the Node’s Behavior. After the consumption of offered tokens, the
behavior of the node is executed. Depending on the type of the node, control
tokens may be produced, which are added to the node (cf. Figure 3, reference
heldTokens of ActivityNode) and offered to successor nodes via the node’s out-
going control flow edges (cf. Figure 3, reference offers of ActivityEdge).

iii Tracing. Furthermore, the executed node is added to the trace kept by the exe-
cuted activity (cf. Figure 3, reference trace of Activity and reference executed-
Nodes of Trace).

The behavior of the different types of activity nodes executed in Step (ii) is defined
as follows:
(a) Opaque Actions. The expressions defined by an opaque action are executed in

sequential order. The semantics of expressions consists of applying the defined
operator on the current values of the defined operand variables and assigning
the resulting value to the defined assignee variable as current value.
After all expressions have been executed, one control token is created for each
outgoing control flow edge and offered to successor nodes via the respective
edge.

(b) Fork Nodes. A fork node produces for each incoming token a forked token,
whose base token is set to the corresponding incoming token and whose re-
maining offers count is set to the number of outgoing edges (cf. Figure 3, ref-
erence baseToken and attribute remainingOffersCount of ForkedToken). The
created forked tokens are offered via all outgoing control flow edges of the
fork node.

(c) Decision Nodes. A decision node evaluates the guard conditions of its outgoing
control flow edges, i.e., it determines whether the Boolean variables defined as
guard conditions have the Boolean value true set as current value. The incom-
ing tokens are offered via the edge whose guard condition is fulfilled. Please
note that only one guard condition is allowed to be fulfilled.

(d) Join Nodes and Merge Nodes. Join nodes and merge nodes offer the incoming
tokens on all outgoing control flow edges.

(e) Activity Final Nodes. An activity final node terminates the execution of the
containing activity causing all nodes contained by the activity to be set as not
running (cf. Figure 3, attribute running of ActivityNode).

6. Repetition of Steps 4 and 5 until Termination. Step 4 and Step 5 are repeated until
no activity nodes are enabled anymore constituting the termination of the activity.

Please note that in case an activity final node has been executed, no node is enabled
anymore, because all nodes are set as not running.

In the provided reference implementation, the steps of computation are implemented
using Java and EMF. Therefore, we introduced operations into the Java classes gener-
ated by EMF for the presented metamodel of the UML activity diagram language. In
the following, we provide an overview of the most important operations.

Activity

/*
* Receives input values for the activity’s input variables

* and starts the execution of the activity.

*/
void main(List<InputValue> inputValues);
/*
* Initializes the activity’s local and input variables.

*/
void initialize(List<InputValue> inputValues);
/*
* 1. Sets all nodes of an activity as running.

* 2. Fires the initial node.

* 3. Determines the currently enables nodes.

* 4. Selects one of enabled nodes and fires it.

* 5. Repeats steps 3 and 4 until no node is enabled anymore.

*/
void run();

Activity Node

/*
* Returns true if the node is enabled, false otherwise.

*/
boolean isReady();
/*
* Consumes all tokens provided via incoming edges.

*/
List<Token> takeOfferedTokens();
/*
* Adds tokens to node (heldTokens).

*/
void addTokens(List<Token> tokens);
/*
* Executes the behavior of the node.

*/
void fire(List<Token> tokens);
/*
* Offers tokens via all outgoing edges.

*/
void sendOffers(List<Token> tokens);
/*

* Removes token from node (heldTokens).

*/
void removeToken(Token token);
/*
* Returns true, if all incoming edges offer tokens,

* false otherwise.

*/
boolean hasOffer();

Activity Edge

/*
* Returns all offered tokens and destroys all offers.

*/
List<Token> takeOfferedTokens();
/*
* Creates offer for provided tokens.

*/
void sendOffer(List<Token> tokens);

Action

/*
* Executes an action.

*/
void doAction();

Expression

/*
* Executes expression.

*/
void execute();

2.3 Example Transformation Execution Trace

Figure 4 shows an example of an activity diagram in UML notation. Please note that
we provide with our reference implementation a textual concrete syntax for the UML
activity diagram language, which is used for defining the UML activity diagrams used
in our test suite (cf. Appendix A).

The activity shown in Figure 4 defines two variables: the input variable internal and
the local variable noninternal both of type Boolean. The local variable noninternal is
initialized with the value false. Furthermore, the activity consists of one initial node, one
decision node, one fork node, one join node, one merge node, one activity final node
and eight opaque actions, which are connected by 15 control flow edges. Noteworthy
about the activity is, that the opaque action register defines one expression notinternal
= ! internal and that the outgoing edges of the decision node define the two variables as
guard conditions.

Figure 5 and Figure 6 visualize and explain the execution of this example activity
diagram in the case that the value true is provided as input for the input variable inter-
nal. These figures illustrate the execution of the activity nodes contained by the UML

activity diagram one by one. Control tokens and offers of control tokens are shown in
orange color. Forked tokens and offers of forked tokens are shown in blue color. Up-
dates of important features are also highlighted in color. The execution is shown until
the execution of the action manager interview. The complete trace of the example is as
follows: initial node initial - opaque action register - decision node decision - opaque
action get welcome package - fork node fork - opaque action assign to project - opaque
action add to website - join node join - opaque action manager interview - opaque ac-
tion manager report - merge node merge - opaque action authorize payment - activity
final node final. Please note, that the opaque actions assign to project and add to website
could also be executed in reverse order.

initial

register
(notinternal =

! internal)
decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]

input internal : Boolean
local notinternal : Boolean = false

Fig. 4. Example activity diagram (UML notation)

2.4 Variations

As the presented UML activity diagram language is quite extensive, solution devel-
opers may choose to implement it only partially. We foresee the following three case
variations.

Variant 1: Simple Control Flow. The first variant considers only the following concepts
of the UML activity diagram language: Activity, initial node, activity final node, opaque
action (without expressions), control flow edge. This means that only the operational
semantics of these concepts has to be implemented by solution developers choosing this
case variant. The following runtime concepts have to be implemented for this variant:
Offer, token, control token, trace. We consider this subset of concepts to be the minimal
one that should be implemented by all solution developers.

Variant 2: Complex Control Flow. The second variant considers compared to the first
variant the following additional concepts: Fork node, join node, decision node, merge
node, local Boolean variables, and Boolean values. Only the runtime concept forked to-
ken as well as current values of Boolean variables have to be implemented additionally
compared to the first variant.

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = registernotinternal = false

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c1, holder = initial
internal = true, noninternal = false

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = decision

get welcome
package

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = get welc…

get welcome
package

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c4, holder = fork, baseToken = c3,
remainingOffersCount = 1

c5, holder = assign to…

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = add to…

c5, holder = assign to…

c4, holder = null, baseToken = c3,
remainingOffersCount = 0

initial decision

assign to
project
external

get welcome
package

fork join

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = join

c5, holder = join

manager
interview

initial decision

assign to
project
external

get welcome
package

fork join

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c7, holder = manager i…

manager
interview

manager
report

1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control
token c1 offered to the action register.

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2, produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6, produces the control token c7, and offers it to the action
manager report.

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c4, holder = fork, baseToken = c3,
remainingOffersCount = 2

assign to
project

add to
website

c3, holder = null

Fig. 5. Visualization of the execution of the example activity diagram (part 1)

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = registernotinternal = false

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c1, holder = initial
internal = true, noninternal = false

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = decision

get welcome
package

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = get welc…

get welcome
package

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = null

c4, holder = fork, baseToken = c3,
remainingOffersCount = 2

assign to
project

add to
website

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c4, holder = fork, baseToken = c3,
remainingOffersCount = 1

c5, holder = assign to…

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = add to…

c5, holder = assign to…

c4, holder = null, baseToken = c3,
remainingOffersCount = 0

initial decision

assign to
project
external

get welcome
package

fork join

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = join

c5, holder = join

manager
interview

initial decision

assign to
project
external

get welcome
package

fork join

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c7, holder = manager i…

manager
interview

manager
report

1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control
token c1 offered to the action register.

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2, produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6, produces the control token c7, and offers it to the action
manager report.

Fig. 6. Visualization of the execution of the example activity diagram (part 2)

Variant 3: Expressions The third variant considers the complete UML activity diagram
language. Thus, the following additional concepts have to be implemented compared
to the second variant: Input variables, Integer variables, Integer values, and all expres-
sion types. Also the runtime concepts input and input value have to be implemented in
addition.

2.5 Reference Implementation

The reference implementation for this case may be found at the following open source
code repository: https://github.com/moliz/moliz.ttc2015. It consists
of the following Eclipse plug-in projects.

org.modelexecution.operationalsemantics.ad: Contains the metamodel of UML activ-
ity diagram language including definitions of the runtime concepts required as part of
its operational semantics, and the Java code generated by EMF for the metamodel in-
cluding the steps of computation of the operational semantics.

org.modelexecution.operationalsemantics.ad.test: Provides a test suite for verifying the
correctness of the implemented operational semantics. The test suite is explained in
Section 3.

org.modelexecution.operationalsemantics.ad.grammar,
org.modelexecution.operationalsemantics.ad.grammar.ui,
org.modelexecution.operationalsemantics.ad.input.grammar,
org.modelexecution.operationalsemantics.ad.input.grammar.ui: Xtext projects imple-
menting a textual concrete syntax for activity diagrams and input values.

For running the reference implementation, the Eclipse Modeling Tools (version Luna)1

are required. Furthermore, the Xtext plug-in for Eclipse2 has to be installed additionally.

3 Test Suite

As part of the reference implementation, we provide a test suite meant for evaluating
the correctness and performance of the implemented operational semantics. Each test
case contained by the test suite executes a single activity and asserts the resulting trace.
If local variables are manipulated by the activity, also their final values are asserted. The
provided test cases are described in the following.

test1: Tests the operational semantics of initial nodes, opaque actions, activity final
nodes, and control flow edges.

test2: Tests the operational semantics of fork nodes and join nodes.
1 Eclipse Modeling Tools may be downloaded from http://www.eclipse.org/
downloads/packages/eclipse-modeling-tools/lunasr2.

2 Xtext can be installed in Eclipse using the menu Help - Install Modeling Components.

test3: Tests the operational semantics of decision nodes, merge nodes, and local Boolean
variables.

test4: Tests the operational semantics of expressions.

test5: Tests the operational semantics of input variables.

test6: Defines the example activity diagram explained in Section 2.3.

testperformance variant1: Performance test for variant 1 of this case. The UML activ-
ity diagram of this test cases comprises 1,000 sequential opaque actions.

testperformance variant2: Performance test for variant 2 of this case. The UML activ-
ity diagram of this test cases comprises 100 concurrent branches each one comprising
10 opaque actions.

testperformance variant3 1: Performance test for variant 3 of this case. Like the test
case testperformance variant2, the UML activity diagram of this test cases comprises
100 concurrent branches each one comprising 10 opaque actions. Furthermore, for each
concurrent branch one variable exists that is incremented by the opaque actions lying
on this branch.

testperformance variant3 2: Performance test for variant 3 of this case. The UML ac-
tivity diagram of this test case comprises 18 activity nodes including a loop introduced
through decision and merge nodes. Due to the loop, 1,001 activity node executions
occur.

Solution developers, who chose to implement variant 1 of the case only have to
consider the test cases test1, and testperformance variant1. For variant 2, the test cases
test2, test3, and testperformance variant2 have to be considered additionally. Solutions
for variant 3 have to consider all test cases.

A run configuration for executing all test cases is provided by the test project
(org.modelexecution.operationalsemantics.ad.test/TestSuite.launch). In case a solution
builds upon the Eclipse Modeling Tools and uses the provided metamodel, it is only
required to override or modify the operation executeActivity(String modelPath, String
inputPath) of the class TestSuite located in the project org.modelexecution.operational-
semantics.ad.test. This operation is responsible for loading the UML activity diagram
to be executed as well as the activity diagram’s input values, executes the UML activ-
ity diagram, and provides the trace captured during the execution as output. However,
if a solution does not build upon the Eclipse Modeling Tools or does not use the pro-
vided metamodel, the test suite has to be re-implemented accordingly by the solution
developers to demonstrate the solution’s correctness and assess its performance.

The test project also contains textual representations of the traces obtained by the
reference implementation for the UML activity diagrams of all test cases (folder trace).
This textual representation comprises the execution order of the activity nodes of the
respective UML activity diagram as well as the final values of local variables. Please
note, that in the case of concurrent branches in the activity diagram, the execution order
captured by the provided trace represent only one valid execution order.

4 Evaluation Criteria

The task of this case is to use a model transformation tool to implement the described
operational semantics for a subset of the UML activity diagram and to execute mod-
els conforming to this language. Submissions are evaluated according to the following
criteria.

4.1 Correctness

It is mandatory that solutions demonstrate that they have the intended behavior for all
test cases covered by the test suite described in Section 3.

4.2 Understandability and Conciseness

Peer reviews will be used to assess qualitatively the conciseness and understandabil-
ity of all solutions. We envision online reviews involving multiple rounds in order to
reach consensus among all participants. Understandability and conciseness are used as
measures to reason also about the implementation effort for the operational semantics
specifications.

4.3 Performance

Performance is measured by logging how long the developed transformations need to
execute the models, i.e., to produce the final runtime state. Therefore, the test cases
testperformance variant1, testperformance variant2, testperformance variant3 1, and
testperformance variant3 2 described in Section 3 are used, depending on the case vari-
ant chosen by the solution developers. The execution time should be measured in mil-
liseconds, e.g., in Java using java.lang.System.nanoTime(). Please note that reading the
input model and writing the output model is not considered to be part of this perfor-
mance evaluation.

4.4 Overall Assessment

The final score for submitted solutions will be calculated by summing up a maximum
of 100 points in total, while for the correctness, understandability and conciseness,
and performance, 25, 50, 25 points are reserved, respectively. Therewith, we want to
strongly emphasize the importance of having concise and understandable operational
semantics specifications in order to best support language engineers in developing,
maintaining, and extending such kind of specifications as they are considered to be
one of the most critical artifacts in the language engineering process.

References

1. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges and
Directions in Formalizing the Semantics of Modeling Languages. Computer Science and In-
formation Systems 8(2), 225–253 (2011)

2. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X.: Essay on Semantics Definition in
MDE - An Instrumented Approach for Model Verification. Journal of Software 4(9), 943–958
(2009)

3. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML. In: Proceedings
of the 3rd International Conference on The Unified Modeling Language (UML). LNCS, vol.
1939, pp. 323–337. Springer (2000)

4. Jézéquel, J., Barais, O., Fleurey, F.: Model Driven Language Engineering with Kermeta. In:
Proceedings of the International Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE). LNCS, vol. 6491, pp. 201–221. Springer (2009)

5. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G., Syriani, E., Wimmer, M.:
Model Transformation Intents and Their Properties. Software & Systems Modeling pp. 1–35
(2014)

6. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: Executable DSMLs Based on
fUML. In: Proceedings of the 6th International Conference on Software Language Engineer-
ing (SLE), LNCS, vol. 8225, pp. 56–75. Springer (2013)

7. Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. Electronic Notes in Theoreti-
cal Computer Science (ENTCS) 152, 125–142 (2006)

8. Object Management Group: Semantics of a Foundational Subset for Executable UML Models
(fUML), Version 1.1 (August 2013), http://www.omg.org/spec/FUML/1.1

9. Syriani, E., Ergin, H.: Operational Semantics of UML Activity Diagram: An Application in
Project Management. In: Proceedings of the 2nd Workshop on Model-Driven Requirements
Engineering Workshop (MoDRE). pp. 1–8. IEEE (2012)

A Textual Concrete Syntax

For defining UML activity diagrams more conveniently, we provide a textual concrete
syntax implemented with Xtext. Listing 1 shows the exemplary UML activity diagram
discussed in Section 2.3 and shown in Figure 4 in this textual concrete syntax.

activity Test7 (bool internal) {
bool notinternal = false

nodes {
initial initialNode7 out (edge42) ,
action register comp {notinternal = !internal} in (edge42) out (edge43) ,
decision decisionInternal in (edge43) out (edge44 , edge45) ,
action assignToProjectExternal in (edge44) out (edge56) ,
action getWelcomePackage in (edge45) out (edge46) ,
fork forkGetWelcomePackage in (edge46) out (edge47 , edge48) ,
action assignToProject in (edge47) out (edge49) ,
action addToWebsite in (edge48) out (edge50) ,
join joinManagerInterview in (edge49 , edge50) out (edge51) ,
action managerInterview in (edge51) out (edge52) ,
action managerReport in (edge52) out (edge53) ,
merge mergeAuthorizePayment in (edge53 , edge56) out (edge54) ,
action authorizePayment in (edge54) out(edge55),(*final finalNode7 in (edge55)

}

edges {
flow edge42 from initialNode7 to register ,
flow edge43 from register to decisionInternal ,
flow edge44 from decisionInternal to assignToProjectExternal [notinternal

] ,
flow edge45 from decisionInternal to getWelcomePackage [internal] ,
flow edge46 from getWelcomePackage to forGetWelcomePackage ,

flow edge47 from forkGetWelcomePackage to assignToProject ,
flow edge48 from forkGetWelcomePackage to addToWebsite ,
flow edge49 from assignToProject to joinManagerInterview ,
flow edge50 from addToWebsite to joinManagerInterview ,
flow edge51 from joinManagerInterview to managerInterview ,
flow edge52 from managerInterview to managerReport ,
flow edge53 from managerReport to mergeAuthorizePayment ,
flow edge54 from mergeAuthorizePayment to authorizePayment ,
flow edge55 from authorizePayment to finalNode7 ,
flow edge56 from assignToProjectExternal to mergeAuthorizePayment

}
}

Listing 1. Example activity diagram (textual concrete syntax)

