
Semantics analyzing expression editors in IP-XACT
design tool Kactus2

Mikko Teuho, Esko Pekkarinen, Timo D. Hämäläinen

Tampere University of Technology, Tampere, Finland
mikko.teuho@tut.fi, esko.pekkarinen@tut.fi,

timo.d.hamalainen@tut.fi

Abstract. This paper presents parameter and expression editors of the design
tool Kactus2. It is aimed at digital System-on-Chip (SoC) designs based on
IEEE 1685 IP-XACT XML metadata standard. SoC’s are constructed by as-
sembling parametrized components using generators for hardware language
code and design configuration. The key challenges are the management of de-
pendencies between thousands of parameters, as well as immediate validation
and evaluation while editing. The expression editor in this paper has been de-
signed to overcome these challenges. The editors include real-time syntax, se-
mantic analysis and the use of UUIDs behind user displayed parameter names.
The implementations for these have been published in Kactus2 v2.8 open
source code, written in C++/Qt5, and consisting of 3000 LoC in the release. An
independent industrial user on the SoC domain has verified the correctness,
completeness and usability of the new solutions. The designed editors signifi-
cantly improve the SoC parameter editing and design configuration.

Keywords: IP-XACT ∙ Kactus2 ∙ Electronic Design Automation ∙ System-on-
Chip ∙ Expression analysis ∙ Semantic analysis

1 Introduction

This paper presents new features and implementation solutions for a design tool
called Kactus2. It is aimed at digital systems design, especially System-on-Chip
(SoC) designs which can include hundreds of Intellectual Property (IP) blocks possi-
bly representing millions of lines of hardware description language (HDL) code [1].
Kactus2 uses IEEE standards 1685-2009 and 1685-2014 “IP-XACT” XML metadata
that is aimed at unified specification for electronic design automation, IP vendors, and
system design communities [2]. IP-XACT specifies how IP blocks are packaged and
assembled independent of the design tool, implementation language or vendor used in
creating the IP block [3]. IP-XACT 2014 templates include 24 XSD files, totaling of
790 elements and 241 attributes. In addition, so called vendor extensions can multiply
these numbers, which shows that IP-XACT is a complex specification. It has been
widely adopted in VLSI industry recently accompanied by FPGA vendors.

SoC designs are increasingly based on automatic generation of HDL code, HW de-
pendent SW device drivers and automated building of the SW stack. IP-XACT at-

SPLST'15

106

mailto:mikko.teuho@tut.fi
mailto:esko.pekkarinen@tut.fi

tempts to specify a standard for all of this by a single point of control. The main HW
related tasks are parametrization of the IP blocks, instantiation and connection of the
blocks and design configuration.

Parameters are heavily used e.g. to construct structures and memory regions acces-
sible to SW. Parameters can be propagated through hierarchy, but global references
are not allowed to guarantee reuse of each IP block. Parameters defined in an IP-block
can be overridden for each instance in a design. There are six parameter attributes like
strict typing or allowable numerical range for the different purposes. These can be
used to explicitly define the values that a parameter can be given.

The challenge is how to manage even thousands of parameters and attributes that
may depend on each other and form long chains in expressions. Since the user cannot
comprehend the whole system at once, a tool should validate, and when possible,
evaluate parameter values on-the-fly while editing. A mistake in referencing, renam-
ing or copy-pasting can be very difficult to find afterwards.

Another challenge is how to enter the parameter information in a tool. Some relat-
ed tools resemble XML code editors, and some offer very large table sheets. Both are
prone to human errors and reduce the usability. An XML code should not be visible
for a system designer.

The need for an open source tool easing the reuse, configuration and assembly of
SoC designs motivated the development of Kactus2 at Tampere University of Tech-
nology. Even stronger motivation was to create an outstanding user interface hiding
the complexity of IP-XACT, since the tools in this domain are commonly known to
be very difficult to use.

Kactus2 was launched in 2010. It is implemented in C++ and Qt5, and the current
release v2.8 has ~390k LoC. Kactus2 is actively being used in several companies,
which also have supported the development. There are over 7800 installer downloads
by Aug 2015, which is a very good number in this specific domain. Direct feedback
from the users confirms the good usability.

This paper presents new solutions developed for Kactus2 for SoC design configu-
ration, which were implemented in v2.8. The new contributions are following:

· A new approach to expression editors.
· Real-time validation and semantic analysis of the parameters involved in defining

the high-level SoC design configuration.

This paper is organized in the following way. Chapter 2 discusses the related work
of expression editors. Chapter 3 introduces the solutions for the expression editor of
Kactus2. Chapter 4 contains the evaluation of the created mechanics. Chapter 5 con-
cludes this paper.

2 Related work

The early IP-XACT tools were Eclipse-based XML editors, which are still available
for many variations as commercial tools. The closest free tool to Kactus2 is EDAUtils
IP-XACT Solution [4], but it has much less features and is basically an IP-XACT

SPLST'15

107

XML editor. All true competitors are commercial tools, but they deny any compari-
sons and publication of the user interface in their licensing terms. In addition, com-
mercial tools have often been customized, which complicate comparison. Thus,
Kactus2 is currently the only usable open source IP-XACT tool.

For the related work, we consider more common solutions outside IP-XACT do-
main. The most important part is an expression editor that should

1. Have a WYSIWYG editor,
2. Support basic mathematical operators,
3. Support nested sections in parentheses,
4. Have constants, parameters and operators adding, copying, pasting and moving

within and between expressions,
5. Offer only existing parameters to be inserted and rejecting any other strings,
6. Validate the formula when typing,
7. Evaluate the value of the expression immediately,
8. Hide the parameter IDs and display only parameter names to the user.

The parameter references are based on unique IDs (UUID), which means the pa-
rameter name can be changed without breaking the dependencies. In addition, when
two IP blocks are integrated with the same parameter name but different meaning,
UUIDs help resolving the issue.

 Marques et al. have presented WIRIS OM Toolset [5] for managing mathematical
expressions. This application tries to construct outputs of mathematical fragments
written in a suitable markup language. WIRIS OM Toolset has been incorporated into
the LeActiveMath and WebALT project [5]. LeaActiveMath is a learning tool system
designed for high school, college or university level teaching [6]. WebALT is an ap-
plication that uses existing standard to represent mathematical equations on the web
together with existing linguistic technologies in order to create a language-
independent mathematical learning platform [7]. The TextMathEditor of WebALT
allows the construction of mathematical expressions using a predetermined grammar.
The WIRIS Formula Editor of the WIRIS OM Toolset has been incorporated within
this math editor.

Lee et al. have developed MathCast [8], an open source equation editor for mathe-
matical expressions. The produced equations can be used in documents, graphically
rendered picture files or within MathML Presentation 2.0, format for describing
mathematics [9]. A tool is included within MathCast to author XHTML web pages
with mathematical equations.

Design Science Inc. offers MathType, a commercial equation editor tool for Win-
dows and Macintosh [10]. It contains a wide range of mathematical functions and
customization options, with an ability to export these equations to Mathematical
Markup Language (MathML). MathType also understands the TeX and LaTeX type-
setting. MathType is compatible with a multitude of applications & websites, such as
Adobe InDesign and Microsoft Office tools.

Design Science Inc. offers another commercial mathematical equation tool, called
MathFlow [11]. MathFlow is a MathML Toolbox standard, offering tools for editing,
displaying and accessing mathematical notations on websites, applications and ser-

SPLST'15

108

vices. It can be incorporated into a suite of other software, such as Oxygen [12]. The
MathFlow toolbox consist of editors, equation composers and document composers.

All related editors have features from 1 to 7, e.g. WYSIWYG, use of previously
constructed constants, parameters and operators and nesting. MathType also supports
handwriting but this is not important for SoC design. However, none of the editors
support our requirement 8. We also need to consider how operands and operations are
defined for the expression editor.

2.1 Related standards

There are two standards for capturing mathematical equations: OpenMath [13] and
MathML [9]. There is a large overlap between these two communities. Both attempt
to create an extensible standard for representing the semantics of mathematical ob-
jects. As a web based system, MathML is based on XML in order to help browsers
natively render mathematical expressions. OpenMath endorses XML and binary for-
mats, although a custom encoding can be used. It is primarily targeted towards the
semantic meaning and content of mathematical objects instead of focusing on repre-
senting the objects. This approach is used in MathML. However, OpenMath has re-
ceived critique for its use of general mathematics [14].

Since both the MathML and OpenMath are based on XML [9] [13], it could be in-
corporated within Kactus2. Although these could help in displaying the constructed
equations within the expression editor, the semantic analysis is the important part of
the IP-XACT standard. Both of these standards contain semantic tags for constructing
the expressions. Following the structure, an analysis can be formed. For example the
following example sentence

x2 + 4x + 4 =0 (1)

could be constructed using the MathML semantics[9] as follows:

1. <apply>
2. <plus/>
3. <apply>
4. <power/>
5. <ci>x</ci>
6. <cn>2</cn>
7. </apply>
8. <apply>
9. <times/>
10. <cn>4</cn>
11. <ci>x</ci>
12. </apply>
13. <cn>4</cn>
14. </apply>

Since these standards describe the expressions in XML format, parsing one sen-
tence for editing requires resources. Comparing to the expression editor developed for
Kactus2, an expression is contained within a single string-variable. The managing of

SPLST'15

109

the equation becomes resource consuming as the XML tags of the expression need to
be re-applied every time the user wants to replace a value. Displaying the data of a
table containing tens of parameters each containing between one to three expressions
could possibly cause long loading times in opening and changing tables.

Regardless of the merits of existing solutions, none of these are easy to integrate
into Kactus2. The equation editors presented here are applications, and removing the
functionality of expressions from them could prove difficult. Kactus2 operates using
IP-XACT standard defining the parameters that are used in its expressions. These
expressions are structured according to System Verilog. To ensure that the parameter
references can be handled properly, together with a reliable and immediate expression
validation and evaluation, a custom expression editor was implemented for Kactus2.
The editor would be difficult to implement in other, non-IP-XACT applications.

3 Equations in Kactus2

Expressions are used in Kactus2 to capture mathematical equations and parameter
references. The references are constructed using the unique identifier of the refer-
enced value.

3.1 Expressions in Kactus2

In IP-XACT, the expressions are stored in an XML file. The XML element depends
on the correct location of the expression. Following is a fragment of IP-XACT file of
a component containing parameters. The ** is used as an operator for exponentiation:

<spirit:parameter type="int" usageCount="2">
 <spirit:name>port_width</spirit:name>
 <spirit:value spirit:id=
 "uuid_4087e902_e070_460c_b14f_41445660d950">-2
 </spirit:value>
</spirit:parameter>
<spirit:parameter type="real">
 <spirit:name>clk_enable</spirit:name>
 <spirit:value spirit:id=
 "uuid_0e46c746_ce3d_445b_977a_f9737eb3c505">
 uuid_4087e902_e070_460c_b14f_41445660d950**2+4*
 uuid_4087e902_e070_460c_b14f_41445660d950+4
 </spirit:value>
</spirit:parameter>
<spirit:parameter type="int">
 <spirit:name>port_range</spirit:name>
 <spirit:value spirit:id=
 "uuid_c45c68c9_1a57_4be6_a4e6_5e73ea74f197">14
 </spirit:value>
</spirit:parameter>

SPLST'15

110

This example displays three parameters, with parameter clk_enable containing a simi-
lar equation as in equation (1). In this example, the string uuid followed by a list of
characters is a universally unique identifier (UUID) [15] of a parameter value. Every
parameter value within Kactus2 has this identifier. When an XML file is read,
Kactus2 checks if a parameter contains a unique identifier. If this identifier is not
found, a new UUID is created.

Fig. 1. Expression reading and displaying in Kactus2

The flowchart for handling of XML files in Kactus2 is shown in Fig. 1. As shown
above, the XML file contains the references of an expression as unique identifiers to
the referenced parameter value. When an expression is displayed in a table of
Kactus2, the expression formatter of the table changes the unique identifier to a more
human readable name of the parameter. Only the name is displayed for user editing
the expressions.

3.2 The expression editor

A section of the Parameters editor of Kactus2 is shown in Fig. 2. This editor is used
to create and manage the parameters of a component. The name column displays the
parameter name, while the type column describes the type of the value. If the selected
type cannot contain the given value, the type is displayed in red.

Fig. 2. Parameters editor of Kactus2

SPLST'15

111

Fig. 3. Reference selection in the expression editor.

The symbol f(x) in the header informs that the value can be given as an expression.
The value of the expression is displayed as a tooltip of the containing field. The ex-
pression itself is visible when viewing or editing a parameter. The parameter values
can also be given as arrays. Every value of an array can be given a different expres-
sion, but multidimensional arrays are not supported in Kactus2.

While constructing an expression, the Kactus2 expression editor offers a list of
possible completions for an incomplete word. This can be observed in Fig. 3, where
the value of parameter clk_enable is being edited. The available selections are deter-
mined by the location of the expression editor. In the component editor, these com-
pletions are selected from the parameters of the currently active component. In the
configurable element editor, the completions are selected from the configurable
element values.

Each selection consists of the name of the corresponding parameter and its value,
while the unique identifier of the parameter is hidden from the user. When a comple-
tion is selected, the expression editor retrieves this unique identifier and inserts it to
the edited value. Thus the expression itself is constructed using the unique identifiers
of the referenced parameters. When the finished expression is displayed to the user,
the expression formatter changes the unique identifier of the referenced parameter to
the name of the parameter.

The expression editor will colour green the valid parameter references of an ex-
pression. Values containing invalid references are coloured red. All the references are
made using the unique IDs of parameters, but are displayed using the parameter
names. This is because the parameter IDs are not human readable.

The selection management is handled by the parameter completer class. Fig. 4
displays the structure of this completer. This class creates the available selections for
the user when selecting a completion to an unfinished word, as seen in Fig. 3.

SPLST'15

112

Fig. 4. The structure of parameter completer class in the expression editor.

The parameter completer is derived from the QCompleter class of Qt, and uses a
component parameter model to construct the model seen in the selection. This model
retrieves the parameters according to its currently selected parameter finder class. It
is based on the table editors of Kactus2 and thus is derived from both the referencing
table model class and the parameterizable table class. These handle the basic func-
tionalities of a table view in Kactus2. An expression parser class is attached to the
parameterizable table class. This parser evaluates the values of expressions. The
parameter finder class is used to find referable parameters, with its subclasses de-
termining the place where these parameters are found.

In version 2.8 of Kactus2, the classes contributing to the expression editor consist
of approximately 3000 lines of C++/Qt code. This includes the expression managing
and parsing, reference selection and expression formatting.

SPLST'15

113

Fig. 5. View of the parameter reference tree.

3.3 Parameter reference tree

IP-XACT based designs can include very complex parameter reference chains. To
help managing this, Kactus2 offers a parameter reference tree view with the expres-
sion editor. The tree visualizes all of the locations where the parameter has been ref-
erenced within the component together with the expression, in which the parameter
has been referenced. This reference calculation helps the user to be informed of the
importance of a parameter. A warning is given if a user tries to remove a parameter
that has been referenced at least once. An example of the reference tree is depicted in
Fig. 5.

The parameter reference tree is constructed on demand if a parameter has been ref-
erenced in an expression. This is determined by the usage amount column of a param-
eter. Keeping this usage count constantly in a correct state requires the tracking of all
the expression editors of Kactus2.

Whenever a reference is selected in the expression editor, a signal is sent to the pa-
rameter reference calculator class. This signal informs the reference calculator class
to increase the usage count of the referenced parameter. When a reference is deleted
or changed, a signal is sent to inform the reference calculator to decrease the amount
of references made to the parameter.

3.4 Editing an expression

When an expression is edited, the expression editor tracks the current location of the
editing. When the user removes or inserts characters into the expression, this location
is used to determine what is in the current position. If the position contains a reference
to a parameter value, a signal is emitted to inform that the reference has been removed
and the usage count of that parameter should be decreased, thus affecting the parame-
ter reference tree.

SPLST'15

114

When the user changes location in the expression, the parameter completer at-
tached to the expression editor displays a list of possible references to complete the
word at the current location.

If a new reference is not selected for the edited word, the XML file containing the
edited parameter value is changed. The uuid of the referenced value is replaced with
the edited name of the parameter. For example this XML contains parameter
clk_counter. Its value is an expression containing a reference to parameter
port_range:

<spirit:parameter type="int">
 <spirit:name>clk_counter</spirit:name>
 <spirit:value spirit:id=
 "uuid_5ecaeb33_fd7f_4512_acbf_5684d504af02">
 uuid_c45c68c9_1a57_4be6_a4e6_5e73ea74f197+4
 </spirit:value>
</spirit:parameter>

The uuid of parameter port_range is displayed in the value element of the parame-
ter clk_counter. When the value of the clk_counter is edited by removing a character,
the uuid is replaced by the edited name of parameter port_range:

<spirit:parameter type="int">
<spirit:name>clk_counter</spirit:name>
 <spirit:value spirit:id=
 "uuid_5ecaeb33_fd7f_4512_acbf_5684d504af02">
 port_rage+4
 </spirit:value>
</spirit:parameter>

The analysis of a modified expression is performed after the editing is finished.
The new expression is evaluated and the results are displayed in the tooltip of the
finished expression.

3.5 Semantic analysis of an expression

Kactus2 follows the System Verilog syntax for evaluating expressions. The validity of
an expression is handled in the expression parser classes. Invalid expressions are col-
ored red and the results are given as a string containing the text N/A.

Regular expressions are used to determine the validity of an expression. These de-
fine the available operators and functions that can be given in the expressions of
Kactus2. A valid expression within the expression editor of Kactus2 contains at least
one operator or a string literal. These operators can be negative or positive. Expres-
sions can contain more operators, but they must be connected with mathematical op-
erands. String literals are accepted as valid expressions.

In addition to the regular expression containing the form of the equation, the paren-
theses and braces within the expression are examined. Parentheses are used to con-

SPLST'15

115

struct equations with priority calculations. Valid places for open parentheses are be-
fore the first operand or before any subsequent operands. The closing parentheses are
placed after any subsequent operands. To handle the construction of multiple paren-
theses containing functions, the expression parses checks if the expression contains
the same number of opening and closing parentheses.

 Braces identify a value containing an array of values. A valid array contains an
equal number of opening and closing braces. A value within an array can be con-
structed similarly as a basic value, i.e. it can contain expressions. Multidimensional
arrays are not supported in the current version of Kactus2.

The expression editor is compatible with the decimal, hexadecimal, octal and bina-
ry number formats. The basic functionalities of the ExpressionParser class of Kactus2
parses any given expression to a decimal number. The ValueFormatter class allows
formatting any expression to a desired number format.

3.6 Expression evaluation

The evaluation of the expressions in Kactus2 is performed by the ExpressionParser
class and its subclasses. The flowchart for expression analysis is shown in Fig. 6. The
expression parser starts by checking any given expression for its validity. An N/A is
returned if an expression is found to be not applicable in Kactus2. It then checks if the
given expression is an array of expressions. If it is an array, the expression parser
evaluates all the expressions contained within it.

The equation is divided into a list of string type units. Each unit contains either an
operator, or a word delimiter. Using this list of units, the expression parser calculates
the value for the given expression using the standard arithmetic formulas.

Parentheses used in the expression are solved in a similar manner to the mathemat-
ical functions. The beginning and ending parentheses are first matched. Then each of
the expressions contained within the parentheses is then calculated separately, begin-
ning with the innermost expression.

Fig. 6. The flowchart for expression analysis used in the expression editor of Kactus2.

SPLST'15

116

4 Evaluation of the equation mechanics

The semantic analysis of Kactus2 handles the basic functionalities of a mathematical
equation editor. Comparing to other software designed to create and manage complex
mathematical structures, the expression editor of Kactus2 may seem simple. Kactus2
does not support the drawing of mathematical functions, or some the basic functional-
ities such as calculating square roots. However, the expression editor is currently
purposed to handle the mathematical needs of IP-XACT based SoC designs.

The speed of the expression editor depends on the amount of parameters currently
contained within a component. A test was conducted on a Win7 operating system and
4 processors (x86-64, WOW64) with a component containing approximately a hun-
dred parameters. Writing an expression causes no lag. Less than a second of lag can
be perceived in constructing the list of selectable references. Editing an expression
does not incur any more lag than the construction of the reference selections when
editing sections of the expression. The expression editor presented in this paper fol-
lows the System Verilog structure to validate and analyze any expressions given to it.
This structure contains the clog2 (ceiling of log2) function.

The standards OpenMath and MathML are not necessary to be implemented in
Kactus2. The expressions in Kactus2 are stored in simple string variables compared to
the XML tags used in both of these standards. Accessing the correct XML tag to
change a single operator of an expression can be considered more resource consum-
ing, compared to the handling of expressions contained a string. Additionally, as
Kactus2 is developed for SoC design, the expression editor contained within it does
not need very complex mathematical functions.

5 Conclusions

The Kactus2 expression editor presented in this paper allows the creation of mathe-
matical expressions displaying parameter names to the user while hiding the refer-
ences made to the parameter IDs. These parameters can be located within different
parts of a component. The different parameter finders of Kactus2 are used to specify
the location of the usable parameter references. This can be either the currently active
IP-XACT component, the component referenced by the currently active IP-XACT
component instance, the configurable elements of an IP-XACT component instance or
the top component containing a design housing the IP-XACT component instance.

The expression editor shown in this paper allows the defining of mathematical
equations. The editor can support the basic arithmetic formulas, as well as understand
different formats for the input of the data. These are the decimal, hexadecimal, octal
and binary formats.

Future work includes extension of the current semantic analysis for IP-XACT ven-
dor extensions, which have specified nodes in the XML tree but custom content. This
would be implemented by an extensible metamodel for the items of the expressions.

The benefits of the expression editor of Kactus2 are improved usability and re-
duced number of errors in SoC designs. Using the UUIDs as references allows relia-

SPLST'15

117

ble equation construction with the desired parameters. The use of parameter names in
place of the referenced UUIDs in the expression editor help in transforming these
equations into more human readable.

Without the expression formula and references validation, the IP-XACT XML files
could contain serious errors that can be difficult to find and verify in a large SoC de-
sign. As the expression validation is built into the expression editor, the IP-XACT
based SoC designs cannot contain parameter reference errors in Kactus2. Thus the
presented expression editor improves the SoC design process productivity and quality
significantly compared to plain IP-XACT XML editors that are still widely used.

6 References

1. A. Kamppi, J-M. Määttä, L. Matilainen, E. Salminen, T.D. Hämäläinen. Kactus2: Extend-
ed IP-XACT metadata based embedded system design environment. 2012 1st International
Workshop on Metamodelling and Code Generation for Embedded Systems, MeCoEs. 6p

2. IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating and Reusing
IP within Tool Flows, IEEE Std 1685-2009. The Institute of Electrical and Electronics En-
gineers, Inc. 18 Feb. 2010. 373 p.

3. E. Salminen, T.D. Hämäläinen, M. Hännikäinen. Applying IP-XACT in product data man-
agement. 2011 International Symposium on System on Chip (SoC). 31 Oct 2011 – 2 Nov
2011 pp. 86‒91.

4. EDAUtils. IP-XACT solution. [WWW] [Referenced on 14 Aug. 2015]. Available at:
http://www.edautils.com/ip-xact.html

5. D. Marquès, R. Eixarch, G. Casanellas, B. Martínez. WIRIS OM Tools: a Semantic For-
mula Editor. Mathematical User-Interfaces Workshop 2006. 10 Aug. 2006. 8p.

6. Language-Enhanced, User-Adaptive, Interactive e-Learning for Mathematics. [WWW]
[Referenced on 7 Aug. 2015] Available at: http://www.leactivemath.org

7. WebALT: Web Advanced Learning Techniques. [WWW] [Referenced on 7 Aug. 2015]
Available at: http://www.webalt.net/index_eng.html

8. T. Lee, T. Chekam. MathCast: The open source equation editor. [WWW] [Referenced on 7
Aug. 2015] Available at: http://mathcast.sourceforge.net/home.html

9. W3C. MathML. [WWW] [Referenced on 7 Aug. 2015]. Available at:
http://www.w3.org/Math/

10. Design Science. MathType 6.9. [WWW] [Referenced on 7 Aug. 2015]. Available at:
http://www.dessci.com/en/products/mathtype/

11. Design Science. MathFlow. [WWW] [Referenced on 7 Aug. 2015]. Available at:
http://www.dessci.com/en/products/mathflow/default.htm

12. Oxygen XML editor. [WWW] [Referenced on 19 Aug. 2015] Available at:
http://www.oxygenxml.com/

13. Open Math Society. [WWW] [Referenced on 7 Aug. 2015]. Available at:
http://www.openmath.org/society/index.html

14. R. Fateman. A Critique of OpenMath and Thoughts on Encoding Mathematics. University
of California, Berkeley, Computer Science Division. 17 Jan. 2001. 10p

15. P. Leach, M. Mealling, R. Salz. A Univerally Unique Identifier (UUID) URN Namespace.
Network Working Group. July 2005. Available at: http://www.ietf.org/rfc/rfc4122.txt

SPLST'15

118

http://www.leactivemath.org/
http://www.webalt.net/index_eng.html
http://mathcast.sourceforge.net/home.html
http://www.w3.org/Math/
http://www.dessci.com/en/products/mathtype/
http://www.dessci.com/en/products/mathflow/default.htm
http://www.openmath.org/society/index.html

	splst15_proceedings_paperit_headerilla
	9999990106
	1 Introduction
	2 Related work
	2.1 Related standards

	3 Equations in Kactus2
	3.1 Expressions in Kactus2
	3.2 The expression editor
	3.3 Parameter reference tree
	3.4 Editing an expression
	3.5 Semantic analysis of an expression
	3.6 Expression evaluation

	4 Evaluation of the equation mechanics
	5 Conclusions
	6 References

