
Two Set-based Implementations of Quotients in
Type Theory

Niccolò Veltri

Institute of Cybernetics, Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia,

niccolo@cs.ioc.ee

Abstract. We present and compare two different implementations of
quotient types in Intensional Type Theory. We first introduce quotients
as particular inductive-like types following Martin Hofmann’s extension
of Calculus of Constructions with quotient types [6]. Then we give an
impredicative encoding of quotients. This implementation is reminiscent
of Church numerals and more generally of encodings of inductive types
in Calculus of Constructions.

1 Introduction

In mathematics, given a set X and an equivalence relation R on X, the quotient
set X/R is the set of equivalence classes of X with respect to R, i.e. X/R =
{[x] |x ∈ X}, where [x] = {y ∈ X |xR y}. An important example is the set
of integer numbers, constructed as the quotient set (N × N)/SameDiff, where
SameDiff (n1,m1) (n2,m2) if and only if n1 +m2 = n2 +m1. Another example is
the set of real numbers, constructed as the quotient set CauchyQ/Diff→0, where
CauchyQ is the set of Cauchy sequences of rational numbers and Diff→0 {xn} {yn}
if and only if the sequence {xn − yn} converges to 0. A fundamental usage of
quotients in programming is the construction of finite multisubsets of a given
type X as “lists modulo permutations”, and of finite subsets of X as “lists
modulo permutations and multiplicity”.

In Martin-Löf type theory (MLTT) [8] and in Calculus of Inductive Con-
structions (CIC) [1] quotients are typically represented by setoids. A setoid is
a pair (A,R) where A is a set and R is an equivalence relation on A. A map
between setoids (A,R) and (B,S) is a map f : A→ B compatible with the rela-
tions, i.e. if aR b then (fa)S (fb). Every set A can be represented as the setoid
(A,≡), where ≡ is propositional equality on A. Given an equivalence relation R
on A the quotient A/R is represented as the setoid (A,R). There is a canonical
setoid map abs : (A,≡)→ (A,R), abs = id, that is clearly compatible, and every
setoid map f : (A,≡)→ (B,S) such that (fa)S (fb) whenever aR b extends to
a setoid map lift f : (A,R)→ (B,S).

The implementation of quotients as setoids forces us to lift every type former
to setoids. For example the type formers of products, function spaces, lists and
trees must become setoid transformers. Moreover in several applications it is
preferable to work with sets instead of setoids.

SPLST'15

194

In this paper we present two different frameworks for reasoning about set-
based quotients, i.e. quotients as types. We first introduce in Section 2 quotients
as particular inductive-like types. The presentation is inspired by quotient types
in Martin Hofmann’s PhD thesis [6], and works fine both in MLTT and in
CIC. Our presentation is settled in MLTT. In Section 3 we show an alternative
encoding of quotients in a small extension of Calculus of Constructions (CC).
The two implementations are pretty different in flavor. We highlight their main
features and show some examples. In Section 4 we present integer numbers as
the quotient of N×N mentioned in the introduction, and in Section 5 we present
finite multisubsets of a given type X as the quotient of ListX also mentioned
above. The presentations work fine both in MLTT and in our extension of CC.

Note that integer numbers are already definable in type theory without the
need of quotient types. In MLTT, for example, integers are implemented as two
distinct copies of natural numbers N + N, interpreted as the negative and non-
negative numbers. Note that in order to avoid the presence of two zeros, the
elements of the first copy of N have to be considered as “shifted by one”, i.e.
inln has to be read as −(n + 1). Another possibility is to introduce integers
as the type > + N + N, specifying zero explicitly and “shifting by one” both
copies. Using such implementations, defining operations on integers and proving
that such operations satisfy the laws of arithmetic (e.g. Z is a integral domain)
become tedious due to the number of cases involved in the definitions. In Section
4 we want to show that our implementation is more elegant and less tedious to
work with than the other two presented above.

We have fully formalized the results of this paper in the dependently typed
programming language Agda [9]. The formalization is available at http://cs.

ioc.ee/~niccolo/quotients/. In order to be consistent with the formalization,
in this paper we use the notation of MLTT.

2 Inductive-Like Quotients

In this section, we introduce quotient types as particular inductive-like types
introduced by M. Hofmann [6]. First we briefly describe the type theory under
consideration.

2.1 The Type Theory under Consideration

We consider Martin-Löf type theory (MLTT) with inductive types and a cumu-
lative hierarchy of universes Uk. We allow dependent functions to have implicit
arguments and indicated implicit argument positions with curly brackets (as in
Agda). We write ≡ for propositional equality (identity types) and = for judgmen-
tal (definitional) equality. Reflexivity, symmetry, transitivity and substitutivity
of ≡ are named refl, sym, trans and subst, respectively.

We assume uniqueness of identity proofs for all types, i.e., an inhabitant for

UIP =
∏
{X:U}

∏
{x1,x2:X}

∏
p1,p2:x1≡x2

p1 ≡ p2.

SPLST'15

195

A type X is said to be a proposition, if it has at most one inhabitant, i.e., if
the type

isPropX =
∏

x1,x2:X

x1 ≡ x2

is inhabited.
Uniqueness of identity proofs is needed only to prove that the propositional

truncation of a type is a proposition (Subsection 2.4), which in turn is needed
in the proof of Proposition 1.

2.2 The Implementation

We now describe quotient types à la Hofmann. We call them “inductive-like
quotients” because they are given a dependent elimination principle (sometimes
also called induction principle). Let X be a type and R an equivalence relation
on X. For any type Y and function f : X → Y , we say that f is R-compatible
(or simply compatible, when the intended equivalence relation is clear from the
context), if the type

compat f =
∏

{x1,x2:X}

x1Rx2 → f x1 ≡ f x2

is inhabited. The quotient of X by the relation R is described by the following
data:

(i) a carrier type X/R;
(ii) a constructor abs : X → X/R together with a proof sound : compat abs;
(iii) a dependent eliminator: for every family of types Y : X/R → Uk and

function f :
∏
x:X Y (absx) with p : dcompat f , there exists a function

lift f p :
∏
q:X/R Y q;

(iv) a computation rule: for every family of types Y : X/R → Uk, function
f :
∏
x:X Y (absx) with p : dcompat f and x : X we have

liftβ f p x : lift f p (absx) ≡ f x

The predicate dcompat represents compatibility for dependent functions f :∏
x:X Y (absx):

dcompat f =
∏

{x1,x2:X}

∏
r:x1Rx2

substY (sound r) (f x1) ≡ f x2.

We postulate the existence of data (i)–(iv) for all types X and equivalence re-
lations R on X. Notice that the predicate dcompat depends on the availability
of sound. Also notice that, in (iii), we allow elimination on every universe Uk. In
our development, we actually eliminate only on U and once on U1 (Proposition
1).

We now take a look at some derived results and examples.

SPLST'15

196

2.3 Classical Quotients

Classically every equivalence class in a quotient X/R has a representative ele-
ment in the original set, i.e. a map rep : X/R → X that satisfies the following
conditions:

complete :
∏
x:X

(rep (absx))Rx

stable :
∏
q:X/R

abs (rep q) ≡ q

If we postulate the existence of such quotients for all sets and equivalence
relations it is possible to derive the law of excluded middle [2].

In general in constructive mathematics, for a given equivalence class there
is no canonical choice of a representative. This idea is reflected in the imple-
mentation of quotients we presented in the previous section. Every map of type
X/R→ X is of the form lift f p for a certain R-compatible map f : X → X. But
for a general type X and equivalence relation R strictly weaker then equality,
there is no such canonical f .

2.4 Propositional Truncation

The propositional truncation (or squash) ‖X‖ of a type X is the quotient of X by
the total relation λx1 x2.>. Intuitively ‖X‖ is the unit type > if X is inhabited
and it is empty otherwise. In other words, ‖X‖ is the proposition associated
with the type X. Indeed:

isProp‖ : isProp ‖X‖
isProp‖ x1 x2 = lift (λ y1. lift (λ y2. sound ?) p1 x2) p2 x1

where ? : > is the constructor of the unit type, while p1 and p2 are simple
compatibility proofs. Note that in these compatibility proofs we need to show
that two equality proofs are equal, and we do it by using the uniqueness of
identity proofs.

Note that the propositional truncation operation defines a monad: the unit is
| | and multiplication µ‖ : ‖‖X‖‖ → ‖X‖ is defined as µ‖ = lift id p, where p is the
easy proof of compatibility that follows from the fact that ‖X‖ is a proposition.
In general, for a given family of equivalence relations RX : X → X → U , indexed
by X : U , the functor F X = X/RX is not a monad, since there is no way of
constructing a multiplication µ : (X/RX)/RX/RX

→ X/RX .

2.5 Function Extensionality

LetX and Y be types. Extensional equality of functions is an equivalence relation
on X → Y :

FunExt≡ : (X → Y)→ (X → Y)→ U

FunExt≡ f g =
∏
x:X

fx ≡ gx

SPLST'15

197

For the quotient (X → Y)/FunExt≡ there exists a map that associates a
representative function to each equivalence class.

rep : (X → Y)/FunExt≡ → (X → Y)

rep q x = lift (λf. f x) (λp. p x) q

Using the computation rule liftβ of quotients we obtain rep (abs f)x ≡ f x,
for all f : X → Y and x : X. The computation rule holds only up to proposi-
tional equality. If equality in liftβ were definitional, one could prove, using rep,
the principle of function extensionality. Indeed, consider f, g : X → Y with
FunExt≡ f g. Then the following sequence of equations holds:

f = λx. f x = λx. rep (abs f)x = rep (abs f)

≡ rep (abs g) = λx. rep (abs g)x = λx. g x = g

2.6 Effectiveness

A quotient X/R is said to be effective, if the type
∏
x1,x2:X

absx1 ≡ absx2 →
x1 R x2 is inhabited. In general, effectiveness does not hold for all quotients.
Moreover, postulating effectiveness for all quotients implies the law of excluded
middle [7]. Clearly classical quotients, discussed in Subsection 2.3, are effective.
Indeed, if for x1, x2 : X we have absx1 ≡ absx2 then, using complete we are
done, since rep (absx1)Rx1, rep (absx2)Rx2 and rep (absx1) ≡ rep (absx2).

For a general type X and a general equivalence relation R on X, we can only
prove that, under the assumption of proposition extensionality, the quotient X/R
satisfies a weaker property. The principle of proposition extensionality states that
logically equivalent propositions are equal:1

PropExt =
∏

{X,Y :U}

isPropX → isPropY → X ↔ Y → X ≡ Y

where X ↔ Y = (X → Y) × (Y → X). We say that a quotient X/R is weakly
effective, if the type

∏
x1,x2:X

absx1 ≡ absx2 → ‖x1 R x2‖ is inhabited.
If we extend our type theory with PropExt, we can prove that all quotients

are weakly effective.

Proposition 1. Under the hypothesis of proposition extensionality, all quotients
are weakly effective.

Proof. In fact, let X be a type, R an equivalence relation on X and x : X.
Consider the function ‖x R ‖ : X → U , ‖x R ‖ = λx′. ‖x R x′‖. We show that
‖xR ‖ is R-compatible. Let x1, x2 : X with x1Rx2. We have xRx1 ↔ xRx2 and
therefore ‖xR x1‖ ↔ ‖xR x2‖. Since propositional truncations are propositions

1 Note that proposition extensionality is accepted in homotopy type theory [12].
Propositions are (-1)-types and proposition extensionality is univalence for (-1)-
types.

SPLST'15

198

(proof isProp‖ in Subsection 2.4), using proposition extensionality, we conclude
‖xRx1‖ ≡ ‖xRx2‖. We have constructed a term px : compat ‖x R ‖, and
therefore a function lift ‖x R ‖ px : X/R→ U (large elimination is fundamental
in order to apply lift, since ‖x R ‖ : X → U and X → U : U). Moreover,
lift ‖x R ‖ px (abs y) ≡ ‖x R y‖ by its computation rule.

Let absx1 ≡ absx2 for some x1, x2 : X. We have:

‖x1 R x2‖ ≡ lift ‖x1R ‖ px1
(absx2) ≡ lift ‖x1 R ‖ px1

(absx1) ≡ ‖x1 R x1‖

and x1 R x1 holds, since R is reflexive.

3 Impredicative Encoding of Quotients

In this section, we present an implementation of quotients in Calculus of Con-
structions (CC). The implementation is different in flavor from the one discussed
in Section 2.

3.1 The Type Theory under Consideration

Remember that our presentation is done using the language of MLTT. Our Agda
formalization makes use of type-in-type instead of Agda’s current implementa-
tion of universe polymorphism. This means that we are working in a type theory
with only one universe U and U : U . Type-in-type is known to be inconsistent
[5, 3], but we are using it only to simulate in Agda the impredicativity of CC,
which is consistent.

In Subsection 3.3 we need the existence of dependent sums and identity types.
Both are definable in CC. Consider X : U and P : X → U . The dependent sum∑
x:X P x can be defined as follows:

∑
x:X

P x =
∏
Y :U

(∏
x:X

P x→ Y

)
→ Y

Consider X : U and x1, x2 : X. We can define (Leibniz) equality x1 ≡ x2 as
follows:

x1 ≡ x2 =
∏

P :X→U
P x1 → P x2

One can easily define the constructor and the first projection map of depen-
dent sums.

pair :
∏
x:X

(
P x→

∑
x:X

P x

)
pair x p = λY f. f x p

fst :
∑
x:X

P x→ X

fst c = cX (λx p. x)

SPLST'15

199

It is also possible to prove that Leibniz equality is a substitutive equiv-
alence relation. But is not possible to construct the second projection map
snd :

∏
c:
∑

x:X P x P (fst c), showing that the type
∑
x:X P x defined above is

a weak dependent sum. Leibniz equality is also weak, since it is not possible
to prove “dependent substitutivity”, i.e. given a type X, a family of types
Y : X → U and a predicate P :

∏
x:X → Y x → U , we cannot construct a

term subst2 of type∏
p:x1≡x2

substY p y1 ≡ y2 → P x1 y1 → P x2 y2

for all x1, x2 : X, y1 : Y x1 and y2 : Y x2.
The results of Subsection 3.3 rely on the existence of terms snd and subst2.

Therefore we extend CC with identity types and dependent sums as primitives.
As a consequence we obtain that the terms snd and subst2 are easily definable.
An instance of subst2 gives us sufficient conditions for proving equality of pairs.
Let X be a type and P : X → U a family of types. Then for all x1, x2 : X,
p1 : P x1 and p2 : P x2:

pair≡ :
∏

r:x1≡x2

substP r p1 ≡ p2 → pair x1 p1 ≡ pair x2 p2

pair≡ r s = subst2 (λx p. pair x1 p1 ≡ pair x p) r s refl

We also assume the dependent version of the principle of function extension-
ality, i.e. there is a term dfunext that inhabits the type

DFunExt =
∏
{X:U}

∏
{Y :X→U}

∏
{f1 f2:

∏
x:X→Y x}

(∏
x:X

f1 x ≡ f2 x

)
→ f1 ≡ f2

3.2 The Implementation

We now describe our impredicative implementation of quotients. Let X be a
type and R an equivalence relation on X. We define the quotient of X over R
as the following type:

X/R =
∏
Y :U

∏
f :X→Y

compat f → Y

In other words, X/R is a polymorphic function which assigns, to every type
Y equipped with a compatible function f : X → Y , an element of Y . One can
then define the constructor abs:

abs : X → X/R

absx = λY f r. f x

Using the principle of function extensionality one proves that abs is an R-
compatible map. Notice that the dependent version of the principle of function

SPLST'15

200

extensionality is needed here, since elements of type X/R are dependent maps.

sound : compat abs

sound r = dfunext (λY. dfunext (λf. dfunext (λp. p r)))

One can then define the non-dependent elimination principle, which turns
out to be just function application. Crucially the computation rule holds defini-
tionally, as witnessed below in the observation that refl proves the corresponding
propositional equality.

lift :
∏
{Y :U}

∏
f :X→Y

compat f → X/R→ Y

lift {Y } f r q = q Y f p

liftβ :
∏
{Y :U}

∏
f :X→Y

∏
r:compat f

∏
x:X

lift f p (absx) ≡ f x

liftβ f r x = refl

Note the similarity with Church numerals and the implementation of depen-
dent sums given above, and more generally the similarity with the impredicative
encoding of inductive types in CC [10]. Moreover this representation is inspired
by the impredicative encoding of higher inductive types [12, Ch. 6] in CIC [11].

3.3 Dependent Elimination

While in practice having a definitional computation rule is convenient, it is im-
possible to derive a dependent elimination principle. Implementations of induc-
tive types in CC in general suffer from this problem [4].

In this subsection we assume the uniqueness property of lift i.e. the fact that,
for every type Y and R-compatible function f : X → Y , lift f r is the only map
that makes the following diagram commute:

X
f //

abs
��

Y

X/R

lift f r

77

From the uniqueness property we derive the dependent elimination principle.
Let Y : X/R→ U be a type family and f :

∏
x:X Y (absx) a map with compati-

bility proof r : dcompat f . Using the non-dependent eliminator we define a map
of type X/R→

∑
q:X/R Y q.

dlift′ :
∏

{Y :X→U}

∏
f :
∏

x:X Y (abs x)

dcompat f → X/R→
∑
q:X/R

Y q

dlift′ f r = lift (λx. pair (absx) (f x)) (λp. pair≡ (sound p) (r p))

SPLST'15

201

Notice that, for all x : X, fst (dlift′ f r (absx)) = absx = id (absx). Therefore,
by the uniqueness property, we obtain a term sq : fst (dlift′ f r q) ≡ q for all
q : X/R. This allows us to derive the dependent elimination principle:

dlift :
∏

{Y :X→U}

∏
f :
∏

x:X Y (abs x)

dcompat f →
∏
q:X/R

Y q

dlift {Y } f r q = substY sq (snd (dlift′ f r q))

4 Integer Numbers

As an example we present integer numbers. In order to do that we need to have
natural numbers in our system (defined as Church numerals in CC or defined
inductively in MLTT, it does not matter). We introduce a synonym for pairs of
natural numbers, Diff = N×N, and we use the notation − for the constructor
of Diff. Elements of Diff represent differences of natural numbers. We define an
equivalence relation SameDiff on Diff relating pairs with the same difference:

SameDiff : Diff → Diff → U
SameDiff (n1 −m1) (n2 −m2) = plusn1m2 ≡ plusn2m1

where plus is addition on N. We define Z = Diff/SameDiff. We show formally
that Z is a commutative monoid. The unit zeroZ is the equivalence class of
zeroDiff = zero − zero, where zero is the unit of N. Addition is defined in two
steps. First we introduce an addition operation on Diff.

plusDiff : Diff → Diff → Diff

plusDiff (n1 −m1) (n2 −m2) = plusn1 n2 − plusm1m2

Before lifting addition to Z, we introduce a useful variant of compat2, the
compatibility predicate for two-argument functions. Let X,Y and Z be types
and R,S and T equivalence relations on X,Y and Z respectively. The predicate
compat′2 on X → Y → Z is defined as follows:

compat′2 f =
∏

{x1,x2:X}

∏
{y1,y2:Y }

x1 R x2 → y1 S y2 → (f x1 y1) T (f x2 y2)

A function f satisfies compat′2 if it sends R-related and S-related inputs to
T -related outputs. It is easy to construct a proof p : compat′2 plusDiff . We are
ready to lift the addition plusDiff to Z:

plusZ : Z→ Z→ Z
plusZ = lift2 (λ d e. abs (plusDiff d e)) (λ r s. sound (p r s))

where lift2 is the two-argument version of lift. We prove the right unit law. First
notice that the law holds in Diff up to SameDiff, i.e. for all d : Diff, we have a

SPLST'15

202

proof sd : SameDiff (plusDiff d (zero− zero)) d. We lift this proof to Z:

rightUnitZ :
∏
z:Z

plusZ z zeroZ ≡ z

rightUnitZ = absEpi (λ d. sound sd)

where absEpi is a proof that the map abs : X → X/R is an epimorphism, for
all types X and equivalence relations R on X, i.e. for all types Y and maps
f1, f2 : X/R→ Y , if f1 (absx) ≡ f2 (absx) for all x : X, then for all q : X/R we
have f1 q ≡ f2 q. This is an easy consequence of the uniqueness property.

We observe that working with impredicative quotients facilitates proofs, since
the computation rule holds definitionally.

5 Finite Multisubsets

Another example we present is finite multisubsets of a given type X. In this
section we work in MLTT. Let X be a type with decidable equality, i.e. there
exists a function dec≡ : X → X → Bool such that dec≡ x1 x2 = true if and only
if x1 ≡ x2. We introduce the binary relation Perm on ListX, inductively defined
by the rules:

Perm [] []

Permxs ys

Perm (x :: xs) (x :: ys)

Permxs ys

Perm (x :: y :: xs) (y :: x :: ys)

Permxs ys Perm ys zs

Permxs zs

Two lists xs and ys are in the relation Perm if xs is a permutation of ys.
The relation is transitive by construction, and it is easily provable reflexive and
symmetric. Therefore we form the quotient MultisubsetX = ListX/Perm, i.e. a
finite multisubset of X is a list modulo permutations.

We introduce a function counting the multiplicity of an element x in a list
xs. If the element does not belong to the list, then its multiplicity is zero. Note
that decidable equality on X is fundamental in order to count the number of
occurrences of x in xs.

multiplicity : X → ListX → N
multiplicity x [] = zero

multiplicity x (y :: xs) with dec≡ x y

multiplicity x (y :: xs) | true = suc (multiplicity xxs)

multiplicity x (y :: xs) | false = multiplicity xxs

The function multiplicity can be proved compatible with the relation Perm.
This is true since permuting a list does not alter the number of occurrences of
an element in it. The proof is easily done by induction on the structure of Perm.
Therefore the function multiplicity lifts to MultisubsetX.

SPLST'15

203

We conclude this section by noting that there are other possible definitions
of “equality” on finite multisubsets of X. For example one could define a relation
Perm′ on ListX as Perm′ xs ys =

∏
x:X (x ∈ xs) ∼= (x ∈ ys), where ∼= is type

isomorphism and ∈ is list membership. The definition of Perm′ is more concise
that the definition of Perm. The two relations are logically equivalent, but prov-
ing multiplicity compatible with Perm′ is much more complicated than proving
multiplicity compatible with Perm.

6 Conclusions

In this paper we showed two different implementation of quotient types. Both
are set-based and therefore different from the setoid-based approach.

In Section 2 we presented inductive-like quotients in Martin-Löf type theory.
They do not need impredicativity in order to be introduced, but their exis-
tence has to be postulated. Moreover the computation rule only holds up to
propositional equality. Hofmann’s extension of Calculus of Constructions [6] is
consistent, therefore the same holds for our implementation in MLTT.

In Section 3 we presented an impredicative encoding of quotients in Calculus
of Constructions. In order to derive the dependent elimination principle from the
uniqueness property we need to extend CC with dependent sums and identity
types. Our implementation shows that, at the cost of impredicativity, quotient
types are definable. However they are “weak”, similarly to Leibniz equality or
the impredicative encoding of dependent sums given in Subsection 3.2. To get
“strong” quotients, one needs to introduce postulates, such as the uniqueness
property. Geuvers [4] showed that postulating dependent elimination for im-
predicative encodings of inductive types is safe. Similarly this can be extended
to our quotient types. The uniqueness property of quotients is logically equiva-
lent to the dependent elimination principle, therefore assuming the uniqueness
property is also safe. There are other ways of deriving the dependent elimination
principle for inductive types in impredicative systems such as CC, most notably
parametricity [13].

Acknowledgement This research was supported by the ERDF funded ICT na-
tional programme project ”Coinduction”, the Estonian Science Foundation grant
no. 9219 and the Estonian Ministry of Education and Research institutional re-
search grant no. PUT33-13.

References

1. Y. Bertot and P. Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer, 2004.

2. L. Chicli, L. Pottier, and C. Simpson. Mathematical quotients and quotient types
in Coq. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs,
volume 2646 of Lecture Notes in Computer Science, pages 95–107. Springer, 2003.

3. T. Coquand. An analysis of Girard’s paradox. In Symposium on Logic in Computer
Science, pages 227–236. IEEE Computer Society, 1986.

SPLST'15

204

4. H. Geuvers. Induction is not derivable in second order dependent type theory.
In S. Abramsky, editor, Typed Lambda Calculi and Applications, volume 2044 of
Lecture Notes in Computer Science, pages 166–181. Springer, 2001.

5. J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur, Ph.D. thesis, Université Paris VII, 1972.

6. M. Hofmann. Extensional concepts in intensional type theory, Ph.D. thesis, Uni-
versity of Edinburgh, 1995.

7. M. Maietti. About effective quotients in constructive type theory. In T. Altenkirch,
B. Reus, and W. Naraschewski, editors, Types for Proofs and Programs, volume
1657 of Lecture Notes in Computer Science, pages 166–178. Springer, 1999.

8. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s type
theory. Oxford University Press Oxford, 1990.

9. U. Norell. Dependently typed programming in Agda. In P. Koopman, R. Plasmei-
jer, and S. D. Swierstra, editors, Advanced Functional Programming, volume 5832
of Lecture Notes in Computer Science, pages 230–266. Springer, 2009.

10. F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus of
constructions. In M. G. Main, A. Melton, M. W. Mislove, and D. A. Schmidt, edi-
tors, Mathematical Foundations of Programming Semantics, volume 442 of Lecture
Notes in Computer Science, pages 209–228. Springer, 1989.

11. M. Shulman. Higher inductive types via impredicative polymor-
phism. Blog post, 2011. http://homotopytypetheory.org/2011/04/25/

higher-inductive-types-via-impredicative-polymorphism.
12. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. Institute for Advanced Study, 2013. http://

homotopytypetheory.org/book.
13. P. Wadler. The Girard–Reynolds isomorphism. Theoretical Computer Science,

375(1):201–226, 2007.

SPLST'15

205

	splst15_proceedings_paperit_headerilla
	9999990194

