
Metrics for Gerrit code reviews

Samuel Lehtonen and Timo Poranen

University of Tampere, School of Information Sciences, Tampere, Finland
samuel.lehtonen@gmail.com,timo.t.poranen@uta.fi

Abstract. Code reviews are a widely accepted best practice in mod-
ern software development. To enable easier and more agile code reviews,
tools like Gerrit have been developed. Gerrit provides a framework for
conducting reviews online, with no need for meetings or mailing lists.
However, even with the help of tools like Gerrit, following and monitoring
the review process becomes increasingly hard, when tens or even hun-
dreds of code changes are uploaded daily. To make monitoring the review
process easier, we propose a set of metrics to be used with Gerrit code
review. The focus is on providing an insight to velocity and quality of
code reviews, by measuring different review activities based on data, au-
tomatically extracted from Gerrit. When automated, the measurements
enable easy monitoring of code reviews, which help in establishing new
best practices and improved review process.

Keywords: Code quality; Code reviews; Gerrit; Metrics;

1 Introduction

Code reviews are a widely used quality assurance practice in software engineer-
ing, where developers read and assess each other’s code before it is integrated
into the codebase or deployed into production. Main motivations for reviews are
to detect software defects and to improve code quality while sharing knowledge
among developers. Reviews were originally introduced by Fagan [4] already in
1970’s. The original, formal type of code inspections are still used in many com-
panies, but has been often replaced with more modern types of reviews, where
the review is not tied to place or time. Code reviews discussed in this paper are
tool assisted modern code reviews.

Reviews are known to be very efficient in defect detection and prevention es-
pecially in large software projects [10, 1]. For the review process to be successful,
reviews have to be done carefully and without unnecessary delays. To foster that,
review process has to be motivating for developers while also being monitored
and controlled to ensure the review quality. In this paper we are proposing a way
to increase monitoring possibilities and controls by introducing different metrics
to follow activities that take place during the review process. The introduced
metrics are used to examine data that Gerrit [5], a web based light-weight code
review tool, automatically stores during different events in Gerrit code review.
This information can then be processed and prepared to be presented as graphs
or key figures.

SPLST'15

31



Code reviews in Gerrit are an interesting research target because of Gerrit’s
current position as a popular review tool among some of the leading open source
projects. It is used in projects like LibreOffice, Wikimedia, Eclipse and Android
Open Source Project [5].

The areas of measurement include different phases of the review process and
review outcomes. The biggest focus area is on measuring the time that is spent
on each activity and monitoring the number of reviews that lead into further
code changes. The data provided by the metrics also establishes foundations for
possible future research on how to improve the review processes even further, by
optimizing individual activities.

After analyzing the metrics results from four different projects, we identified
typical time division in code reviews, which was similar in all of the studied
projects. Also we identified that review results depend on the person who is
making the review.

The rest of the paper is organised as follows. In Section 2 we give a deeper
introduction to code reviews and effects of code reviews to code quality. New
metrics for measuring Gerrit code reviews are given in Section 3 and in Section
4 these metrics are applied to sample projects and findings are discussed. Last
section concludes the work.

2 Code Reviews

Originally the reason for code reviews was mainly to spot defects and prevent
any bad quality code from getting into codebase. Bachelli and Bird [1] reveal
that while finding defects is still the main reason and motivation for reviews,
there are also many other benefits that act as motivation to conduct reviews.
These include at least sharing of knowledge, improved communication among
developers and better overall software quality.

Successful code reviews enable a product with less defects and improved
maintainability [16]. Improvements are not limited to code, but the whole project
may benefit from the reviews as programming practices and other ways of work
are discussed and refined during the reviews. Future work becomes easier as the
development becomes smoother. Reviews are also known to speed up the whole
project at later stages. When reviews are done at early stage, for example, when
10 % of the project is complete, rather than later stage when a lot of work has
been done already, the lessons learned in reviews let the rest 90 % of the work
to be better executed. This also mean better integrity and any fixes are easier
to apply and are less likely to mess up the code structure. [6, 18]

Code reviews are demonstrated to be efficient way of detecting defects, but
every developer does not spot defects with the same efficiency. Rigby et al. [14]
and Porter et al. [13] researched the number of defects found per developer
and found that more experienced developers discovered more defects than less
experienced developers, which is natural because senior developers have more
experience with the program than junior developers. The amount of code re-
viewed also has a big effect on review results. Statistical analysis of code reviews

SPLST'15

32



by McIntosh et al. [11] shows that there is a significant correlation between code
review coverage and the amount of post release defects. However, even with 100
% review coverage it is likely that some defects remain. On the other hand, when
reducing the review coverage to around 50 %, it is almost certain that at least
one defect per component will get through.

For addition to defect finding, code reviews have become an important knowl-
edge sharing tool especially in projects where people are working in different
locations. Reviews can substitute a huge amount of formal documentation what
would have otherwise been needed to describe to other developers what changes
have been made since the last version. Modern review tools like Gerrit are able
to show all the changes made on a side by side comparison with color codes.
When changes are seen by several developers, it increases their awareness and
understanding of the software being developed. Communication between devel-
opers is also enhanced, especially when review tools are used, which make it
easy for developers to leave inline comments or questions. As frequent commu-
nication is used to discuss problems, there is also better atmosphere to generate
new ideas for implementing the code [Bachelli and Bird, 2013; Markus, 2009].
To further emphasize the importance of knowledge sharing during the reviews,
the knowledge sharing and frequent communication among developers is known
to improve the software quality. [12]

Because of the idea of constant feedback and sharing of written code with oth-
ers, code reviews are also a powerful learning tool. New developers get feedback
from more seasoned programmers which enable them to fortify their skills and
to learn from each other’s work. To summarize, code reviews can be considered
as a very important defect detection tool and even more important when work-
ing with large projects, where software evolves and new versions rely on earlier
work. Code reviews are considered to be the best tool for detecting evolvability
defects while also being effective tool on finding functional defects.

Review processes in Gerrit [5] can vary between projects, but the basic work-
flow is always the same. There is the author of the code change, one or more
reviewers and possibly approver and integrator. The most basic use case of Ger-
rit only involves the author and reviewer, but if we want to measure the process
with better accuracy, at least integrator role is needed to give details about in-
tegration times. The approver is usually a senior developer who makes the final
acceptance decision for the code change.

While the the metrics proposed in this paper are best used with projects
which utilize approver and integration flags, it is also possible to use them with-
out those roles, but the measurement results will be more limited.

Typical code review process proceeds as follows:

1. Author uploads the code change. This step could also include automatic unit
testing.

2. When author considers that the change is ready, he/she assigns reviewers
for the change and gives the change a code review with a score of +1.

3. Reviewers review the code and give it either +1 or -1. If the reviewer doesn’t
find anything to improve, a score of +1 is given. Whenever there is something

SPLST'15

33



to improve, -1 should be given. The author has to address the issues raised
by the reviewer before the process can continue.

4. When there are enough reviews, approver makes the final decision to pass
the change for integration by giving it +1 or sending it back for rework
by giving it -1. If approver is not used, the code change goes straight into
integration.

5. After the change is approved, integrator starts the integration process and
gives the change +1 to mark the beginning of integration. If the code cannot
be integrated, the integrator gives -1 and sends the change back to author
for rework. Any merge conflicts also result as integrator -1, which typically
means that the change goes back to author for fixing.

6. If the change can be merged and passes final testing, it is merged into the
repository.

3 Metrics for measuring Gerrit code reviews

The motivation to have quality and efficiency metrics is that without them, pro-
cess improvement and identification of the best practices would be impossible.
[Sommerville, 2011; Kupiainen et al., 2015] While Gerrit gives good tools to or-
ganize reviews, it only provides limited amount of metrics about the changes. To
improve code reviews in Gerrit, sufficient metrics are essential. Measuring activi-
ties in Gerrit allows more control over the code reviews which helps managers to
ensure steady flow of code changes. Although Gerrit doesn’t provide metrics, it
has all the necessary data for building the metrics stored in a MySQL database.

The goal of the metrics is to present the data extracted from the review
process to developers and managers, in a way which helps them to monitor and
control the review process, in order to pick out problems, but also to motivate for
better performance. Based on the knowledge gained from the figures, managers
and developers themselves could take action to improve the process or make
corrective actions. Based on the knowledge gained from the metrics, it is possible
to refine the review process for better overall software quality with fewer defects.
Metrics also provide valuable information of the whole process, which supports
the improvement of code review process in the company.

The measurements can be divided into two categories: time and quality. The
time metrics are focused on measuring the velocity of different activities and the
time spent for different tasks. The quality metrics are measuring various items
which can hint on process quality and code quality. In the following the metrics
are discussed in detail.

3.1 Review time

The review time is one of the most fundamental metrics we have. It describes
how long it takes for the change to get the necessary amount of positive code
reviews and an approval by the nominated approver. The review time starts
when a developer has uploaded a change and has given it code review +1 in

SPLST'15

34



Gerrit, to acknowledge that the change is ready to be reviewed. The +1 given
by the author is also a sign that the author has tested the change and considers
it ready to be submitted to the baseline. The +1 that the change owner gives is
an agreed practice used in the case company. It is not a forced process by Gerrit,
but a good way to communicate that the author approves the change ready for
review. This is especially useful if continuous integration and unit testing is used
alongside Gerrit.

The review time consists of the time it takes for reviewers to start the review
after they have been invited combined with the time it actually takes to complete
the review. Measuring the actual review time, meaning the time how long it takes
for the reviewer to actually review the code, cannot be automatically measured
and it has not been seen convenient to add an additional flag that the reviewer
has to set before he or she starts to review the code, especially if the review is
not completed within a session.

The review time also includes the time that the author uses for fixing the
change whenever it receives a -1. There could be multiple fixing rounds until
the change can be fully accepted by the reviewers. This loop continues until the
change has received required amount of positive reviews without any -1’s and is
thought to be ready for merge. The final decision is done by the approver whose
+1 also ends the review time. If approver is not used, integrator +1 could also
mark the end of review time.

Review time is an important measure of how quickly new changes are ready
for integration. Long review times slow down the whole process, especially when
there are dependencies present. There is a couple of ways reducing the review
time. The most obvious way is that the reviewers should review the change soon
after being invited for a review. Another way to easily reduce the review times is
to promote the communication during the code reviews so that everyone involved
is aware when reviews or fixes are needed. In urgent issues it is best to send
email directly or have talk face to face to get the things moving. Messages left
to single change in Gerrit may remain unseen for a while or are easily forgotten
when developers are simultaneously involved in numerous open changes.

The review time metric allows managers to follow review times and react to
any longer than usual times. Long review times could be caused by a reviewer
forgetting or neglecting the review, or delay may be due to an absence of a
developer. If reviews pile up because of absence of some person, change author
should nominate another reviewer, so that the process can move on. Long review
times can also be a result of poor code quality which generates multiple -1’s.
Received reviews by a developer are also measured and that can be used to
complement review times measurement, to better understand where the problem
with long review times lies. Within the company it is useful to compare review
times of different projects and discuss why some projects achieve better review
times than others. Without these measures it would be inconvenient to try to
determine whether reviews take reasonable amount of time or compare them
with other projects.

SPLST'15

35



3.2 Pre-review time

When the change is first uploaded to Gerrit the pre-review time starts. The
purpose of measuring the pre-review time is to separate the time that is used
by the author to fix the change after integration and tests from the time that
is used to complete the code reviews. After uploading the change, the source is
built and tested for errors by using automated tools. If the patch passes the tests
it is possible to set the patch ready for review by giving it code review +1. Before
giving +1 the author can still make changes by uploading a new patch-set to
address any issues the author may have come across during the tests. Pre-review
time ends at the moment the code review +1 is given by the author. This also
marks the beginning of review time.

The pre-review time measures how quickly uploaded change is ready for
review. Long pre-review time indicates that there has been need for rework
after the initial upload and first tests. Typically this time should be less than a
day and any longer times need a good reason and managers should take action
whenever long pre-review times are noticed. The owner +1 is not a mandatory
action in Gerrit, but is applied practice in the case company where the metrics
were introduced. Although it is optional in Gerrit for the author to give +1,
it is a good indicator that the author wants the change to be reviewed. It is
especially useful if change is queued for tests or continuous integration after the
upload. The author can then give the +1 when all the tests have fully passed.
By separating these test activities and possible fixing to pre-review time, we can
achieve more accurate review time.

3.3 Pre-integration time

The pre-integration time is the time after the review is completed, but the actual
integration process is yet to start. This time should be minimized as it is time
when no one is working with the change, but it is just waiting for integrator to
start the integration process. Basically pre-integration time describes how long it
takes for the integrator to start the integration process. The integration process
should start as soon as the review is completed and approver has given +1. This
means that the pre-integration time should not be long as there is no reason for
the integrator not to start the integration. Typically the integration should be
started the same day as the review is completed or the next day at the latest.
The pre-integration time shouldn’t therefore be more than 24 hours excluding
weekends.

3.4 Integration time

The integration time is a measure of how long it takes for the change to be
merged into the trunk after the review process is completed. Integration time
includes various phases which take place during the integration. Depending on a
project, integration time could include very different tasks. Validation processes
and build processes depend on platform and the nature of code being tested.

SPLST'15

36



Some changes may get integrated pretty fast, while in some other projects it is
a slow process. Comparing integration times between projects is therefore not
very useful. Comparison should rather be done within the same project.

At its best, case scenario integration starts almost immediately when the
change has been approved. During the integration time the integrator tries to
merge the patch with rest of the code and if there are no conflicts and the change
passes tests, it can be integrated.

However, sometimes there are merge conflicts which need to be resolved be-
fore the change can be fully merged and tested. When a conflict appears, the
integration process is stopped and integrator gives the change -1. If the conflicts
are small, the integrator can then fix them and a review of changes by the change
author is enough. If there are major conflicts then the change needs rework and
it has to go through the review process all over again. Also if change cannot pass
integration testing, it is returned to the author for rework. The time spent to
rework can be measured in a different metric called integration fix time.

Ideal integration time is less than 24 hours, which means that the integration
is done the next day at the latest, after the change has been approved. There
should not be any excuse for the integrator not to start the integration as soon
as the code change has been approved for integration. For meaningful results,
integration times should only be compared within same project or within projects
with similar workflows. This is because projects working with for example with
application layer or firmware have very different validation processes during the
integration.

Whenever the change gets rejected during the integration, the integration
reject time meric can be used to calculate time wasted to rejected changes. It is
simply a measurement of how long it takes, before the change is rejected after
being approved by the approver. There are many reasons why a change could
be rejected during the integration. The reason can be some known issue in the
change which prevents integration or the integrator -1 could be a result from
merge conflicts or failed tests. Any change receiving integrator -1 needs fixing.
Often the reason is of merge conflicts. In a case of simple conflicts the integrator
can fix them immediately, but most often the problems are more profound and
the change is sent back to the author for rework. The time used for reworking
with the change is another measure called integration fix time.

The reject time depends on at what point the integrator notices that the
change cannot be merged. The most common situation is that the change is
based on too old baseline which is no more compatible with the current codebase.
This results as errors when merging or building. Typically integrator starts the
build at the end of the day and reviews the results the next morning at the
latest. Because of this, the reject time is typically around 12-60 hours including
weekends. The integration fix time is the additional time that is used to fix the
change after it has been rejected during the integration. This time includes the
time the developer uses to actually fix the change, but also the time it takes to
review and approve this new fix.

SPLST'15

37



After measuring the reject time and fix time, it is clear that any rejected
change becomes expensive as it takes many days for the change to be fixed and
reviewed again. If the developer used few extra hours to rebase and validate the
change to be ready for integration at the first place, it would reduce the overall
lifetime by tens of hours at the minimum.

3.5 Quality metrics

The purpose of quality metrics is to accompany time measurements by giving
a perspective on how code reviews are made. When review times of a project
suddenly fall while reviews constantly result with only +1’s, it hints for change
in review motivation and should be investigated. To maintain good code quality
reviews have to be performed with care. Reviews are successful when defects
are found. However if someone’s patches constantly gets a lot of minuses there
might be a need for discussion with the developer why that is happening. Also
if certain reviewer always finds something to improve, it is useful to investigate
if all those minus ones are necessary.

Metrics were also established to ensure that the reviews are done properly.
When schedules are tight and deadlines are closing in, it is tempting to skip
the reviews. However, any time saved here could cause even bigger delays and
costs later in the development lifecycle. To recognize if any team is trying to
catch its schedule by hurrying or ignoring the reviews, a few different quality
measurements were introduced.

The main motivation for quality measurements is monitoring that the reviews
are conducted following the good code review practice. The measurements used
are the number of reviews given and received. The motivation for not giving
negative reviews is often a need to speed up the review process. When a project
is in hurry it may be tempting to hurry the code reviews too or skip it altogether
so that feature complete milestones can be achieved. Ignoring code reviews or
testing is very shortsighted and it is likely that any schedule advantage gained
by reducing reviews or testing, will later be lost because the end product is too
buggy or hard to maintain. By measuring the review activity, problems like this
are tried to be avoided. To complement these, there is also a metric to measure
review results. Reviews should have quite steady amount of +1s and -1s. If some
project starts to receive only +1’s it might be better to investigate what is the
reason.

3.6 Average number of patch-sets

One straight forward metric for measuring change quality is the number of patch-
sets. In addition to change quality it can be used for measuring process smooth-
ness. Smaller amount of patch-sets means that the code change has needed less
fixes until it has been integrated in to the codebase. The number of patch-sets
is measured with two different ways. There is the absolute number of patch-sets
per change, which makes it possible to easily point out individual changes with
larger than normal count of patch-sets. Then there can be a histogram chart

SPLST'15

38



which shows the distribution of number of patch-sets needed for a change. The
histogram can quickly tell that the most of the changes go through with only
one patch-set, which may be due to very trivial nature of the change or +1’s
are given too softly in code review. For better understanding these patches need
to be investigated individually. By following this distribution over time, a nor-
mal value for each frequency can be established and big variances to that could
then be a sign to start investigation. A good number of patch-sets is around
2-5, which implies that the initially uploaded patch did not need numerous fixes,
but the reviewer has found something to comment or improve. As each patch-
set represents an improvement to the earlier patch, this can be used to give an
estimate on how effectively code reviews are used to improve the code quality.
The interesting thing to follow are situations where change receives very few or
large amount of patch-sets. If the change receives only one or no fixes at all, it
indicates that reviewers may not have looked the code at all, or have decided
not to give feedback on minor issues. It is rarely the case that the first version
of the code change is perfect and there is no room for improvement.

On the other hand a change with a lot of patch-sets indicates that the change
has needed many fixes and has probably been under development for a long time.
This can be because the change is big and requires a lot of work phases or the
change could be fundamentally problematic and needs a lot of fixes to get it
working with the rest of the code. If the number of changes with large number
of patch-sets increases, it should be investigated whether the changes are too
complex and if they should be divided into smaller ones. Sometimes changes
need to wait for other changes being finished first. For example, in the case of
dependencies the change might need numerous rebases while it waits the parent
change being finished. Rebasing means applying latest changes from the master
branch in Git. This can happen multiple times and that increases the number
of patch-sets although there is no quality issues whatsoever. Other explanation
is that the change has needed many fixes and has been somehow problematic.

If there is always only one patch-set, it means that reviews may not have been
done properly or with enough care. While the main motivation of code reviews
is to find defects, it is also important to try to improve the code. The code is not
improved if the reviewer doesn’t provide any feedback on the proposed change.
Therefore, it is positive to see more than just one patch-set. From the code
improvement point of view, it may not be the ideal situation to have minimum
number of patch-sets. On the other hand, if the amount of patch-sets is very high,
it often means that the patch is too complex or that the programmer is not doing
good enough job. Comparison of number of patch-sets should be done within a
same project on weekly or monthly basis, as the amount of patch-sets vary a
lot between projects due to the different nature of development. High patch-
set count is a good indicator of change complexity as more complex changes
typically require more revisions, which increases the complexity even more. The
complexity should be reduced by making smaller changes, which would make
reviews easier and dependent changes would also get merged faster.

SPLST'15

39



An important metric for determining the state of the code reviews is the
count of currently open code changes. The difference between opened and closed
items gives the number of currently open items, which is a useful measure to
get an insight of current pace of opening and closing changes. If number of open
patches goes up for extended period of time, it immediately tells that there
are some problems in the process which need attention. If open items pile up,
they are harder to manage and dependency management and the number of
rebases needed become an issue. This metric can be accompanied with a count
of abandoned changes, which measures how many of the uploaded code changes
are abandoned and not integrated.

3.7 Measuring given and received reviews

Measuring review results shows how much negative and positive reviews are
given. As part of the motivation for code review is code improvement, it is
important that changes receive also negative reviews. Whenever a change receives
-1, it means that reviewer has noticed something to comment. Comments are
usually a good thing, because that implies that the code is being improved
and discussed. Only time when comments may be useless are false positives,
where reviewer thinks something as a defect when it is not. When this was
discussed with developers, the consensus was that false positives are very rare.
Measuring the amount of positive and negative reviews given by developer is
also an important measure from the quality control perspective, because if some
reviewer gives constantly only +1’s he/she may not review thoroughly or is too
soft in giving reviews. It is unlikely that the changes are always perfect.

4 Findings

To understand how time is allocated on average between the four major activi-
ties in Gerrit code review process, data was collected from four different Gerrit
projects with over 200 changes per month each. The project sizes varied from
30 to 100 developers per project. Each researched project had teams based in
several locations around the world. More detailed illustrations of project data
can be found from Lehtonen’s [8] thesis.

The results gained from the four projects are shown on Table 1. The inte-
gration reject time and integration fix time are eliminated because the event of
integrator intervention is rare and hardly ever happens in most of the projects.
Project number one is suffering from a couple of changes where integration time
is extraordinary long, which partly explains the share of integration time being
36 % from the change life time.

From the analysis of four projects with different number of people and dif-
ferent tasks it can be seen that the division of time spent is still quite similar in
all of the projects. The times in each project are also fairly long at some stages,
so there is clearly some room for improvement. The change stays in Gerrit for
around one day before the author declares it ready for review. In the investigated

SPLST'15

40



Table 1. Distribution of time in Gerrit code review. Times are hours with percentage
of total change life cycle.

Pre-review time Review time Pre-integration time Integration time

Project 1 28 (10 %) 99 (36 %) 49 (18 %) 101 (36 %)

Project 2 30 (11 %) 166 (62 %) 28 (10 %) 44 (17 %)

Project 3 14 (7 %) 103 (54 %) 16 (14 %) 49 (25 %)

Project 4 14 (12 %) 119 (59 %) 20 (10 %) 38 (19 %)

Average 24 (10 %) 122 (53 %) 31 (13 %) 58 (24 %)

projects the actual review time took 36 – 62 % from the total time, including
possibly multiple rounds of reviews, which makes it the most time consuming ac-
tivity. This is no surprise as that is when most of the work during review process
is done. However, the hours spent is currently quite a lot. As a percentage, the
share of reviews could increase, as now around 10 % or 30 hours is spent during
the pre-integration time, which is the time the change waits for integration to
begin. This is long time, which partly is explained with people working in dif-
ferent time zones, but still there is clearly room for improvement. In integration
times there is quite a bit of variance, which is because of the different nature of
the projects and amount of required integration testing.

The integration fix time was excluded from the individual projects due to too
small sample size, but when a group of projects was investigated where the total
number of changes goes beyond 1000, the typical time needed to fix a change
after rejection in integration, requires 100 – 150 hours, before it is again ready
for integration. From that finding, it is safe to say that it is worth investing time
to get the change ready for integration at the first place. The fix time quickly
accumulates because developer needs time to do the fixing, but the change also
needs a new round of code reviews and an approval.

Another place where time can be saved in researched projects, is in the code
reviews. Average time for the code change to complete the code review stage is
122 hours, which equals to roughly 5 days. The time a reviewer actually uses to
review the change is typically less than an hour, which means that the change
waits several days for reviews to be completed. Even in the best of the researched
projects, the average review time was 99 hours. When examining the frequency
of minus ones in code reviews, the variance between projects is noticeable. The
share of changes going through without any negative reviews is shown in Table
2.

Table 2. Percentage of changes which receive at least one code review -1.

Share of rejects

Project 1 73 %

Project 2 62 %

Project 3 35 %

Project 4 27 %

SPLST'15

41



The project which has received the most rejects in code reviews has almost
three times the number of rejects than the project with least rejects. However,
this does not always correlate with the number of patch-sets. For example, in
a project where only 27 % of changes received a negative review, every change
had two or more patch-sets, meaning that the fixes were self-motivated or due
to comments given together with positive review, which is against the agreed
practice. In the project where 35 % of the changes went through with at least
one negative review, share of changes with only one patch-set was around 20 %.

The number of patch-sets is another quality metric and is good in pointing
out complex code changes. In an optimal case the change receives two or three
patch-sets which indicates, that there has been some improvements to the initial
code change. If changes get continuously integrated with only one patch-set, it
should be brought to discussion, because the idea of code reviews is to improve
the code and when the first version of the code is always accepted, there will
be no improvement. On the other hand if a change has much more patch-sets
than two or three, it tells that the change has some serious problems, because
so many fixes has been needed.

Beller et al. [2] reported a case where the figure of undocumented fixes by the
author accounted only 10 – 22 % which is significantly less than in most projects
that were researched. That might be due to different development processes,
because in the projects the unit tests and continuous integration is done after
the change has been uploaded into Gerrit.

A reason which may explain the numbers, is that the sizes of changes in
the projects with high rate of zero negative reviews was often very small, 5-
10 lines. This means that there is very little space for defects. To support this
observation, the project that scored the highest number of rejections during the
code review, also has considerably larger change sizes on average. Contrary to
the findings by Beller et al. [2], who examined small software projects, it was
found that reviewer do have significant effect on review results. Some reviewers
truly are stricter than others. There are also other factors which influence the
number of negative reviews, like cultural background. Beller’s study is based on
two small projects while our sample size is hundreds of employees working within
one company, but in very different projects with their own ways of work.

5 Conclusions and discussion

Code reviews have been around for almost 40 years, but the practice is still
evolving. Modern code reviews are not much studied and without many concrete
best practices being established. In an effort to recognize new best practices for
code reviews in Gerrit code review, this paper has studied code reviews in a
case company and introduced different metrics for measuring the reviews in a
number of projects.

The main measurement areas are the time spent in review process and the
frequencies of various actions in order to establish foundations for measuring
code review velocity and quality.

SPLST'15

42



In this paper we have demonstrated that measuring code review process
with various metrics, can help controlling the review process on whole, while
enabling improvement of the review process. The metrics give valuable informa-
tion to management and developers including how quickly new code changes are
reviewed and how long it takes for them to become integrated. It was also ex-
amined what are the stages in the process that need the most improvement. The
metrics are most useful in large projects where keeping track of single changes
would be too laborious.

When places of delays are identified and other metrics like number of nega-
tive and positive reviews given are measured, it is possible for the management
to improve the efficiency of the review process. In a case of long change life times
the key is to identify the factors which slow the process down and apply cor-
rective actions. By measuring the number of positive and negative reviews per
developer, it is possible to monitor the review activity and quality. If changes
constantly receive low amount of negative reviews management should encour-
age stricter review policies so that more negative reviews are given and the code
gets therefore improved more. In addition, the number of given feedback can be
monitored and if very little feedback is given, the reviewers are encouraged to
give more comments on the code changes.

When reviews and testing are applied properly, the speed of development
becomes the most important thing to measure, as in the end the ability to
create software fast is the thing that allows to gain the competitive advantage in
the industry. From these time measurements, the most interesting one measures
how quickly new code changes can be integrated after being uploaded to Gerrit.

Measuring code quality is also very important as code with lot of defects,
functional or evolvability will cause additional costs later in the lifecycle. These
metrics do not directly measure the code quality. The focus is more on measuring
areas which do have secondary effect on quality. These include the number of
rejects during review and number of patch-sets. From these two measurements it
is possible to draw conclusions of the initial quality of the changes. When there
are a lot of patch-sets, it typically means problems. When compared with data
of received reviews it is possible to tell whether the change was well crafted. A
lot of negative reviews combined with long change lifetime is a signal of bad code
quality.

5.1 Limitations

The usage of the metrics introduced here is partly limited to Gerrit and some
of the metrics require certain configurations. However, especially the velocity
metrics are quite generic, and can be also used with other code review systems.
While the interface could be different, the basic principles are typically similar,
with change author and reviewers. By using the time stamps from reviews it is
possible to calculate at least pre-review and review times. The proposed qual-
ity metrics are more Gerrit specific, but the concept is not tied to any unique
functionality and can be copied to be used with other systems as well.

SPLST'15

43



The sample size in the findings is four projects, all from the same organiza-
tion, which sets some limitations to the credibility of the study. On the other
hand, the studied projects are largely self organized, working with different soft-
ware components, which makes them heterogeneous. Therefore, the sample data
can be considered diverse enough to validate the observations.

5.2 Further research

In addition to the measurement areas covered in this paper, there are number
of other possibilities for measurements. The metrics that were presented do not
go deep into the factors behind the results. There are, for example, many vari-
ables that affect the code review process and could be used in later studies to
complement the proposed metrics.

Tomas et al. [17] list and discuss few of the variables in detail including code
complexity, code dependencies, number and size of comments, amount of code
smells and code design. These additional metrics can be used to give more detail
on why reviews take certain time or how effective they are in improving the code
quality. To get deeper understanding of the factors affecting the metrics results,
the future work with the metrics could, for example, take the variables studied
by Tomas et al. and combine them with the metrics introduced in this paper.

The metrics still do not measure how long it takes for the reviewer to start
the review after the change has been made available for review. Neither do
the metrics measure how long it actually takes to complete the review. This
would require adding a new functionality to Gerrit where reviewer can set the
review started. However this is a manual process and might be hard to measure
accurately as it relies to the fact that reviewer always remembers to set review
started. Also, if review is not completed at a one session, the measurement would
be skewed. However, this is very interesting information and the possibility to
measure this will be investigated. Another additional measure could be review
start time. It would be a measure of how long it takes for the change to receive its
first review. This would give some insight on how quickly developers are reacting
to review requests as currently measured review time only measures the total
time spent on reviews.

References

1. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In Proceedings of the 2013 International Conference on Software Engineering
(2013), IEEE Press, 712-721.

2. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-
source projects: which problems do they fix? In: Proceedings of the 11th Working
Conference on Mining Software Repositories (2014), ACM, 202-211.

3. Cheng, T., Jansen, S., Remmers, M.: Controlling and monitoring agile software
development in three Dutch product software companies. In: Proceedings of the 2009
ICSE Workshop on Software Development Governance, (2009), IEEE Computer
Society, 29-35.

SPLST'15

44



4. Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Develop-
ment. IBM Systems Journal. 15(3) (1976), 182211.

5. Gerrit - web-based team code collaboration tool, https://code.google.com/p/

gerrit/

6. Jones, C.: 2008. Measuring Defect Potentials and Defect Removal Efficiency, The
Journal of Defense Software Engineering. June 2008. 11-13.

7. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in Agile and Lean Software
Development A systematic literature review of industrial studies. Information and
Software Technology. 62 (2015), 143-163.

8. Lehtonen, S.: Metrics for Gerrit code reviews, University of Tampere, School of
Information Sciences, master’s thesis, 62 pages, 2015.

9. Markus, A.: Code reviews. SIGPLAN Fortran Forum 28, 2, (2009) 4-14.
10. McConnell, S.:Code Complete, 2d Ed.. Microsoft Press, 2004.
11. McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: The impact of code review

coverage and code review participation on software quality: a case study of the qt,
VTK, and ITK projects. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, (2014), ACM, 192-201.

12. Perry, D.E., Staudenmayer, N.A., and Votta, L.G.: 1994. People, organizations,
and process improvement. Software, IEEE. 11(4) (1994), 36-45.

13. Porter, A., Siy, H., Mockus, A., Votta, L.: 1998. Understanding the sources of vari-
ation in software inspections. ACM Transactions on Software Engineering Method-
ology. 7(1) (1998), 41-79.

14. Rigby, P.C., German, D.M., Cowen, L., Storey, M.: Peer Review on Open-Source
Software Projects: Parameters, Statistical Models, and Theory. ACM Transactions
on Software Engineering Methodology. 23(4) (2014), Article no. 35.

15. Sommerville, I.: Software engineering, Ninth edition. Addison-Wesley, 2011.
16. Thongtanunam, P., Kula, R.G., Cruz, A.E.C., Yoshida, N., Iida, H.: Improving

code review effectiveness through reviewer recommendations. In: Proceedings of
the 7th International Workshop on Cooperative and Human Aspects of Software
Engineering, (2014), ACM, 119-122.

17. Tomas, P., Escalona, M.J., Mejias, M.: Open source tools for measuring the Internal
Quality of Java software products. A survey, Computer Standards & Interfaces.
36(1) (2013), 244-255.

18. Wiegers, K.E.: 2002. Seven Truths About Peer Reviews, Cutter IT Journal, July
2002. Retrieved from http://www.processimpact.com.

SPLST'15

45


	splst15_proceedings_paperit_headerilla
	9999990031


