
Phishing Knowledge based User Modelling in Software

Design

Linfeng Li1, Timo Nummenmaa2, Eleni Berki2, Marko Helenius3

1 Beijing Institute of Petrochemical Technology, Beijing, China, 48222692@qq.com
2University of Tampere, Tampere, Finland, {firstname.lastname}@uta.fi

3 Tampere University of Technology, Tampere, Finland, marko.t.helenius@tut.fi

Abstract. Due to the limitations of anti-phishing software and limitations in

creating such software, we propose the usage of metamodelling frameworks and

software tools for implementing software systems where phishing prevention is

already designed as a part of the system itself. An expressive computational,

verifiable and validatable metamodel is created that captures user behaviour.

Next it is shown through examples that the metamodel follows and describes

reported phishing scams accurately. The model is then used to create specifica-

tion in an executable formal specification tool. The formal specification, which

can be executed to observe user behaviour, can be used as a building block in

the specification of a larger software system, resulting in an inherently phish-

ing-resilient software system design in the form of a formal specification.

Keywords: Phishing, Metamodelling, Formal Methods, Software Design

1 Introduction

Though a variety of anti-phishing technologies have been used against online identity
theft (commonly known as phishing), phishers (online identity thieves) had never
been discouraged. On the contrary, the phishing attacks become more advanced and
more sophisticating [1], utilizing knowledge and expertise from socio-technical and
cognitive domains. Technical anti-phishing solutions e.g. static phishing preventions,
based on a pre-defined white list or black list [1,2,3] and dynamic anti-phishing appli-

SPLST'15

221

mailto:48222692@qq.com
mailto:%7bfirstname.lastname%7d@uta.fi
mailto:marko.t.helenius@tut.fi

cations follow reactive or preventive maintenance principles [4,5,6] that are not ade-
quate for users’ protection. These prevention methods are not adaptable enough to
meet users’ personal anti-phishing/spam demands and software designers’ require-
ments [1]. To discover the user requirements for anti-phishing software, many user-
centered research studies have been carried out, by Zhang et al. [7], Wu et al.[8], Jak-
obsson and Ratkiewicz [9], Li [1] and other, considering usability and security to-
gether. These studies did not, however, result in a reliable, abstract and general mod-
el, practical for the designers of anti-phishing software. In this paper, we approach the
problem by not creating anti-phishing software, but by creating a metamodel of phish-
ing. This metamodel can help to design software systems using a formal specification
system. In so doing, phishing avoidance is already considered in the design of the
software. Thus our research question is: How could user behavior in phishing context
be computationally metamodelled so that the resulted metamodel can be used as a
basis for a formal design model of a software system?

Traditional metamodelling frameworks and tools [10,11] cannot be useful here, be-
cause the nature of this research requires to model and simplify the various users’
requirements and SW needs, instead of constructing metamodels based on the collect-
ed requirements. Hence, in this research work, the authors apply an enriched version
of the finite state machine (FSM) model, which is a straightforward and exact compu-
tational modelling methodology to describe system processes. The rest of the paper is
organized as follows: Related research approaches and studies in anti-phishing and
phishing modelling are briefly reviewed. Next, two real phishing scams are presented.
An FSM model of user behavior is presented and exemplified through the real phish-
ing cases. The FSM model is then used as the basis for the model of the user in a
specification created in the DisCo [12] formal specification language, showing how
the FSM can be utilized in software system design. Concluding, the authors summa-
rise the strengths and future potential of this computational metamodelling of user
behaviour from the software quality point of view.

2 Research Rationale and Related Work

There are no formal models or metamodels for understanding phishing activities
and phishers’ and corresponding victims’ behaviours online; such model’s construc-
tion is not a simple task. From the software quality point of view, such a model
should be adequately expressive and rich in modeling human activity in detail on the

SPLST'15

222

one hand and sufficiently generic and abstract on the other hand. The latter are needed
in order to communicate and test specialization and/or generalization details when
needed by and for the various interested groups in the software design of anti-
phishing technologies. Moreover, the correctness and consistency of the phishing
actions will certainly influence the quality of the resulted anti-phishing prevention
software. In any case, the phishing situations are hard for software designers to mod-
el, understand and grasp in details unless a modeling solution fits to their cognitive
needs. Hence, it is imperative to search for a more abstract, formal point of view and a
higher level of modeling for all software development stakeholder groups and espe-
cially for those of software users and software designers. Our assumption, which we
aim to prove though our ongoing research, is that developers wishing to create phish-
ing-proof software, should employ formal metamodelling techniques to construct
dynamic models (like the dynamic nature of phishing) that assist in design.

The following models and notations employ formality and other quality criteria.
They are related to but also very different approaches from our work.

Chandrasekaran et al. [13] conducted a pilot project to detect phishing emails
based on a set of characteristics of phishing emails. The results showed that the au-
thors’ methodology performed with 95% accuracy rate and low false positive rate
[13]. However, phishing scams launched from other communication channels, e.g.
online social media are still not adequately addressed in the use of this methodology.

Shahriar and Zulkernine [14] introduced a method to model and examine phishing
web pages by using FSM theory. By testing the behaviour of given web pages’ re-
sponse, the method brought to them the way to identify phishing pages. However,
phishers can easily circumvent it by using embedded objects and malformed web
pages, continuing playing games with different roles and versatile game rules.

Akhawe and other [15] presented a formal model of web security based on an ab-
straction of the web platform and used this model to analyze the security of several
sample web mechanisms and applications., Nonetheless, this model is still lacking in
considering human factors. For example, how well users understand web communica-
tions and the risks of misusing phishing preventions are still questionable.

Kumaraguru et al. [16] attempted to model online trust in their research on trust
and security with six components. The aim of the research was to create tools and
training modules to help online users make correct decisions about trust.

Dong et al. [17] elaborated on why users form false perceptions and fail to discover
mismatches between authentic and phishing web services. They mentioned four rea-

SPLST'15

223

sons: insufficient information, misinterpretation, inaccurate/incomplete expectation
and perception ability drop and the users’ carelessness when taking the next planned
action. Despite of adequate modeling of the user-phishing interactions, this modeling
approach is still too general to assist in the design of efficient phishing prevention.

3 Example Reported Phishing Attack and User Behaviors in the
Phishing Attack

Most research projects define phishing attacks as cybercrime. This type of crime aims
at deceiving victims through fraud web pages in order to steal their personal infor-
mation. Jacobs describes phishing as a marriage between technology and social engi-
neering [9]. In his definition, the extent of phishing is (i) widened and (ii) not Inter-
net-restricted. Thus more scenarios could be included, where phishers take advantage
of other means than the Internet, web browsers or emails communication channels,
e.g. surface mail. In order to build a comprehensive and reliable model, the authors
collected phishing reports based on the analysis of abused by phishers communication
channels and tools. Next, we expose two real-life examples from our data collection.

3.1 Reported phishing attack examples

Attack1: Man-in-the-middle attack
In September 2011 two banks in Finland, Osuuspankki and Nordea experienced a

man-in-the-middle attack [18] in which there was no need to install malware to vic-
tims’ computers. In this attack victims received an email that contained a link to a
malicious, but real-looking web site. There was no certificate and the web site address
was false, resembling though the original address. If credentials, including a one-time
password, were given to the fraudulent site the victim was presented with a fake mes-
sage, which instructed to wait for two minutes. During that time the server had time to
use the credentials and login to the real service for preparing the money transfer. Be-
fore this could be accomplished a final one-time verification code was needed. That
was asked after the delay and the money could be, thereafter, directly transferred [19].

Attack2: A sophisticated Trojan horse program
There were three banks in Finland attacked: Nordea, Sampo Bank and OP-Pohjola

in January 2012. Losses were reported at least from OP-Pohjola. In Nordea e-Bank

SPLST'15

224

money transfers were cancelled because verifications were sent to the victims by SMS
about suspicious money transfers [19].

In this case, a sophisticated Trojan horse program (later on called as “Trojan”) was
installed on the users’ computers. The Trojan was created by a Zeus toolkit program
[20]. There are several possibilities on how a user might have gotten the Trojan in-
stalled on his computer:

1. Email that contains the Trojan or link to the Trojan.
2. A malicious or non-malicious source (e.g. web site, memory stick or other media)

from which the user installed the Trojan without knowing its true nature.
3. A malicious or non-malicious source (e.g. web site, memory stick or other media)

that the user used and vulnerability in the user’s computer was used for infection.
4. Other vulnerabilities that left the user’s computer open to Trojan injection.

It should be noticed that possibilities 1, 3 and 4 have two basic possibilities: either a
user does something actively that causes infection or the infection occurs automatical-
ly. However, active doing is more probable in possibilities 1 and 3 than in 4.

After the Trojan is installed it activates when a user logs into her/his e-bank. This
time a user just needs to pay a bill and at that exact moment the Trojan intercepts the
session by changing the bank account and the sum from the transfer. Because a user
gives all the credentials authorizing money transfer, the Trojan hiding in the computer
has access to the credential information and can change the transfer accordingly.
What makes this even more difficult to observe is that the Trojan is able to hijack the
browser session and show incorrect account balance.

The authors dare to ask the question: Are the anti-phishing technologies unreason-
ably ineffective? Why did not we become more secure from all the security technolo-
gies that have been deployed against phishing attacks? The authors are also tempted
to answer that in terms of metacognitive design of secure software, the right computa-
tional metamodels had never been completely realised. As computers and the Internet
pervaded all areas of social life, communication and production, computationally and
cognitively effective metamodels are increasingly required.

4 Computational Modelling of User Behavior

A finite state machine or finite automaton is a formal, computational model to de-
scribe the states in a process and the transition functions among the states. In formal

SPLST'15

225

definition, a FSM consists of 5-tuple elements (Q, Σ, δ, q0, F), which accordingly
represent the state set (Q), transition alphabet of inputs (Σ), transition function (δ), the
start state (q0), and the set of final (accept) states (F) [10, 11, 21].

The Labelled Transition System Analyser (LTSA) [22] is a verification tool for
concurrent systems. It is scriptable and able to generate FSMs based on the scripts. It
is also possible to automatically analyze the model and detect errors and deadlocks. In
this section, we present our LTSA script, and introduce our model complying with the
formal definition of FSM theory.

According to the examples of phishing attacks presented earlier, we have designed
the LTSA script in Table 1. In the FSM notation, the model starts from the composing
initial state, which means end users’ behaviours begin to take place. That is, the user
behaviour is to unfold or process according to the state-transition (processing) func-
tions defined in the FSM when a phishing or non-phishing message is composed.
When a user receives a message, the user starts processing the message, which means
a user needs to either learn from the message or take further actions upon receiving
the message.

Table 1. LTSA script to model user behavior in phishing context

COMPOSING =
(messageReceived->INFORMATION),

INFORMATION =
(messageRead->PROCESSING),

PROCESSING=
 (learnFromMessage ->ACQUIRING

 |takeActionUponMessage -> DECISIONMAKING),
ACQUIRING =

 (understandMessage->COMPOSING
 |misunderstandMessage->COMPOSING),
KNOWLEDGE =

(knowledgeMatchinformation.normalInfo
->BELIEVE
|knowledgeNotmatchinformation.detectedFraud
->NOTBELIEVE
|knowledgeNotmatchinformation.checkingMoreinfo
->INFORMATION

|knowledgeNotmatchinformation.misled
->DECISIONMAKING),

MISKNOWLEDGE =
(misknowledgeMatchinformation.undetectedFraud
->BELIEVE
|misknowledgeNotmatchinformation.obstinacy
->NOTBELIEVE
|misknowledgeNotmatchinformation.
misknowledgeCorrected->DECISIONMAKING),

DECISIONMAKING =
(informedDecision->KNOWLEDGE
|uninformedDecision->MISKNOWLEDGE
|nothingDecided->ACQUIRING),

BELIEVE =
 (decisionMade->COMPOSING),

NOTBELIEVE =
(decisionMade->COMPOSING).

When the user learns from the message, the information in the message could be
correctly understood or misunderstood. Correct understandings result in the user’s
advanced knowledge, while any misunderstandings finally end up with mis-
knowledge in mind. Both knowledge and misknowledge affect the user’s decisions
later on. If, in the message, the user needs to take further actions upon the message,
s/he will make an informed decision, uninformed decision, or nothing will be decided.
As soon as a user makes a final decision on the given message or processes/learns the

SPLST'15

226

information in the received message, the FSM is reset to the initial state to wait for the
next piece of composed message either from innocent senders or phishers.

Informed decision represents that the user applies the knowledge to check against
the information mentioned in the received message. When the user makes an unin-
formed decision, misknowledge is used; and ‘nothing decided’ means there is no
knowledge or misknowledge in the mind to take action upon the information in the
received message. In the nothing-decided case, the user has to look for more related
information from other sources in order to make a proper decision later on.

When knowledge is applied, it does not necessarily mean that the user made a cor-
rect final decision. For example, the phishing information in the received message
could be so persuasive that the user is misled by the phishing content to make another
decision, even though there is an explicit conflict between the user’s knowledge and
the phishing information. At this point, it is highly likely that the user will be misled
and deceived by the phishing information. When the user is determined on the
knowledge, the phishing information can be detected, and no fraud can succeed.

When misknowledge is taken into use, the phishing scam may succeed, especially
when the phishing information in the received message matches the mis-knowledge in
the user’s mind. In the FSM model, this transition is called misknowledgMatchinfor-
mation.undetectedFraud, and this transition goes to the state named BELIEVE; that is
the user believes in the phishing information. When a piece of innocent information
showing in the received message mismatches the user’s mis-knowledge, the user
could either be persistent to stick on the misknowledge or be sensible enough to ac-
tively correct the misknowledge and re-make the decision. The transition alphabet is
listed in the Table 2 and the state-transition functions and inputs among the states are
listed in the Table 3.

Table 2. States of the FSM

States Explanation States Explanation
q0 A message is composed q5 Corresponding uninformed decision is made
q1 A message is received q6 Not believing the given information
q2 Processing information q7 Believing the given information
q3 Making decision q8 Corresponding informed decision is made
q4 Acquiring information

Table 3. The state transition and the inputs of the FSM

States
transitions Input States

transitions Input

->q0 A message is composed q8->q3 knowledgeNotmatchinformation.misled
q0->q1 ReceivedMessage q5->q6 misknowledgeNotmatchinformation.obstinacy
q1->q2 messageRead q5->q7 misknowledgeMatchinformation.undetectedFraud

SPLST'15

227

q2->q3 takeActionUponMessage q6->q0 decisionMade
q2->q4 learnFromMessage q7->q0 decisionMade
q3->q4 nothingDecided q8->q7 knowledgeMatchinformation.normalInfo
q3->q5 uninformedDecision q8->q6 knowledgeNotmatchinformation.detectedFraud
q3->q8 informedDecision q8->q1 knowledgeNotmatchinformation.checkingMoreinfo
q4->q0 understandMessage,

misunderstandMessage
q5->q3 misknowledgeNotmatchinformation

.misknowledgeCorrected

In order to verify the FSM model that we elaborated earlier, we explain the phish-
ing example in the FSM. Taking advantage of the animation feature in LTSA, we
were able to produce a sequence of interactions in each phishing context. Examples of
these traces are presented next.

Attack1: When a victim receives an email containing a link to a malicious, but re-
al-looking web site, and decides to give credentials to the phishing web site (Verifica-
tion 1-1):

messageReceived ->messageRead ->takeActionUponMessage->
uninformedDecision-> misknowledgeMatchinformation.undetectedFraud
->decisionMade
In this case, the misknowledge is that the given link in the email is mis-understood

as an authentic and trustworthy web site. Therefore, the victim decides to hand out the
credentials to the web site.

When a victim receives an email containing a link to a malicious real-looking web
site, the victim may suspect the authenticity of the visited web site (Verification 1-2):

messageReceived -> messageRead ->takeActionUponMessage->informedDecision
->knowledgeNotmatchinformation.checkingMoreinfo
In this case, the victim does not use the same misknowledge as the one above. In-

stead, the victim checks more information to verify the authenticity of the displayed
web page. If verifying the authenticity of the web page, the possible victim’s behavior
could be e.g. acquiring new information from various sources.

Attack 2: The four possibilities of users’ behaviors to get Trojan horse program
installed could be abstracted into two types, installation with users’ awareness and
permission and installation with no users’ awareness. The two types of installation
decisions could be described as below:
1. Installation with users’ awareness and permission (Verification 2-1):

messageReceived -> messageRead -> takeActionUponMessage
->uninformedDecision ->misknowledgeMatchinformation.undetectedFraud
-> decisionMade

2. Installation with no users’ awareness (Verification 2-2):

messageReceived -> messageRead -> takeActionUponMessage

SPLST'15

228

-> nothingDecided -> misunderstandMessage
After the Trojan horse program is installed, the following user behaviors are com-

mitted under the mis-understanding that the communication traffic is secure and no
one else has the access to the credentials or monitor the traffics. In this case, the vic-
tim’s behavior could be explained like this (Verification 2-3):

messageReceived -> messageRead -> takeActionUponMessage
->uninformedDecision ->misknowledgeMatchinformation.undetectedFraud
 ->decisionMade

5 Modeling Software: Usage of the FSM Model

The presented FSM model depicts the behavior of a user in a phishing situation. This
kind of knowledge can be utilized in various ways, as long as it is understood. The
FSM model developed with LTSA is aimed to be easy to understand and use because
of its simplicity, focus on state transitions instead of states and the possibility for ani-
mating those transitions to help in understanding the model.

To demonstrate how the FSM model can be used in software development, the au-
thors created an executable specification of dynamic users in a dynamic environment
in the DisCo language. DisCo is an action based executable formal specification soft-
ware package for modelling reactive and distributed systems [23]. It has been updated
to include support for probabilistic modelling [24,25,26]. Models created with the
system can be instantiated with different system states and can be animated in a
graphical animator. The goal of specifications created with the system is that they can
later be implemented as software systems.

While DisCo is a modelling system itself (as LTSA is), it is also different from
LTSA because DisCo models stay manageable in larger sizes than LTSA models.
DisCo models also facilitate larger system views and not just state transitions. On the
other hand, DisCo does not support similar automatic analysis of models as LTSA
does. Because of the way the LTSA model has been written in the LTSA language,
that is to focus on state transitions and not actual states, the specification can easily be
converted into an action based DisCo specification. In fact, the conversion could
even, at least partially, be done automatically. The converted information can be used
as part of a larger specification.

Models created with DisCo can support multiple independent objects that can all
have states of their own. Thus, it is possible to model larger multi-user phishing at-

SPLST'15

229

tacks and other scenarios that resemble actual real world scenarios. DisCo can be used
to analyze how objects following the state transitions given in an LTSA model act in
those scenarios.

The model depicts a world view where several persons and information sources ex-
ist. Each person acts based on the user behavior model in our FSM, but their decisions
at the points where multiple choices are possible, are influenced by both a knowledge
level variable and a misknowledge variable that are updated when the persons learn
correct or incorrect information. Each information source has a different value for
how influential it is, which results in users earning different knowledge and
misknowledge depending on the information sources they access.

The specification is implemented by specifying classes and actions. The classes of
the specification are presented in Table 4 and the actions are presented in Table 5.
The classes are instantiated to be objects in the specification system. The actions are
largely based on transitions in the LTSA model and are what alters the state of the
system. Each action has a guard that determines whether the action is enabled and can
be executed. The guard is a boolean expression that must evaluate true for the action
to be enabled. Because DisCo is an action-based system, objects take part in actions
but the action chooses its participants through the guard expression.

Table 4. DisCo specification classes

Class Explanation
InformationSource A source of information for a person.
Person A person who can be the target of phishing.

Table 5. DisCo Specification actions

Action Explanation Action Explanation
receiveMessage A source of information for a person. takeAction A person starts to take action.
learn A person starts learning. canNotDecide A person cannot make a decision.

understand A person understands and its
knowledge value is increased. Misunderstand A person understands and its

misknowledge value is increased.
makeUninformed

Decision
A person starts making an uninformed
decision.

makeInformed
Decision

A person starts making an
informed decision.

checkMoreInfo A person starts reading more
information.

Correct-
Misknowledge

A person starts taking action and its
misknowledge is lowered.

mislead A person is misled and starts taking
action.

detectFraudDeci-
sion

A person detects a fraud decision.

normalInfo-
Decision

A person makes a decision. undetect-
edFraudDecision

A person makes a decision but cannot
detect fraud.

obstinacyDecision

Makes a stubborn decision.
updateSkip-
Values

Update values that dictate the proba-
bility of a person understanding,
misunderstanding, and making
informed and uninformed decisions

An example action can be seen in Table 6. The class Person (Table 7) is a repre-
sentation of a person, who can access information that might include phishing mes-

SPLST'15

230

sages. Person has a state variable, which is based on the states in the LTSA model.
The state variable is used to control the state of each individual Person instance. The
person has a variable for mis-knowledge and knowledge, so it is possible to control
how knowledgeable that Person object is. These values are changed through certain
actions such as ‘mis-understand’. Person also has skip variables which enable in-
stances of Person to decline taking part in actions. For example, an instance of Person
may decline to take part in ‘understand’ if that instance’s misknowledge is much
higher than knowledge. The informationSource class (Table 8), is a generic infor-
mation source that a person may access. It only has one variable, informationValue,
which means how influential the specific source of information is.

To test the DisCo model, a creation was instantiated. The creation is a view of the
state of a system in DisCo and is instantiated based on the specified classes. In this
case, two instances of Person were instantiated (Person_1 and Person_2) along with
two instances of informationSource (InformationSource_1 and InformationSource_2).
Person_1 started with knowledge and misknowledge values of 60, while Person_2
started with both values at 30. The informationValue of InformationSource_1 is 20,
while the informationValue of InformationSource_2 is 10.

Table 6. receiveMessage action
action receiveMessage (p : Person; isource: Infor-

mationSource) is
when (p.updateSkips = false and p.personState'idle)
do
 p.personState->reading()||
 p.currentIs:=isource; end;

Table 7. Person class
class Person is personState :
(idle,reading,read,learning,taking_action,indecisive,
making_informed_decision,making_uninformed_decision);
skipPossibilitymisunderstand : integer;
skipPossibilityunderstand : integer;
skipPossibilitymakeUninformedDecision : integer;
skipPossibilitymakeInformedDecision : integer;
skipPossibilitycanNotDecide : integer;
updateSkips : boolean; knowledge : integer;
misknowledge : integer;
currentIs : reference InformationSource; end;

Table 8. InformationSource class
class InformationSource is
informationValue : integer;end;

There were 100 execution steps, resulting in a state where the knowledge of Per-
son_1 was 130 while mis-knowledge was 90. The knowledge of Person_2 was 150
and misknowledge 10. In this execution, Person_2 had become more knowledgeable
and shed off some misknowledge, while Person_1 still had a lot of misknowledge,
even while learning new knowledge.

Table 9 shows a trace of the first 20 actions that were executed. Traces of executed
actions can be used to analyze behavior within a scenario. Table 9 divides each action
into the name of the action and the participant objects that took part in the action to
give a clear picture of what has happened in each step. Among the things we can dis-

SPLST'15

231

cover from this trace, is when a Person is part of an undesirable action and why that
happened.

Table 9. Execution trace of the first 20 actions executed

Step Action Participants Step Action Participants
1 receiveMessage Person_2,

InformationSource_1
11 makeInformedDecision Person_2

2 takeAction Person_2 12 detectFraudDecision Person_2
3 makeUninformedDecision Person_2 13 receiveMessage Person_2,

InformationSource_2
4 undetectedFraudDecision Person_2 14 takeAction Person_2
5 receiveMessage Person_1,

InformationSource_2
15 makeUninformedDecision Person_2

6 takeAction Person_1 16 receiveMessage Person_1,
InformationSource_1

7 makeUninformedDecision Person_1 17 obstinacyDecision Person_2
8 receiveMessage Person_2,

InformationSource_2
18 receiveMessage Person_2,

InformationSource_1
9 undetectedFraudDecision Person_1 19 takeAction Person_1
10 takeAction Person_2 20 takeAction Person_2

We can see that in step 4, Person_2 was a participant in the undetectedFraudDeci-
sion action which is considered the worst case scenario in which a phishing attempt is
successful. Person_2 became a part of that action by first receiving a message from
InformationSource_1, then by taking action and making an uninformed decision.
Person_1 also takes part in the undetectedFraudDecision action in step 9.

As DisCo is built to support incremental development of specifications through a
layer system, the presented model can easily be used as a building block of a software
system. A specification created in this way would enable the designer to verify that
the software design takes into account how a user behaves in phishing situations.
Also, as a DisCo specification can include outside influences, phishers could be mod-
eled separately as classes in a specification to gain a better understanding of possible
phishing situations regarding the system in design.

6 Conclusions and Future Research

In contrast to specific reactive anti-phishing solutions, the method proposed in this
paper focuses on the analysis and modelling of user behaviour to facilitate the proac-
tive design of phishing-resistant systems. First, user behaviour in a phishing context is
modelled with FSM notation. The FSM-based model provides a general and abstract
view to describe user behavioural patterns in phishing context. This model can be a
helpful guide to evaluate the design quality of anti-phishing and phishing-resistant
systems at early design stages. The model can be verified, both with automatic meth-

SPLST'15

232

ods, and through real cases testing with it. The FSM model can be used as a basis for
a specification of a full software system using a tool such as DisCo. That model can
take into account important security aspects found in the abstract FSM model. Our
method is a series of transitions, first transitioning from the FSM model, to a DisCo
implementation, then to a more refined DisCo implementation of a software system
through a layer system, and finally to a software implementation. The refined DisCo
implementation and software implementation are left as future research.

Rich and multipurposed, testable, computational and easily implementable meta-
models that are expressible and extendable (yet, by no means complete) can assist: i)
software designers and developers to realize the dynamic design of security auditing
systems by considering a great amount of static and dynamic situations; ii) towards an
improved understanding and empowerment with knowledge of the digitally compe-
tent person to protect his/her own personal data and take appropriate security deci-
sions; iii) software sponsors to decide on cost-effectiveness by checking and testing
for security in early design steps. This research concentrates on improving security
through preventive, and not corrective or adaptive, systems maintenance. For this
reason cost-effectiveness is a quality property that can also be achieved with our sug-
gested phishing prevention solutions.

Although the advantages of this metacognitive and computational FSM-based
metamodel demonstrate that the model is an efficient analytical tool with great design
and implementation potential, it still requires certain efforts on metamodelling. Argu-
ably, limitations may hinder the usage of the enriched FSM metamodel, but this ne-
cessitates the investment of efforts and resources on model-driven testing and corre-
sponding automated tools at the early stages of the anti-phishing software lifecycle.

Naturally, general considerations that will be tackled in future research are: i) the
scalability of the approach, since phishing typically affects large groups of people.
DisCo simulations can simulate groups of people, but it really should not be important
to model a million individuals in an abstract simulation; the focus is elsewhere. ii)
The FSM described in the paper consists of very general transitions. Nonetheless the
knowledge we hope to obtain from analysing its usage is that we can see that the tran-
sitions conform to the reality and then we can integrate those transitions to a realistic
SW design. We can, then, analyse that design which includes the transitions. iii) In
the case of phishing, and due to its dynamic (not static) nature, unavoidably people
become more or less informed over time; there should always be ways to distinguish

SPLST'15

233

and model between the user making an informed or an uninformed decision. Howev-
er, this is, by and large, a socio-cognitive issue.

References

1. Li, L.: A Contingency Framework to Assure the User-Centered Quality and to
Support the Design of Anti-Phishing Software, PhD. Dissertation, University of
Tampere (2013).

2. SpamAssassin: The Apache SpamAssassin Project,
http://spamassassin.apache.org/, retrieved on 12th Aug. 2015.

3. Sun, B., Wen, Q., Liang, X.: A DNS Based Anti-phishing Approach. In: 2010 Sec-
ond International Conference on Networks Security Wireless Communications and
Trusted Computing (NSWCTC), pp. 262-265 (2010).

4. Atighetchi, M., Pal, P.: Attribute-Based Prevention of Phishing Attacks. In: Eighth
IEEE International Symposium on Network Computing and Applications, pp. 266-
269 (2009).

5. GMAIL: How is spam handled,
http://support.google.com/mail/bin/answer.py?hl=en&answer=78759, retrieved on
11th Dec., 2014

6. SpamAssassin: DNS Blocklists,
http://wiki.apache.org/spamassassin/DnsBlocklists, retrieved on 2nd May 2015.

7. Zhang, Y., Egelman, S., Cranor, L., Hong, J.: Phinding Phish: Evaluating Anti-
Phishing Tools. In: the 14th Annual Network & Distributed System Security Sym-
posium, San Diego, CA, USA (2007).

8. Wu, M., Miller, R. C., Garfinkel, S. L.: Do Security Toolbars Actually Prevent
Phishing Attacks? In Proceedings of Conference on Human Factors in Computing
Systems (2006).

9. Jakobsson, M., Ratkiewicz, J.: Designing Ethical Phishing Experiments: A study of
(ROT13) rOnl auction query features. In: the 15th annual World Wide Web Con-
ference, pp. 513-522 (2006).

10. Berki, E.: Establishing a Scientific Discipline for Capturing the Entropy of Sys-
tems Process Models. CDM-FILTERS. A Computational and Dynamic Metamodel
as a Flexible and Integrated Language for Testing, Expression and Re-engineering
of Systems. Ph.D. Thesis. Faculty of Science, Computing and Engineering. Uni-
versity of North London (2001).

SPLST'15

234

11. Eilenberg, S.: Automata, Languages and Machines. Academic Press. (1974).
12. DisCo: DisCo Home Page, http://disco.cs.tut.fi/, retrieved on 22nd Dec., 2014.
13. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection

based on structural properties, In: the NYS Cyber Security Conference (2006).
14. Shahriar, H., Zulkernine, M.: PhishTester: Automatic Testing of Phishing Atacks,

In: 2010 Fourth international Conference on Secure Software Integration and Reli-
ability Improvement, pp. 198-207 (2010).

15. Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., Song D.: Towards a Formal Foun-
dation of Web Security. In: 23rd IEEE Computer Security Foundations Sympo-
sium, pp. 290-304 (2010).

16. Kumaraguru, P., Acquisti, A., Cranor, L.: Trust modeling for online transactions:
A phishing scenario. In: Privacy Security Trust, Ontario, Canada (2006).

17. Dong, X., Clark, J. A., Jacob, J.: Modelling user-phishing interaction. In: Human-
System Interaction, Kraków, Poland (2008).

18. F-Secure: Man-in-the-Middle Attacks on Multiple Finnish Banks, http://www.f-
secure.com/weblog/archives/00002235.html, retrieved on 30.1.2015.

19. YLE: Finnish bank accounts breached,
http://www.yle.fi/uutiset/news/2012/01/finnish_bank_accounts_breached_3191383
.html, retrieved on 10.4. 2015.

20. Wyke, J.: What is Zeus, technical paper, http://www.sophos.com/en-us/why-
sophos/our-people/technical-papers/what-is-zeus.aspx, retrieved on 30.4.2015.

21. Sipser, M.: Introduction to the Theory of Computation, PWS Publishing Company
(1997).

22. LTSA: Labelled Transition System Analyser, http://www.doc.ic.ac.uk/ltsa/, re-
trieved on 10th November, 2015.

23. Aaltonen, T., Katara, M., Pitkänen, R.: DisCo toolset - the new generation. Journal
of Universal Computer Science, 7, 1, 3–18 (2001).

24. Nummenmaa, T.: A method for modeling probabilistic object behaviour for simu-
lations of formal specifications. In: NWPT 2008, Abstracts, Tallinn, Estonia,
(2008).

25. Nummenmaa, T.: Adding probabilistic modeling to executable formal DisCo spec-
ifications with applications in strategy modeling in multiplayer game design. Mas-
ter’s thesis, University of Tampere (2008).

26. Nummenmaa T.: Executable formal specifications in game development: Design,
validation and evolution. PhD thesis, University of Tampere (2013)..

SPLST'15

235

	splst15_proceedings_paperit_headerilla
	9999990221
	1 Introduction
	2 Research Rationale and Related Work
	3 Example Reported Phishing Attack and User Behaviors in the Phishing Attack
	3.1 Reported phishing attack examples

	4 Computational Modelling of User Behavior
	5 Modeling Software: Usage of the FSM Model
	6 Conclusions and Future Research
	References

