An NMF solution to the Train Benchmark Case at the TTC
2015

Georg Hinkel Lucia Happe
Forschungszentrum Informatik (FZI) Karlsruhe Institute of Technology (KIT)
Haid-und-Neu-Strafle 10-14, Karlsruhe, Germany Am Fasanengarten 5, Karlsruhe, Germany
hinkel@fzi.de lucia.kapova@kit.edu

Model validation in model-driven development gains in importance as the systems grow in size and
complexity. In this situation an efficiency of validation execution and an immediate feedback whether
a recent manual edit operation broke a validation rule is desirable. To increase efficiency, incremental
model validation tries to minimize the proportions of the model that have to be rechecked by reusing
previous validation results. As a benchmark for efficiency of validation tools, the Train Benchmark
Case at the Transformation Tool Contest 2015 was created. In this paper, we present a solution using
NMF Expressions, a tool for incremental evaluation of arbitrary expressions on the .NET platform.

1 Introduction

This paper proposes a solution for the Train Benchmark Case[1] at the Transformation Tool Contest
(TTC) 2015. Our solution is publicly available on CodePlex! and SHARE? and built upon the .NET
Modeling Framework® (NMF) and especially on NMF Expressions*. NMF is a tool suite on the NET
platform to support model-driven engineering. Its metamodel NMeta is largely compatible with Ecore so
that Ecore metamodels can be transformed to NMeta with a compliant XMI format, i.e. models according
to an Ecore metamodel can be deserialized using the transformed NMeta metamodel.

NMF Expressions is designed for implicitly incremental evaluation of arbitrary (lambda calculus)
expressions. This is done based on a theoretical foundation of representing incremental computation
systems as a monad. The implicit approach means that developers specify the expressions in a batch
mode whereas the incrementality is added through the monad. As a consequence, the syntax is very
understandable as also remarked by the peer reviewers.

So far, few companies have adopted MDE as their main development paradigm with one of the ma-
jor reasons being the lack of tool support [2], [3]. Developers are used to an excellent tool support for
languages like Java or C# which many MDE tools cannot bear to meet. Furthermore, studies as e.g. by
Meyerovich [4] suggest that developers only change their primary programming language when a project
requires them to or they can reuse a large proportion of code. We see no reason why this should not extend
to model validation tools and thus we are seeking for the ways to let developers specify these expressions
in their primary languages.

Our goal is to hide the incrementality concerns from the developer, who only has to specify the
validation expression, and automate the incrementalization of the validation expression, aiming for a
declaritive usage of the C# language.

1ht‘cp://ttc2015t rainbenchmarknmf.codeplex.com

2ht‘cp://is .ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64- TTC15_NMF.vdi
3ht‘cp://nmf .codeplex.com

4ht‘cp://nmfe><pressions .codeplex.com

© Georg Hinkel and Lucia Happe
This work is licensed under the
Creative Commons Attribution License.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://ttc2015trainbenchmarknmf.codeplex.com
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64-TTC15_NMF.vdi
http://nmf.codeplex.com
http://nmfexpressions.codeplex.com

An NMF solution to the Train Benchmark Case at the TTC 2015

In this paper, we evaluate the efficiency of incremental validation with NMF Expressions. The rest
of this paper is structured as follows: Section 2 gives a very short introduction to NMF Expressions and
Section 3 explains our solution. Finally Section 5 summarizes the paper.

2 NMF Expressions

The goal of NMF Expressions is to give developers an automated tool at hand providing them with advan-
tages of incremental evaluation for arbitrary expressions. Unlike many other approaches, our approach
works implicitly, so developers only have to specify their expressions and NMF Expressions takes care
of how to turn this into an algorithm that will evaluate the expression in an incremental fashion. On the
other hand, the traditional batch mode specification is still available so that NMF Expressions yields a
choice whether to run a given expression incrementally or in batch mode.

In the incremental mode, the approach creates a dynamic dependency graph from a given expression
and observes changes. These changes originate from elementary update notifications and are propagated
through the dependency graph. Operating on the .NET platform, NMF Expressions uses the industry stan-
dard INotifyPropertyChanged and INotifyCollectionChanged interfaces to record elementary changes.
These are also required by a lot of other tools including the modern UI libraries on the .NET platform.
As a consequence of the theoretical foundation using monads, the dependency graph contains specialized
nodes for optimized incrementalization of queries.

While NMF Expressions works with arbitrary model representations implementing the interfaces for
elementary change propagation, we use the model representation of NMF. That is, we transformed the
given Ecore metamodel of the railway domain into an NMeta metamodel and generated model represen-
tation code. NMF thus offers us a deserialization mechanism to load the resulting models as objects into
memory.

3 Solution with NMF Expressions

The intended usage of NMF Expressions in incremental mode is that users would modify the model
in some editor through a sequence of change operations, each of which providing elementary change
notifications. Then, NMF Expressions would use the elementary change notifications and combine them
to provide immediate feedback whether the most recent model manipulation has caused some validation
rule to fail for some model elements. Currently, NMF Expressions always minimizes the model elements
that it has to look at, even at the cost of high memory usage. However, in the Train Benchmark, the only
model manipulations we can see are the repair operations, so for us the benchmark does not really reflect
the situation for which we have designed NMF Expressions.

In incremental mode, NMF Expressions creates a cache for the selected expressions and maintains
this cache. This maintenance happens automatically as NMF Expressions adds computational effort to the
(in-memory) online model manipulation. In this case solution, we created expressions for the validation
patterns so NMF Expressions caches the invalid elements continuously. However, this means that the
phases drawn from the case description get blurred. In particular, the check phases get meaningless as the
updated results are always available and could be used for immediate feedback, while more computational
effort is put to the model manipulation such as the modify operations.

Because NMF Expressions allows to use the same specification both in a classic batch manner as
also incrementally, our solution can also be configured to run in batch mode without any changes to the

0NN AW =

Georg Hinkel and Lucia Happe

PosLength 1 |Fix(pattern: rc.Descendants().0fType<Segment>()
.Where(seg => seg.Length <= 0),
3 action: segment => segment.Length = -segment.Length + 1);

SwitchSensor Fix(pattern: rc.Descendants().0fType<Switch>()
2 .Where(sw => sw.Sensor == null),

3 action: sw => sw.Sensor = new Sensor());

SwitchSet var routes = rc.Routes.Concat(rc.Invalids.0fType<Route>());
Fix(pattern: from route in routes
where route.Entry != null
&& route.Entry.Signal == Signal.GO
from swP in route.Follows.0fType<SwitchPosition>()
where swP.Switch.CurrentPosition != swP.Position
select swP,
action: swP => swP.Switch.CurrentPosition = swP.Position);

0NN AW~

Fix(pattern: from route in routes
from swP in route.Follows.0fType<SwitchPosition>()
where swP.Switch.Sensor != null &&
'route.DefinedBy.Contains(swP.Switch.Sensor)
select new { Route = route, Sensor = swP.Switch.Sensor },
action: match => match.Route.DefinedBy.Add(match.Sensor),

RouteSensor

AN R W=

Fix(pattern: from routel in routes
from route2 in routes
where route2.Entry != routel.Exit
from sensorl in routel.DefinedBy
from tel in sensorl.Elements
from te2 in tel.ConnectsTo
where te2.Sensor == null
|| route2.DefinedBy.Contains(te2.Sensor)
select new { Route = route2, Semaphore = routel.Exit },
action: match => match.Route.Entry = match.Semaphore);

SemaphoreNeighbor

W N =

SO 0 JN N

—_

patterns. When executed in batch mode, NMF Expressions simply forwards the call to the LINQ to ob-
jects implementation. Besides a negligible runtime compilation effort, this utilizes the highly optimized
platform LINQ implementation.

The patterns are enumerable expressions where developers can choose at runtime whether the pat-
tern should be executed in batch mode or whether NMF Expressions should register for elementary
change notifications to keep a cache of the result up to date. To specify patterns, we created a small
method Fix that captures them.

public void Fix<T>(IEnumerableExpression<T> pattern, Action<T> action) {
var patternInc = pattern.AsNotifiable();
foreach (T element in patternInc) action(element);
patternInc.CollectionChanged += (o0,e) => {
if (e.NewItems != null)
foreach (T element in e.NewItems)
action(element);

1

Listing 1: A simplified implementation of the Fix function

The easiest implementation for the Fix function repairing any validation error as soon as they occur

An NMF solution to the Train Benchmark Case at the TTC 2015

would be the one presented in Listing 1. In Line 2, we tell NMF Expressions that we want to obtain
incremental updates for the given pattern. Line 3 repairs all occurences existing so far and Lines 4-8 han-
dle new pattern matches. For the benchmark, we adopted the Fix function to account for the benchmark
phases. In particular, the implemented version takes a third parameter to allow us to sort matches. Since
these sort keys offer little insight, we omit them in the pattern presentation.

In the following we will present the solution to the tasks, following the structure of the case descrip-
tion, though with omitted sort keys.

Please note that the parameter names such as pattern or action are optional, we only included them
for better understandability.

The solutions to SwitchSet, RouteSensor and SemaphoreNeighbor use the query syntax of C#. This
syntax is translated to the method chaining syntax by mapping the query keywords like from or where to
method calls of NMF Expressions. Such query expressions are commonality on the .NET platform and
thus easy to write and understand by most developers.

Note that the order in which the statements occur does make a difference. In particular, e.g. lines 2 and
3 of the SwitchSet solution could logically be interchanged but cause a slightly different implementation.
NMF Expressions currently does not optimize the query for performance.

In the solution for SemaphoreNeighbor we can observe that NMF Expressions is not able to inverse
directed references. We argue that such inversion is always limited to a particular scope, which is unclear
from the context. If the context was clear, the reference should have been navigable in both directions in
the metamodel. As this is not the case, we have to cross join the two respective routes and filter them on
the semaphores.

4 Evaluation

To evaluate our solution, we ran it in comparison to the reference implementations in Java and EMF-
IncQuery [5]. The measurements were taken on a system with an Intel i5-4300U processor in a system
equipped with 12GB RAM running on Windows 8.1 Pro, .NET 4.5 and Java 1.8 update 45. The results
for recheck and repair are shown in Figure 1. The SemaphoreNeighbor ran out of memory for larger
models. A discussion is omitted for space limitations.

In all four presented queries, both versions are up to multiple magnitudes faster than the plain Java
solution. In medium-sized models, the incremental version also beats EMF-IncQuery, in the SwitchSet
pattern it is even faster on the larger models.

S Summary

In this paper, we presented an NMF solution to the Train Benchmark case at the TTC 2015.

The queries and repair transformations demonstrate why we have sticked to the C# language. We
think that it is very hard to get a more concise textual solution for this case. At the same time, developers
get the full tool support from e.g. Visual Studio and the query syntax that we use is used by thousands of
developers already and widely understood.

The performance figures shows that the incremental version of our solution outperforms the batch
mode execution of the same solution in all cases. At the same time, our solution yields a batch mode
execution in cases where only a single analysis run is needed. This version outperforms the classic Java
solution in several orders of magnitude. On the other hand, for large models our incremental solution

REFERENCES

PosLength, Function: repair+recheck SwitchSensor, Function: repair+recheck
10000 10000 b
- i //
1000 e 1000 e —
B S 2 0 B
100 - = = |
=1 —— ~ =" —
) =T // [} 10 [_—
E 10— £ 1
[1 =R
1 0.1
01 0.01
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Size Size
Tool =~ EMFIncQuery - Java -+ NMF(Batch) -« NMF(Incremental) Tool = EMFIncQuery #- Java -+ NMF(Batch) »< NMF(Incremental)
SwitchSet, Function: repair+recheck RouteSensor, Function: repair+recheck
10000 E—— A 10000 I —= -
1000 ——— 5 1000 = + =
£ 100 T 2 400 b =
3 At | — 3 4 | —
10 0%
Q ()
£ 1 — T el £ ; |
i // = 1
0.1 0.1
0.01 —f—— 0.01 —
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Size Size
Tool EMFIncQuery - Java -+ NMF(Batch) << NMF(Incremental) Tool EMFIncQuery - Java -+ NMF(Batch) -« NMF(Incremental)

Figure 1: Performance Results for the NMF solution versions compared to the reference solutions in Java
and EMF-IncQuery

cannot keep up with the EMF-IncQuery solution, except for one pattern where the NMF solution is
slightly faster.

The biggest advantage of our solution is that it gives both a batch mode solution and an incremental
solution our of the same pattern specifications. Thus, the same analysis code can be used in the case
setting where incrementality is a clear advantage, or in a batch mode, e.g. when memory is a sparse
resource or the analysis results are only required once.

References

[1] G. Szédrnyas, O. Semerath, I. Rath, and D. Varré, “The TTC 2015 Train Benchmark Case for Incre-
mental Model Validation,” in 8th Transformation Tool Contest (TTC 2015), 2015.

[2] M. Staron, “Adopting model driven software development in industry—a case study at two compa-
nies,” in Model Driven Engineering Languages and Systems, Springer, 2006, pp. 57-72.

[3] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez, “An empirical study of the state of
the practice and acceptance of model-driven engineering in four industrial cases,” Empirical Software
Engineering, vol. 18, no. 1, pp. 89-116, 2013.

[4] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of programming language adoption,” in
Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming
systems languages & applications, ACM, 2013, pp. 1-18.

[5] G. Bergmann, A. Horvith, I. Réth, D. Varr6, A. Balogh, Z. Balogh, and A. Okrés, “Incremental eval-
uation of model queries over emf models,” in Model Driven Engineering Languages and Systems,
Springer, 2010, pp. 76-90.

	Introduction
	NMF Expressions
	Solution with NMF Expressions
	Evaluation
	Summary

