
Preventing malicious attacks by diversifying
Linux shell commands?

Joni Uitto, Sampsa Rauti, Jari-Matti Mäkelä, and Ville Leppänen

University of Turku, 20014 Turku, Finland
{jjuitt, sjprau, jmjmak, ville.leppanen}@utu.fi

Abstract. In instruction set diversification, a ”language” used in a sys-
tem is uniquely diversified in order to protect software against malicious
attacks. In this paper, we apply diversification to Linux shell commands
in order to prevent malware from taking advantage of the functional-
ity they provide. When the Linux shell commands are diversified, mal-
ware no longer knows the correct commands and cannot use the shell to
achieve its goals. We demonstrate this by using Shellshock as an example.
This paper presents a scheme that diversifies the commands of Bash, the
most widely used Linux shell and all the scripts in the system. The fea-
sibility of our scheme is tested with a proof-of-concept implementation.
We also present a study on the extent of changes required to make all
the trusted scripts and applications in the system use the new diversified
shell commands.

Keywords: software security, instruction set diversification, Linux com-
mand shell, Bash

1 Introduction

In this paper, we present a diversification scheme which prevents the execution of
undiversified command shell scripts in order to protect the system from malware.
While the focus of our discussion is on injection attacks such as Shellshock, our
scheme also generally prevents attacks in many situations where the attacker
tries to execute a malicious script in the target system.

Among security bugs, vulnerabilities allowing code injection attacks are prob-
ably most commonly exploited by malware [3]. In these attacks, the code is in-
serted in the vulnerable program, enabling the attacker to use the program’s
privileges to launch an attack. Code injection attacks are known to be popular
with binaries compiled from weakly typed languages like C, but are also often
used to execute arbitrary code on other environments like SQL [19] or Unix com-
mand shell [13]. In this paper, we concentrate on preventing attacks in command
shell environment.

Malware and attackers make use of the fact that the set of commands in-
terpreted by the command shell is identical on each computer. Because of this

? The authors gratefully acknowledge Tekes – the Finnish Funding Agency for Inno-
vation, DIGILE Oy and Cyber Trust research program for their support.

SPLST'15

206

software monoculture, an adversary can design a single program that is able to
successfully attack millions of vulnerable computers and devices. To defeat these
kinds of attacks, we employ a method based on instruction set diversification.

The command sets of command shells on different computers, servers and
devices can be uniquely diversified so that a piece of malware no longer knows
the correct shell commands to perform a specific operation in order to access
resources on a computer. As the malware is unfamiliar with the language used
by the command shell, attempts to attack are rendered useless. Even if a piece of
malware were to find out the secret diversified commands for one shell script, the
same secret commands do not work for other scripts or systems. This diversifica-
tion scheme can also be seen as proactive countermeasure against code injection
attacks: The exact type of injection does not have to be known beforehand in
order to thwart it.

It is also worth noting that diversification does not affect the software devel-
opment process. The general idea in diversification (be it targeted at a command
language or an API interface) is that software development is done against the
ordinary reference language or API interface, and software artefacts are diversi-
fied machine-wisely after the development phase.

The contributions of this paper are as follows. We propose a scheme for
diversifying Unix shell commands. Portokalidis et al. have briefly mentioned this
idea in [15] among other possible applications of instruction set diversification.
However, they do not go into much detail or provide any implementation for a
diversified command shell. Our work can be seen as a continuation of this work,
taking a more detailed and concrete approach on this issue. Our approach also
significantly improves the security of their previous idea.

We present a proof-of-concept implementation of a diversified command shell,
Bash, in order to demonstrate the feasibility of our approach in practice. We also
show how our solution prevents code injection attacks, using different popular
cases of Shellshock attack as examples. Additionally, we provide a brief study on
the extent of changes required to make all the script files in two real life Linux
distributions use the new diversified shell commands.

The rest of the paper is structured as follows. Section 2 describes the attack
scenario. As an example, we describe Shellshock, an attack exploiting vulnera-
bilities in the Bash command shell and explain how our approach prevents this
threat. In Section 3, we present our solution first as a general conceptual model
and then as a practical implementation. Section 4 discusses the feasibility of
shell diversification and presents some results on the number of the script files in
two popular Linux distributions. The limitations of shell diversification are also
covered. Section 5 contains the related work and Section 6 concludes the paper.

2 Attack scenario

Our solution aims to prevent the attacks where the attackers succeed to run
malicious shell scripts or shell code fragments in the system. Code injection
attacks are one typical way for adversaries to achieve this. Code injection usually

SPLST'15

207

happens against interfaces where the target system requests data from the user.
If the system doesn’t properly handle this data, it may become susceptible to
code injection attack. Malicious user has an opportunity to offer the system data
containing code instructions that could get executed.

For example, in C programming language, the function int system(const

char *command) from stdlib.h runs the given command string as a shell com-
mand:

char command[100] = "ls -l ";

char *user_input;

/* ask a file name from the user here and put it in user_input */

strcat(command, user_input); /* add a file name to the input */

system(command); /* execute as a shell command*/

Now, if the user would give the string "; cat /etc/passwd" as an input,
contents of the password file would be printed.

As another example of a possible attack scenario, we discuss Shellshock [5], a
family of security bugs found in the widely used Unix Bash shell, first discovered
on 24 September 2014. While the vulnerabilities making this attack possible have
been patched, similar attacks are possible in future. Shellshock would have easily
been defeated by our approach. Bugs like Shellshock are very critical, because
many services on Internet, like several web servers, use Bash to process certain
requests.

The Shellshock attacks made use of vulnerabilities in Bash, a program that
several Unix-based operating systems utilize to run command scripts. Bash is
often installed as the operating system’s standard command-line interface.

In Unix-based systems, every running program possesses a list of environment
variables, which are basically name-value pairs. When a running program invokes
another program, it gives an initial environment variable list to this new process.
In addition, Bash also internally stores a list of functions that can be run from
within the program. When Bash invokes itself as a child process, the original
instance can pass the environment variables and function definitions on to the
new subshell. More specifically, the function definitions reside in the environment
variable list as encoded variables, the values of which start with parentheses
followed up by a function definition. When the subshell starts, it changes these
values back into internal functions. The piece of code in the value is executed
and a function is created dynamically on the fly.

The problem is that the Bash version vulnerable to the attack does not
perform any check to make sure that the code fragment is a valid function
definition. Attacker therefore has a chance to run Bash with a freely chosen
value in its environment variable list. This means the adversary can execute any
commands of his or her choice. Naturally, this arbitrary code execution would not

SPLST'15

208

be possible in the situation where the interpreter only accepts scripts conforming
to the diversified script language.

As an example, Shellshock can be used to take control of a server. The fol-
lowing remote control attack attempts to use two programs – wget and curl –
to connect to the attacker’s server and download a program that the attacker
can then use to control the targeted server [5]:

() { :;}; /bin/bash -c \"cd /tmp;wget http://213.x.x.x/ji;curl -O

/tmp/ji http://213.x.x.x/ji ; perl /tmp/ji;rm -rf /tmp/ji\"

The downloaded Perl program is run immediately and remote access for the
attacker is established.

Attacks like Shellshock can potentially compromise millions of servers and
other systems. However, if our implementation is in place, a successful attack re-
quires knowing the diversified shell commands, that is, the secret used to diversify
the original commands. Without this knowledge, many security vulnerabilities
become useless. It follows that our solution is also proactive in the sense that
it does not depend on the exact attack vector as long as the adversary tries to
use a shell language to perform the attack. In what follows, we will provide a
detailed description of our scheme.

3 Our solution

3.1 The conceptual diversification scheme

In our conceptual diversification scheme, a diversifier tool is used to produce
uniquely diversified script files. These scripts can then be run only by an in-
terpreter that supports diversified scripts. The interpreter executes the script
by making use of the secret that has been used to diversify the script file. As
the malicious adversaries do not possess the diversification secret, they cannot
diversify their malicious code fragments correctly and their attacks are thwarted.

Our diversification scheme is shown in Figure 1. Each diversified script has
its own secret that is used to generate the diversified script file with a diversifier
tool and execute it with a diversified interpreter. The tokens in the scripts are
diversified by combining the semantic value (that is, the string presentation) of
the original token and a unique tag. In this context, ”token” means a collection
of characters that is assigned a token identifier by the interpreter’s lexer. The
tag is calculated using the secret and the semantic value of the token under
diversification (see the circles in Figure 1). Simple concatenation can be used
but it is also possible to use some cryptographic function to combine these parts.
For example, our implementation appends a hash value to the original token.

Our method only diversifies the tokens that occur in the script, so the ad-
versary has no way of knowing the diversified forms of other tokens even if he
or she somehow get access to the script’s source code. It is worth noting that
each token receives its own unique diversification. In this sense, we improve the

SPLST'15

209

Fig. 1. Our conceptual diversification scheme.

solution suggested by Portokalidis et al. [15] where each token in a script file is
diversified by appending the same secret tag to each token in a script file. Our
scheme makes the diversification more secure by making the diversification of
different tokens independent of each other. Taking this approach a step further,
we can also vary the diversification of a token depending on the context it ap-
pears in. For example, the diversified form of a token can depend on preceding
tokens or the location of the token in the script file. This makes it even harder
for an attacker to guess the diversified forms of the tokens and inject anything
into the script.

3.2 The practical implementation

Our proof-of-concept implementation of the diversified Bash shell was imple-
mented by extending and modifying GNU Bash version 4.3.39. The implemen-
tation is written in C. The implementation and testing was performed using
Ubuntu GNU/Linux 3.16.0-45-generic on 32-bit architecture. Our implementa-
tion itself is provided as an additional tool library, keeping direct modifications
to the actual Bash interpreter minimal.

In [15], Portokalidis et al. implemented a proof-of-concept version of a Perl
interpreter that executed Perl scripts with randomized instruction sets. The
interpreter’s lexical analyzer was modified to append a 9-number tag to each
token recognized by the lexical analyzer. Our approach for diversifying Bash
follows a similar design: we append a diversifying tag after each recognizable
token’s semantic value.

In Bash, these tokens can be keywords like while, for, if or more complex
constructs like assignments such as k=1. As mentioned previously, the diversi-
fying tag depends on the semantic value of these tokens. In Bash, the semantic
value of the token if is ”if” but for example k=1 is understood as token of the

SPLST'15

210

type ASSIGNMENT WORD, k=1 being its semantic value. Hence, the string k=1 re-
ceives a different diversifying tag from k=2 despite both being of the same token
type.

The diversification process is shown in Figure 2. The diversification library
provides an interface that the Bash interpreter uses during the tokenizing and
execution phases. Each hash value is separated from a token with a distinct
string of characters. This separator string is used to strip hashes from the input
stream before it is passed to the lexical analyzer. For example, with the separator
and a hash value, the echo command could become

echo~~~B2D21E771D9F86865C5EFF193663574DD1796C8F

After the lexical analyzer has determined which token it is currently handling,
a hash is calculated for that token and compared with the collected hash. If the
hashes match, execution is allowed. Otherwise, the diversified token is considered
erroneous and execution of the script is halted.

The current implementation uses two different separators for the hashes. The
first separator is meant for language specific reserved words and other tokens.
The second separator informs the diversification library that the word before
the separator should be a command word, that is, built-in utility function, a
function call, or a program or script in the PATH variable. Before the command
gets executed, it is parsed for a hash and it is compared to a hash calculated
from the command word. As with other tokens, if the comparison is successful,
execution is allowed, otherwise the script execution is halted.

In our proof-of-concept implementation of our diversified Bash interpreter,
the hashes are generated using SHA-1. The hash is calculated by concatenat-
ing the original token and a token-specific secret. In [15] Portokalidis et al. in-
cluded the secret in the beginning of the diversified script file or provided it as
a command line argument to the interpreter. The secret was omitted from the
executable script before parsing. Our solution currently uses the same approach
but different methods of storing and handling the secret are quite easy to add.

As an example of script diversification, consider the following script that
calculates a few first digits of the Fibonacci sequence:

Num=5

f1=1

f2=1

echo "The Fibonacci sequence for the number $Num is : "

for ((i=0;i<=Num;i++))

do

/bin/echo -n "$f1 "

fn=$((f1+f2))

f1=$f2

f2=$fn

done

SPLST'15

211

Fig. 2. The diversification process.

SPLST'15

212

The diversified version of the script would look like the following:

Num=5^^^9D4D7FB947AFB1BA187FAEFB20533E918EE04212

f1=1^^^D0EE7568D8FE56441EA4BA60CEB119526C12CA06

f2=1^^^BB8630463671DBC49124A08566D6211B5BB90A6B

echo~~~B2D21E771D9F86865C5EFF193663574DD1796C8F

"The Fibonacci sequence for the number $Num is : "

for^^^D9000A6E1DBA2A95B2DDB13E74B220354B5B63AC

((i=0;i<=Num;i++))^^^A04BDD7E8B4AB852FDC07FAF54E0107B12913976

do^^^23CF80A1D6201DAEA7112F6EA161DBA32A055BD2

/bin/echo~~~BCD981E6B112655886C12639214C366EF6961F03 -n "$f1 "

fn=$((f1+f2))^^^A52A61459E705054790329809CA21970B2999E77

f1=$f2^^^451DBA3B0289063BCA2F6B7319D9F37F944C1BA6

f2=$fn^^^7ECA3DF4236A6E384DE9ABABD46C4D53BEA2528A

done^^^14D13C75E6A9348DDD5561AD7F1155609175F38A

The hashes in this example, generated using SHA-1 function, are rather long
and result into a considerable increase in source script file sizes. However, the
module responsible for generating and validating the hashes can be easily ex-
tended to facilitate alternative methods of hash generation. For the sake of clar-
ity, the hashes are encoded in hexadecimals in the previous example script. The
test run performed on this diversified script and other similar examples executed
without errors.

The purpose of our diversification library is to provide integrable diversifica-
tion functionality with minimal changes required to the original interpreter. This
would enable a multitude of Bash-like and other interpretable languages to be
diversified relatively easily and lessen the burden of maintaining vastly different
versions of diversifying script interpreters.

Integrating the diversification library into the existing Bash interpreter re-
quired fairly minimal changes to the Bash source code. Most changes were re-
quired in parse.y, the input file for the Bison parser generator. As mentioned
before, the diversification module operates between Bash’s I/O handlers and lexi-
cal analyzer. As Bash analyses the source code, the diversification module collects
recognizable hashes for future comparison. When Bash’s lexical analyzer iden-
tifies a token, diversification module catches these tokens and calculates hashes
for them and compares them with the previously collected hashes. To make sure
that code does not get executed before the tokens have been verified, the file
execute cmd.c was modified to ask permission from the diversification module
to execute the parsed code.

SPLST'15

213

3.3 Further notes on our approach

A big benefit of our approach is that it does not change the software development
process. The programmer can write scripts as usual and the diversification of the
script is performed by an automatic tool after the code has been written. The
user experience is also not affected because the semantics of the scripts remain
the same.

Diversification resembles encryption, and one might wonder why we do not
encrypt the script files wholly in our scheme. There is a clear benefit in di-
versifying script languages instead of simply encrypting those script files. When
executing an encrypted script, the file first needs to be decrypted. Once this step
has been completed, the file is fed to the interpreter. Were an attacker to utilize
an attack vector that would bypass the decryption phase entirely, such as a code
injection attack, the system would remain vulnerable. In a code injection attack,
the malicious code is placed inside the running program or script. This would
circumvent the encryption-decryption process. Diversification prevents this sce-
nario by renaming the language interface. Even if malicious code is injected in
the running software, it will no longer match the language of the interpreter.

Moreover, unlike with completely encrypted code, with diversified code it
is possible to use a renaming scheme in which the original command names are
part of the diversified names. This way the code remains easily readable and also
maintainable to some extent. The script could also be only partially diversified
so that some parts of the code remain open to manual or automatic changes. In
any case, it is worth noting that diversification and encryption can be used as
separate layers of protection.

Security of our approach could also be futher improved with several methods.
For example, the original language interface of the Bash command shell could be
left in the system as a honeypot that catches malicious programs trying to use
it. This is possible because no trusted program should use this original interface
anymore. Other way to increase the resilience of our scheme is to make the
diversification change dynamically over time. This way, the adversary will have
much less time to figure out the diversification that keeps varying.

We also performed preliminary performance tests on our diversified inter-
preter. The test file consists of 5000 lines of randomized assignment operations.
This file was then diversified in order to run experiments with our implementa-
tion. While the code example itself is näıve, it requires the diversified interpreter
to undiversify each command. This represents the worst case performance sce-
nario for our implementation. Many more complex command structures, such as
loops, could be undiversified just once, even though their code is executed several
times. The Both files were executed 100 times for both original and diversified
Bash interpreter. The times were measured using Bash’s built-in time-command.
The standard Bash interpreter performed each execution at an average of 0.0164
seconds, while the diversified Bash performed at 0.0443 seconds. Hence, our di-
versified interpreter takes around 2.7 times longer to execute. Because we have
not yet fully optimized our diversified interpreter and because the experiment

SPLST'15

214

was run using the worst case scenario, we do not consider this a large perfor-
mance penalty.

4 Feasibility of shell diversification

In this section, we present a study of presence of script files in two Linux distri-
butions and discuss some limitations of our diversification scheme.

4.1 A study of presence of script files in two Linux distributions

Our data was collected on Fedora 22 Server distribution and an older, mini-
mal Gentoo distribution. More specifically, on Fedora, the command uname -a

yields Linux 4.0.4-301.fc22.x86 64 #1 SMP Thu May 13:10:33 UTC 2015 x86 64
GNU/Linux. Respectively, Gentoo’s uname -a is Linux Gentoo 3.14.4 #1 Tue
May 20 11:04:51 EEST 2014 x86 64 GNU/Linux. During Fedora’s installation
process a few extra selections were made. The installation type Web Server was
chosen and add-ons Tomcat, PHP and MariaDB were added to the installation
to provide a touch of real-life server environment.

The process of cataloguing script files was performed using simple tools pro-
vided with the installation. First, qualifying files were aggregated using the find
command and then filtered using a simple grep command. All commands were
run with root privileges and only script files with execute permissions were
searched for. A guard file was created in order to avoid files that are being
actively updated. Finally, the sed command was used to remove a few pure
binary files from the results:

touch guard

find / -type f -perm /a+x ! -newer guard > files

xargs grep ’^#![/a-z]*/bin/[a-z0-9]*’

< files > grepmatches 2> /dev/null

sed -i ’/Binary/d’ grepmatches

The results of this process were processed with a simple Python script. Inter-
preter paths of the form #!/usr/bin/env X were shortened to either #!/usr/bin/X
or #!/bin/X where appropriate. The first column of Tables 1 and 2 shows the
interpreter referenced by the script on the shebang (#!) line and the second
column has the number of such references. Due to the grepping procedure, some
files were listed twice. Those files were eliminated in post-processing.

In addition to executable scripts, we also aggregated non-executable library
scripts by first listing all files in the system using

find / -type f

These files were then filtered using the command

grep grep ’\.py[co]*$\|\.sh$\|\.p[lm]$’ files > libraryfiles

SPLST'15

215

The filtering process relies upon file extensions used by library developers. In
Unix-based systems there is no guarantee that file names contain a file extension.
However, most well maintained libraries adhere to the convention of using file
extensions and thus the numbers give an accurate enough estimation on the
quantity of scripts in a fresh system installation.

The data we collected on executable and non-executable scripts were com-
bined using a simple Python script. This script ensured that every file would
be calculated only once (having a file extension and a shebang would qualify
the file for both executable and non-excutable categories). Some libraries have
multiple versions of the same file, for example, python library might include
script file.py, script file.pyo and script file.pyc where the first file is
the source file and the two latter files are byte-code files. In this case script file

would only be added to the sum once.
The script files – both executable and non-executable – found in Fedora and

Gentoo are shown in Table 1 and Table 2, respectively. Comparing these two
tables, we see Fedora has 2319 script files more, but it is also a bit more service-
oriented distribution. The biggest difference seems to be in the number of library
scripts, Gentoo has more Perl, Python and shell libraries than Fedora. Other
than that, the number of scripts is quite similar. The installations themselves
are also fairly similar in size (about 80 MiB).

What can be deduced from this data, then? There are quite many script
files in both distributions we studied. Still, diversifying them all would not be a
huge work for an automated diversifier. It is also worth noting that most of the
scripts are Bash or sh scripts that can be handled (sh is a subset of Bash and
diversified sh scripts can therefore be run using our implementation). Perl and
Python scripts also seem to make up a significant proportion of all the scripts
in the system, so covering the interpreters of these script languages would be
important for a comprehensive script diversification system. Also, some of the
scripts can be rewritten to use a different interpreter to achieve a completely
diversified solution.

4.2 Limitations of shell diversification

Although our diversification scheme provides many advantages from the security
point of view, it also has some limitations and drawbacks. Obviously, diversifying
all scripts in the system introduces a problem for users who want to use the
command shell manually. After all, it would be too laborious for the users to
write diversified keywords and scripts. We could provide users with a separate
terminal for inputting shell commands, but this solution can be a security risk
as the malware may find a way to use this interface as well. On the other hand,
many normal users are not able or do not need to use the command shell. In
some remote systems, the need for an interactive local shell could be replaced
by remote administration tools.

Another challenge is the problem of diversifying all the scripts and programs
that may dynamically create new scripts at runtime. Still, an automatic diver-
sifier program that programmers can use when adding scripts to their programs

SPLST'15

216

Table 1. Script files found in Fedora.

Interpreter path Number of files

#!/bin/bash 154

#!/bin/sh 349

#!/usr/bin/bash 3

#!/usr/bin/lua 1

#!/usr/bin/perl 50

#!/usr/bin/python 75

#!/usr/bin/python2 2

#!/usr/bin/python2.7 1

#!/usr/bin/python3 10

#!/usr/bin/python3.4 2

perl libraries 1085

python libraries 3705

shell libraries 31

Total 5469

Table 2. Script files found in Gentoo.

Interpreter path Number of files

#!/bin/bash 149

#!/bin/csh 1

#!/bin/sh 237

#!/usr/bin/awk 3

#!/usr/bin/jimsh 1

#!/usr/bin/lua 1

#!/usr/bin/perl 107

#!/usr/bin/perl5.16.3 1

#!/usr/bin/python 40

#!/usr/bin/python2 2

#!/usr/bin/python2.7 15

#!/usr/bin/python3 6

#!/usr/bin/python3.3 13

#!/usr/bin/bash 3

perl libraries 1972

python libraries 4991

shell libraries 251

Total 7788

SPLST'15

217

can be created for this purpose. This way, the programmer does not have to man-
ually diversify any scripts that might be included in his or her program code.
Also, minimal systems – for instance the operating systems for IoT devices –
contain much smaller amounts of script files and scripts included in program
code and are thus easier to handle with regard to our approach.

Installing new programs and scripts into the system can also introduce some
problems. In order to work correctly, new programs and scripts also need to
be diversified using a diversificator tool. In some systems – such as small-scale
systems on IoT devices – the issue could be mitigated by preferring image based
full-system updates over in-place updates of system files run by scripts. There-
fore, at least for minimal and restricted IoT environments, our solution can be
expected to work well. In the IoT context, the size of the full system may only
be a few megabytes, which makes it quite easy to apply the diversification and
fix possible issues.

In instruction set diversification schemes in general, storing the secret diver-
sification key or keys securely is also an issue. In our scheme, however, we assume
the attacker does not have an access to the file system of the computer he or
she is targeting; this is the case in Shellshock and similar attacks in which the
adversary is trying to gain an access to the system. Therefore, for the purposes
of this attack scenario the file system can be seen as a safe place to store the
secret key. Of course, some stronger cryptographical storing schemes could also
be considered.

5 Related work

Instruction set randomization has been applied to several different software lay-
ers and many different application areas. Portokalidis et. al present the model
closest to our work in [15]. The authors apply instruction set randomization to
a Perl interpreter, enabling execution of diversified scripts. Perl code injected
by an adversary will fail to run because it is not correctly diversified and is not
recognized by the system. They also briefly mention the idea of diversifying shell
scripts but do not provide any details or implementation. In this sense, our work
can be seen as continuation for their paper.

Boyd and Keromytis have studied the SQL language [4]. Their intermediate
proxy, SQLrand, translates the diversified queries into the original SQL language
and passes them on to the database. We present an improved scheme and imple-
mentation for SQL randomization in [19]. Many papers [3, 15] and books [9, 10]
also study the idea of system-wide, global instruction set diversification. Building
diverse operating systems and software systems in general has been suggested by
Cohen already in the nineties [6]. Forrest [8] also discusses diversified software
systems as a security measure.

Barrantes et al. have studied instruction set randomization on binary level
to defend against code injection attacks [1, 2]. There has also been some interest
in randomizing the system call numbers to render malicious code useless: Jiang
et al. [12] and Liang et al. [14] have studied this issue. We have also presented

SPLST'15

218

a tool for system call randomization [16]. Using similar ideas, randomization of
memory addresses has been used to prevent memory exploits [7]. The common
factor for all of these approaches is that the basic idea is to change the language
of the system in order to prevent malicious programs from using some kind of
interface that provides access to a resource.

Identifier obfuscation scrambles identifier names on source code level. This
is conceptually somewhat similar to our diversification scheme and has been
discussed in many papers. For example, there are diversifying tools for Java [20]
and JavaScript [11]. We have studied this topic and built a tool that scrambles
identifiers and function signatures in web applications written in JavaScript and
HTML [17, 18].

6 Conclusions

We presented an instruction set randomization based scheme for preventing code
injection attacks in Linux shells. By diversifying the tokens of the Bash scripts
uniquely, we prevent the attacker from possessing the knowledge about the cor-
rect script language beforehand. We have also discussed the practical imple-
mentation for our scheme and explained the effectiveness of our scheme against
Linux shell code injection attacks such as Shellshock. We also discussed how our
solution improves security over a previous diversification approach.

A study of the presence of script files in two popular Linux distributions was
also presented. Based on this, it seems that Perl and Python interpreters should
also be covered in a practical and comprehensive script diversification scheme.
Therefore, possible future work includes developing our diversificator library to
more general direction in order to handle other script languages like Perl and
Python.

One limitation of our approach is that all scripts in a system need to be
diversified. However, this is quite possible at least in many restricted server
environments and small IoT environments with a limited number of scripts and
infrequent updates. Also, the diversification could be performed automatically
for the most part.

References

1. E.G. Barrantes, D.H. Ackley, S. Forrest, and D. Stefanovic. Randomized Instruc-
tion Set Emulation. ACM Trans. Inf. Syst. Secur., 8(1):3–40, 2005.

2. E.G. Barrantes, D.H. Ackley, T.S. Palmer, D. Stefanovic, and D.D. Zovi. Ran-
domized Instruction Set Emulation to Disrupt Binary Code Injection Attacks. In
Proceedings of the 10th ACM Conference on Computer and Communications Se-
curity, CCS ’03, pages 281–289, 2003.

3. S.W. Boyd, G.S. Kc, M.E. Locasto, and A.D. Keromytis. On the General Appli-
cability of Instruction-Set Randomization. IEEE Transactions on Dependable and
Secure Computing, 7(3), 2008.

SPLST'15

219

4. S.W. Boyd and A.D. Keromytis. SQLrand: Preventing SQL Injection Attacks. In
Applied Cryptography and Network Security, Lecture Notes in Computer Science
Volume 3089, pages 292–302, 2004.

5. CloudFlare. Inside Shellshock: How hackers are using it to exploit systems. Avail-
able at: https://blog.cloudflare.com/inside-shellshock/, 2014.

6. F.B. Cohen. Operating System Protection through Program Evolution. Comput.
Secur., 12(6):565–584, 1993.

7. D.C. DuVarney, V.N. Venkatakrishnan, and S. Bhatkar. SELF: A Transparent
Security Extension for ELF Binaries. In Proceedings of New Security Paradigms
Workshop, 2003.

8. S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI),
HOTOS ’97, 1997.

9. S. Jajodia, A.K. Ghosh, V.S. Subrahmanian, V. Swarup, C. Wang, and X.S. Wang.
Moving Target Defense II, Advances in Information Security 100. Springer, 2013.

10. S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and X.S. Wang. Moving Target
Defense, Creating Asymmetric Uncertainty for Cyber Threats, Advances in Infor-
mation Security 54. Springer, 2011.

11. Q. Jiancheng, B. Zhongying, and B. Yuan. Polymorphic Algorithm of JavaScript
Code Protection. In Proceedings of International Symposium on Computer Science
and Computational Technology, ISCSCT ’08, pages 451–454, 2008.

12. X. Jiang, H.J. Wang, D. Xu, and Y-M. Wang. RandSys: Thwarting Code Injection
Attacks with System Service Interface Randomization. In IEEE International
Symposium on Reliable Distributed Systems, SRDS 2007, pages 209–218, 2007.

13. G.S. Kc, A.D. Keromytis, and V. Prevelakis. Countering Code-injection Attacks
with Instruction-set Randomization. In Proceedings of the 10th ACM Conference
on Computer and Communications Security, CCS ’03, pages 272–280, 2003.

14. Z. Liang, B. Liang, and L. Li. A System Call Randomization Based Method for
Countering Code Injection Attacks. In International Conference on Networks Se-
curity, Wireless Communications and Trusted Computing, NSWCTC 2009, pages
584–587, 2009.

15. G. Portokalidis and A.D. Keromytis. Global ISR: Toward a Comprehensive De-
fense Against Unauthorized Code Execution. In Moving Target Defense, Creating
Asymmetric Uncertainty for Cyber Threats, Advances in Information Security 54,
2014.

16. S. Rauti, S. Laurén, S. Hosseinzadeh, J. Mäkelä, S. Hyrynsalmi, and V. Leppänen.
Diversification of System Calls in Linux Binaries. In To be published in proceedings
of the 6th International Conference on Trustworthy Systems (InTrust 2014), 2014.

17. S. Rauti and V. Leppänen. A Proxy-Like Obfuscator for Web Application Protec-
tion. International Journal on Information Technologies & Security, 5(1), 2014.

18. S. Rauti and V. Leppänen. Man-in-the-Browser Attacks in Modern Web Browsers.
In Emerging Trends in ICT Security, 2014.

19. S. Rauti, J. Teuhola, and V. Leppänen. Diversifying SQL to Prevent Injection
Attacks. To be published in proceedings of International Conference on Trust,
Security and Privacy in Computing and Communications, 2015.

20. T. Zhangyong, C. Xiaojiang, F. Dingyi, and C. Feng. Research on Java Software
Protection with the Obfuscation in Identifier Renaming. In Fourth International
Conference on Innovative Computing, Information and Control (ICICIC), pages
1067–1071, 2009.

SPLST'15

220

	splst15_proceedings_paperit_headerilla
	9999990206

