
Collecting Issue Management Data for Analysis
with a Unified Model and API Descriptions

Otto Hylli, Anna-Liisa Mattila, and Kari Systä

Department of Pervasive computing, Tampere University of technology, Tampere,
Finland

{otto.hylli,anna-liisa.mattila,kari.systa}@tut.fi

Abstract. Reuse of analysis methods and tools for data from different
issue management systems is challenging because there are differences in
how the data is accessed and represented. While various approaches for
collecting and analysing software engineering data have been developed,
they do not generally pay so much attention into how to actually get
the data from various sources. This paper presents a combined model for
issue management data that is based on an investigation of four issue
management systems. It also presents a proof of concept tool that can
collect issue management data from different services into our analysis
and visualization framework using an API description language that de-
fines how to get the issue management data and how to convert it into
our model. The aim of this approach is to allow the addition of new data
sources by simply providing their API descriptions.

Keywords: issue management, data model, software repository mining

1 Introduction

Issue management is an integral part of software development and management.
Various tools have been developed for that purpose e.g. Jira and the issue track-
ing feature of GitHub. The information collected into the issue management
system can be used to analyze the software project and it can give valuable in-
sights, that can help in managing the project, e.g. how to automatically identify
valid bug reports [12].

Many issue management systems offer an API that can be used to acquire
data. A tool, that could fetch issue management data from multiple sources and
offer the same interface and analysis features regardless what the data source is,
would be useful for both its users and developers. There are some differences in
how different issue management systems handle and represent issues and related
concepts. Thus if the same analysis tools and notations are to be used to analyze
issues from multiple sources, a common model for issue management has to be
defined. Also a generic method for collecting issue data from different sources
and converting it into this model has to be developed. This paper presents a
combined data model based on four different issue management systems. It also

SPLST'15

251

presents a tool that uses API descriptions in collecting and converting issue
management data from different services.

This paper is organized as follows. Section 2 discusses the motivation and
background of this research in more detail. Section 3 presents our investigation
into different issue management systems. Section 4 describes the combined issue
model that is based on the investigation. Section 5 describes the implementation
of a issue collection tool that uses API descriptions in collecting issue man-
agement data according to the model. Section 6 presents discussion about our
approach. Section 7 presents related work and section 8 presents conclusions.

2 Background and Motivation

An issue management system serves many purposes in an organization. It is a
knowledge repository, a communication and collaboration hub and a communi-
cation channel for requests for new features, bug reports or any task that de-
velopment team should perform [2]. Thus an issue management system contains
different types of useful information for analysis. However, issue management
systems are different in what data is stored and how the data is accessed. The
organization’s practices also affect how issues are used.

This research is related to previous research done in our department consid-
ering software engineering data analysis and visualization. In [9] we present a
study where software engineering data from different data sources were combined
and visualized to show realization of continuous deployment. This research has
led to the development of a unified model for software engineering data and a
framework for collecting, storing and accessing it [10]. This data can come from
various sources and represent different domains such as issue management, ver-
sion control or testing. To collect data from a specific domain an intermediate
domain model can be used. This paper presents such a model for issue manage-
ment data. Data can be first collected according to the intermediate model then
converted into the higher level unified model.

In our previous work we have also developed a method for building Internet
service compositions [7]. There we dealt with similar issues i.e. fetching concep-
tually similar data from different services, and using the data in a unified way
to implement mash-ups. We developed the concept of generic data types that
represented different concepts that many services handle like photo or status
update. Then we added information about the generic data types to the service
API descriptions so that they could be used in service compositions. In this work
we want to use a similar approach for easily gathering issue management data
from different services. We do not just want to write separate tools or plug-ins
for fetching and converting data from different systems. Instead we want one
generic tool that can be given descriptions of the APIs of the source systems.
This would then make it much quicker to add different data sources.

SPLST'15

252

3 Issue Management Data

To find a model for issue management data, we surveyed four web based sys-
tems that offer issue management. The systems were Jira1, GitHub2, GitLab3

and Bitbucket4. Jira is a dedicated issue management system. GitHub, GitLab
and Bitbucket offer code project hosting that include in addition to a issue
tracker a code repository based on a version control system. We investigated
what information a issue holds, what other concepts are related to issues and
how the systems record changes and other activity related to the issues.

3.1 Properties

First we defined what information an issue contains, i.e., the properties of the
issue. We listed the properties from each system and combined those that meant
the same thing. Properties can be simple attributes or relations to separate
entities, who have their own attributes. We found 26 different properties and 9
of these properties are common to all the systems. All issues have some kind of
unique identifier, a title or summary and a longer explanation about the issue.
The issue systems also record when an issue was created and when it was last
updated. Issues also have a status or state that indicates the current phase in
the workflow. Possible states in the workflow varies by system from just opened
and closed offered by GitHub to the user customizable workflows of Jira.

All of the systems have authenticated users and they can be related to an issue
as the creator. All systems support also assigning the issue to a user who then
is responsible for progressing the issue’s resolution. Issues can also be discussed
in all systems with a commenting feature.

Two properties issue labeling and associating issues to milestones are shared
with three of the systems. Seven properties are shared between two systems. In
six cases those systems are Jira and Bitbucket. They let issues be categorized
with types, offer possibility to associate issues with software versions and specific
components. They also allow issues to be prioritized.

Jira is the most advanced of the systems. It offers eight properties that the
other systems do not offer. It allows the type of the resolution to be recorded
for example fixed or cannot reproduce. It also offers features for estimating and
recording the amount of work for the issue. Issues in Jira can also be linked
to related issues. In addition Jira is customizable offering a possibility to add
custom fields.

3.2 Issue changes

All of the systems record changes to the issues such as changes in the issue state
and properties. What changes are recorded and how they are accessed varies. In

1 https://www.atlassian.com/software/jira
2 https://github.com
3 https://gitlab.com
4 https://bitbucket.org

SPLST'15

253

all of the systems the user who made the change and the time the change was
made is recorded.

GitHub records issue changes as issue events. They can be accessed for the
whole project or for a specific issue. These events have a type that indicates
what kind of change the event represents for example closed, opened, assigned
or labeled. The event contains also information about what the change was e.g.
what label was added to the issue. GitLab has project specific events that include
events about issues but have other events also. There are events only for issue
opening and closing. Some other changes such as labeling or assigning are just
saved as comments of the issue

Bitbucket has also project events. However the feature is limited since only
30 most recent are available. Their content is also quite limited. There are events
for issue creation, commenting and updating but the update event does not have
specific information about what was updated and the creation event does not
tell what issue was created. In Jira each issue has a changelog. It records each
change of the issue. A change record contains the property whose value was
changed, its old value and the new value.

4 Data Model

This section presents the issue management data model that we developed based
on our investigation of the issue management systems. It also shortly presents the
unified software engineering data model used by our analysis and visualization
framework, presented in [10], and its relation to the issue management model.

4.1 Issue Management Model

Our investigation shows that issues in the different systems have quite much in
common. This enables the definition of a combined model for issues. It has eight
different entities: issue, user, comment, milestone, version, component, label and
change event.

An issue in our model has all of the properties presented in section 3.1. Most
of them (18 out of 26) were shared at least with two of the systems and the
rest are also useful. Table 1 lists the properties of an issue with their types and
descriptions.

Label, milestone, version and component are similar simple entities. They
have a name and a description and can be associated with issues. Milestone has
also a due date, a creation time and a closing time. User represents a user of
the issue management system. It can be associated with a issue as the issue
creator and as an assignee. Comments consist of the comment message and the
commenting time. They are associated with an issue and the user who posted
the comment.

Each issue has a changelog. It consists of change events that record when
the change was made, and optionally what property was changed and how i.e.
what is the new value for the property. Change event is also associated with the
user who made the change.

SPLST'15

254

Table 1. The properties of an issue entity.

Property Type Description

id string An unique identifier for the issue in the
management system

number string An unique identifier for the issue in a
project that is not unique in the whole sys-
tem

title string Describes the issue shortly

description string A longer explanation of the issue.

state string The current state of the issue in the issue
workflow

author user User who created the issue

created datetime When was the issue created

updated datetime When was the issue last updated

assignee user The person who is responsible for the issue.

comments count integer How many comments there are about the
issue

comments list of comments Comments about the issue

change log list of change events Changes made to the issue

labels list of labels Tags that are used to categorize issues.

milestone list of milestones Used to categorize issues to be implemented
in a specific version or sprint

priority string How important is the issue.

type string The type of the issue e.g. bug, feature

resolved datetime When was the issue resolved or closed.

affects version version The version the issue affects

fix version version The version in which the issue should be
resolved.

component component The software component associated with
the issue

watchers integer How many users are interested about the
issue e.g. they get notified about issue
changes

resolution string How was the issue resolved e.g. fixed, won’t
fix

environment string In what kind of environment the issue oc-
curs

votes integer How many votes the issue has

due datetime When the issue should be resolved

estimate integer Original stimate of the time required to re-
solve the issue (minutes)

remaining integer Current time estimate (minutes)

logged integer How much work has been done for the issue
(minutes)

SPLST'15

255

4.2 Relation to Unified Software Engineering Data Model

The unified software engineering data model, mentioned in Section 2 and de-
scribed in [10], consists of two concepts: artifact and event. Events present ac-
tions that happen in software engineering projects. They have an author, a type,
the time the event happened and a duration. Events are related to artifacts the
event happened to. Artifacts represent various aspects of software engineering
that are interesting for visualization and analysis purposes. For example an ar-
tifact can be a file in version control and commits to that file are events related
to it. Artifacts can also be related to each other. An artifact can have a state
and it can be changed by an event.

The issue management model presented in the previous section works as a do-
main specific model for the unified model. It can be mapped to the unified model
and so issue management data can be saved according to the unified model. Of
the entities issue, milestone, label, component and version are artifacts. Change
events and comments are events. Users can be modeled as artifacts or they can
be just attributes for events. Additionally events can be generated from some
of the entities’ time based attributes. For example issues and milestones have
an attribute that tells when they were created. From this attribute creation or
opening events can be generated.

5 Implementation

This section presents the implementation of an issue collector tool that uses
the issue model and the unified software engineering data analysis framework.
First an overview of the tool is presented. Then its API description system is
presented. Finally a usage example illustrates how the tool works.

5.1 Overview

Our web based data analysis and visualization framework [10] offers a database
for the software engineering data and an HTTP API for storing and querying it.
These APIs can be used by different data collection, analysis and visualization
plug-ins.

To test the feasibility of the issue management data model and data collec-
tion approach presented in this paper a tool was developed that can fetch issue
management data from different web based issue management systems accord-
ing to the issue management model. The data collection involves making HTTP
requests to various API endpoints like issues and milestones. The responses to
these requests will contain lists of items in the JSON format that should be
converted into various entities of the issue management model. After getting the
data the tool then converts the issue management data into the format of the
unified data model and sends it to the database.

The architecture of the tool is shown in Fig. 1. The tool consists of four
components. API descriptions define how to get issue management data from

SPLST'15

256

different sources. The user interface handles user input required for the data col-
lection. The API description defines what input data is required. The Collector
uses the user input to get data from a service described by an API descrip-
tion. The Unifier converts the data in to the unified model and sends it to the
database.

Fig. 1. The architecture of the issue collector tool.

The tool is implemented with Node.js. Currently the user interface is com-
mand line based. The current version of the tool does not yet cover the whole is-
sue management model. It can process issues, comments, milestones and change
events.

5.2 API Descriptions

An API description is a JavaScript object whose properties describe the API.
The API description consists of general properties and resource descriptions.
General properties describe general information about the API i.e. information
that is common to all API calls. Resource descriptions describe information
specific to API calls to one particular resource such as issues.

Table 2 lists the general properties. General properties for an API description
include the common part of the API URL, possibly some HTTP headers and
query parameters. Headers and query parameters are defined as simple objects
containing key-value pairs where the key is the header or query parameter and
the value its value. If the value is not static, the value undefined is used. This
indicates that the value has to come from the user.

For defining what information is required from the user in the user interface
the API description has an userParams property. This information is usually
project specific information such as identification of project to be targeted. The
value of userParams is a list of objects that contain the name of the parameter

SPLST'15

257

Table 2. General API description properties.

Property Type Description

BaseUrl string The part of the URL that is common to all
API requests

authentication list of objects A list of ways an user can authenticate to
the service

pagination string How does the API handle pagination.

headers object HTTP headers required by every API call

query object Query parameters required by every API
call

userParams object Defines what information is required from
the user for issue management data collec-
tion

resources resource description Information about how to get and convert
items from one API end point. Resources
can be issues, milestones, changeEvents or
comments.

and a description of the parameter that is shown to the user. The parameter
name indicates where the value will be used. For example it can be used as a
value for a header or query parameter that has the same name.

Issue management services can support multiple ways for their API users
to authenticate. The authentication API description property lists the authen-
tication methods that the service supports. A value in the list can be a string
containing the name of an authentication method that the tool understands.
Currently recognized methods are no authentication and HTTP basic. A value
can also be an object that defines a custom authentication method which can
contain additional headers, query parameters and user parameters.

Most API calls do not return everything at once. Instead they return up to
a certain number of items and the client has to request more. The pagination
property defines how this pagination in API calls is handled. Currently only
pagination using a RFC 5988 link header, that has the pagination information,
is supported.

The API description can contain multiple properties that have a resource
description object as the value. The name of the property indicates what kind
of entities the description describes. Currently supported values are issues, com-
ments, milestones and changeEvents.

A resource description is an object whose properties describe a particular
API resource, i.e., a concrete API end point that we want to make a HTTP call
to. A resource could be for example the list of issues in a project or a list of one
issue’s comments. Table 3 lists the properties that a resource description can
have.

The path property holds the rest of the HTTP request URL. The value is
a RFC 6570 URI template whose variables have to be expanded before mak-
ing the request. Values for these variables are found from the similarly named

SPLST'15

258

Table 3. Properties of a resource description.

Property Type Description

path string The rest of the URL as an URI template.

query object Query parameters specific for this resource.

headers object HTTP headers specific for this resource

filter function Function used to decide if the current item
will be processed.

item item description object How to convert one item from the resource
into an entity in the issue management
model

createOpeningEvents bool Create a change event from the created at-
tribute of the new entity.

createUpdatingEvents bool Create a change event from the updated at-
tribute of the new entity.

createClosingEvents bool Create a change event from the closed at-
tribute of the new entity.

children object Contains resource descriptions of the cur-
rent resource’s child resources.

parentParams object Information required from a parent re-
source for getting a child resource.

user parameters. The query and headers properties are similar to the corre-
sponding general properties but provide resource specific information. The cre-
ateOpeningEvents, createUpdatingEvents and createClosingEvents properties in-
dicate if additional change events should be created from the new entity’s cre-
ated, updated or closed properties.

The filter property can hold a function that is used to choose which items
received from the issue management system are processed. The function is given
a single item from the response like an issue and its boolean return value deter-
mines if that item should be processed.

The children property describes the current resource’s child resources such as
the comments of an issue. Its value is an object whose properties have resource
descriptions as values similar to the general API description. The parentParams
property is applicable only in child resource descriptions. Like user parameters
its values can be used in the URI template, headers and query parameters but
the source for the values is the child’s parent entity.

The item property gives information on how to convert one item from the re-
sponse in to an entity of the issue management model. The properties of an item
description object correspond to the properties of the entity to be extracted. The
value tells how to extract the value for the new entity’s property. For describing
how to extract the value we use JSONPath5. JSONPath expressions are used
to select a specific part of a JSON document or JavaScript object. The value of
an item description property can be a string or an object. The path property of
that object holds the JSONPath expression. The source property tells where the

5 http://goessner.net/articles/JsonPath/

SPLST'15

259

Listing 1.1. A part of the GitHub API description. Most item descriptions are not
shown and only part of the comment’s item description is shown.

1var api = {
2baseUrl : ’ https :// api . github . com/ ’ ,
3authent i ca t i on : [’ no authent i cat ion ’ , ’ bas ic ’] ,
4headers : { Accept : ’ app l i c a t i on /vnd . github . v3+json ’ ,
5’ User−Agent ’ : ’ o h y l l i / i s sue−c o l l e c t o r ’ } ,
6pag inat ion : ’ l ink header ’ ,
7userParams : [{ name : ’ owner ’ ,
8d e s c r i p t i on : ’The user name of the r epo s i t o r y owner ’ } ,
9{ name : ’ repo ’ ,
10d e s c r i p t i on : ’ the r epo s i t o r y name ’ }] ,
11i s s u e s : {
12path : ’/ repos /{owner}/{ repo}/ i s sue s ’ ,
13query : { s t a t e : ’ a l l ’ } ,
14f i l t e r : func t i on (item) {
15return item . pu l l r e qu e s t !== undef ined ; } ,
16item : { . . . } ,
17createOpeningEvents : true ,
18createUpdatingEvents : true ,
19ch i l d r en : { comments : {
20path : ’/ repos /{owner}/{ repo}/ i s s u e s /{number}/comments ’ ,
21parentParams : { number : ’ $. number ’ } ,
22item : { id : ’ $. id ’ ,
23i s s u e : { path : ’ $. id ’ , source : ’ parent ’ } ,
24user : ’ $. user . log in ’ ,
25message : ’ $. body ’ , . . . } } } , . . . } ;

value is to be extracted from. Possible values are item, which means the item
received from the service, and parent, which means the parent entity of the new
entity. The mapping property can be used to replace the extracted value with
another value. If source is the item and there is no mapping information, the
object can be replaced with a string containing the path information.

5.3 Usage example

As an example of the tool’s usage we tested the method to collect issue man-
agement data from four public open source projects : grip6, glutin7, gfx8 and
webgl-noise9. The webgl-noise project is the smallest of the four projects con-
taining 14 issues where as gfx is the largest containing 304 issues. Glutin project
has 187 issues and Grip 107 issues. The projects use GitHub as a code repository
and issue management system. Thus we require an API description of GitHub’s
API which is shown in listing 1.1.

When the issue collector is invoked, it first checks what API descriptions are
present and asks the user which of these she wants to use. The issue collector
loads the API description the user chose and first checks what authentication
methods are available and lets the user choose the one she prefers. As can be
seen on the line 3 of the Listing 1.1 GitHub issue collector can be used with-
out authentication or with HTTP basic authentication.10 If the user chooses
basic authentication, the tool next asks the user for her username and password

6 grip – https://github.com/joeyespo/grip/issues
7 glutin – https://github.com/tomaka/glutin/issues
8 gfx – https://github.com/gfx-rs/gfx/issues
9 webgl-noise – https://github.com/ashima/webgl-noise/issues

10 GitHub supports also OAuth2 authentication but our tool does not yet support it.

SPLST'15

260

required by HTTP basic authentication. Next issue collector checks what ad-
ditional API specific information is needed from the user. From the lines 7-10
of the Listing 1.1 we see that two user parameters named owner and repo are
required. The issue collector queries inputs for these showing their descriptions
to the user. Lastly the tool queries the user for some metadata required by the
unified data model.

Next the collector can begin the actual data collection. It goes through ev-
ery resource description, makes HTTP requests they define and converts the
data received into the appropriate entities. For constructing the HTTP requests
the collector gets the beginning of the URL from line 2. Lines 4 and 5 define
that all HTTP requests have to contain two specific headers. If HTTP basic
authentication was chosen the authentication information provided by the user
is also added to the requests. Then, for example, from the resource description
for issues the collector gets the rest of the URL from line 12. This URI template
has two variables owner and repo. The collector gets values for these from the
similarly named user parameters. The resource description also defines on line
13 that the URL has to include a query parameter named state with the value
all. After making the request, the collector processes each item in the response.
Since on lines 14-15 issues resource has a filter function, that is executed first
and the item is processed only if it returns false. In this case the function is used
to filter out pull requests which GitHub includes with the issues.

The API description defines on line 19 that issues have comments as children.
This means that for each issue entity created its comments should be fetched
as well. The path on line 20 is expanded with the owner and repo and also
the number property of the parent issue. This is defined on line 21 with the
parentParams property. The actual comment entity is constructed according to
the information on lines 22-25. It defines for example that the message property
of a comment can be found from the response item’s property named body. It
also defines that the id of the issue the comment is related to can be found from
its parent entity’s id property.

After each item in a response has been processed, the collector checks if the
response contains a link header that has the URL for the next page of items, and
if it does, it makes a request to it. This behaviour is specified on the line 6 of
the Listing 1.1. After all entities are collected, the collector checks if additional
change events have to be created. For example line 17 defines that from each
issue entity a change event has to be created. This event’s change type will be
opened and the time the creation time of the issue.

After the collector is finished, the unifier converts the issue management data
into unified model’s artifacts and events which are then send to the database. Af-
ter this the user can use the visualization framework’s analysis and visualization
features. Figure 2 has an example visualization from the grip project’s data that
shows each artifact’s events and life spans on a timeline. From the visualization
we can see for example how long different issues have been open and if the issue
has been reopened. Also comment, label, reference and delabel times are visible

SPLST'15

261

for each issue. This kind of view enables comparing issue lifespans to each other
as well as finding similarities and patterns from issue events.

Fig. 2. Visualization of lifespans and events from Grip open source project. Each ar-
tifact has its own row to display events and lifespan. The lifespan starts when the
artifact is opened and ends when it is closed. Lifespan is shown as a line in artifacts
row. The dots mark different kinds of events. The dot colors are mapped to event types
and those are explained in the top of the visualization. At the right of the artifact line
the artifact type and at the left the artifact id are presented. All artifact rows are not
visible in the figure as the figure is cropped to save space.

6 Discussion

Our issue management data model is based on a survey of four issue management
systems. Although there are many more issue management systems we believe
that our model covers the most important aspects of issue management. However
in our future work we should verify our model by using it with systems that
we did not survey and if the need arises to expand our model. Our model is
quite simple and not as expressive as for example an ontology based approach.
However, our aim was a light weight model for data storage and testing the API
description approach, and for that purpose we believe our model is suitable.

The implementation of our issue collector tool shows the basic feasibility of
the model. We used the model successfully with GitLab and GitHub for which
we currently have API descriptions. The implementation and those API descrip-
tions also shows the feasibility of our data collection approach. This approach
has its strengths and weaknesses. The descriptions are declarative so a descrip-
tion author does not need to worry how the data is collected. When the APIs
behave similarly such as GitHub and GitLab do when fetching issues and their
comments, the approach works well. However, when there are differences in how
things are done like with change events, the tool’s implementation and API de-
scription have to take them in to account, which will cause complexity in the

SPLST'15

262

implementation code and in the API description syntax. API rate limiting of
the services can cause problems when fetching data from bigger projects and
we must find ways to deal with them. Currently the tool is a proof of concept
implementation and probably new issue sources such as Jira and Bitbucket could
not be added just by adding their API descriptions since there are many things
the implementation does not support yet. For example pagination is supported
only with a link header which all services do not support so a custom pagination
implementation would be required. More advanced data extraction features for
more complex data structures are also required.

In our previous work on Internet service compositions [7] we used the Web
Application Description Language (WADL) to describe the service APIs. Then
we had to add additional metadata to describe the service and its data. In this
work we wanted to try a different approach with our own JavaScript based
API descriptions. It allowed us to combine the API description and the data
description required in the data conversion. We could also add features that
support common higher level tasks such as authentication and pagination. We
can also add functionality to the API descriptions with JavaScript functions
which we used in filtering the items. They could also be used for example with
custom pagination implementations in the future. Though this approach requires
the author of an API description to know JavaScript, the descriptions are quite
simple and do not use advanced features of the language.

7 Related Work

On a high level this work can be seen to be related to research into extract, trans-
form and load (ETL) processes used in data warehousing to integrate data from
different sources for business reports. ETL research deals with similar problems
as our research such as how to combine data from different schemas into a single
schema and what is the workflow of the ETL process [11]. More precisely this
work is a part of the research in to software repository mining where different
tools for collecting and analyzing issue management data among other software
engineering data have been developed. However these tools do not pay so much
attention in making the data collection generic. Fischer et al. [3] developed a
SQL based release history database for collecting and analyzing data for version
control and issue management. The system does not include special features for
data collection from different sources. Issue management data is just collected
with custom scripts from Bugzilla.

Some approaches use semantic web technologies and define an ontology for
software engineering data. Kiefer et al. [8] developed EvoOnt which focuses on
software evolution. It includes models for the software, version history and bugs.
The EvoOnt issue model is based on Bugzilla but it is similar to ours though
there are some differences in what concepts of issue management are covered.
The paper does not go much in to the details of the model like what properties
and relations it supports or what if any change data is collected. This system
also has no special consideration for data collection. Dhruv [1] offers semantically

SPLST'15

263

enriched features for members of an open source community to work with issues
and related information. Dhruv was developed for a particular open source com-
munity that uses particular tools though the developers point out that it could
be made to work with other communities and tools, because its model should
be general enough and its architecture supports expansion.

Evolizer [4] is a tool whose main focus is in analyzing code changes but its
software metamodel includes issues and has an exporter for getting issue data
from Bugzilla. It is an Eclipse plug-in and its extension including the addition of
new issue data importers takes advantage of Eclipse’s plug-in extension features.
Goeminne and Mens [5] have developed a framework for analyzing and compar-
ing the evolution of open source projects which is mainly focused on different
metrics. It uses the FLOSSMetrics data base [6] which defines a schema for vari-
ous data collectors including issue data collectors. The FLOSSMetrics issue data
collector supports two issue management systems: Bugzilla and SourceForge.

8 Conclusions

Analysis of issue management data can give useful insights in to a software en-
gineering project. In our previous work we had developed an unified software
engineering data model and a framework for storing and accessing it. Collecting
issue management data from various sources and converting it in to the unified
format for analysis presents challenges. We tackled these challenges by first in-
vestigating four different web based issue management systems. Based on that
we developed a combined issue management data model. It consists of eight en-
tities such as issue, milestone and comment. These entities, their properties and
relations cover the essential parts of issue management and allows data from
various sources to be stored and analyzed.

We also developed a proof of concept issue data collection tool which collects
issue data according to our issue management model and then converts the data
into the unified data model’s format. The tool uses declarative API descriptions
which define how data is fetched and converted. The current version of our tool
is limited but it proves the feasibility of our approach. The end goal of our
approach is to allow new data sources to be added quickly just by providing an
API description that can then be used to fetch data from different projects in that
source. We believe that this approach can be expanded to cover different types
of software engineering data such as version control data. In our future work we
will explore the potential of this approach with other issue management systems
and other kind of data. This approach might also have uses in other contexts.

Acknowledgments

The research has been supported by Tekes-funded Digile project Need for Speed11

and by Foundation of Nokia Corporation12.

11 http://www.n4s.fi/en/
12 http://www.nokiafoundation.com/

SPLST'15

264

References

1. Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., Welty, C.: Supporting Online
Problem-solving Communities with the Semantic Web. In: Proceedings of the 15th
International Conference on World Wide Web. pp. 575–584. WWW 2006, ACM,
New York, NY, USA (2006)

2. Bertram, D., Voida, A., Greenberg, S., Walker, R.: Communication, collaboration,
and bugs: the social nature of issue tracking in small, collocated teams. In: Pro-
ceedings of the 2010 ACM conference on Computer supported cooperative work.
pp. 291–300. ACM (2010)

3. Fischer, M., Pinzger, M., Gall, H.: Populating a Release History Database from
version control and bug tracking systems. In: Proceedings of the International
Conference on Software Maintenance. p. 23. ICSM 2003, IEEE, Washington, DC,
USA (2003)

4. Gall, H.C., Fluri, M., Pinzger, M.: Change analysis with evolizer and changedis-
tiller. IEEE Software 26(1), 575–584 (2009)

5. Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. In: Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evolu-
tion. pp. 42–47. IWPSE-EVOL 2010, ACM, New York, NY, USA (2010)

6. Gonzalez-Barahona, J.M., Robles, G., Dueñas, S.: Collecting data about floss de-
velopment: the flossmetrics experience. In: Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development. pp. 29–34. ACM (2010)

7. Hylli, O., Lahtinen, S., Ruokonen, A., Systä, K.: Resource description for end-user
driven service compositions. In: IEEE 2nd International Workshop on Personalized
Web Tasking (PWT 2014) (June 2014)

8. Kiefer, C., Bernstein, A., Tappolet, J.: Mining Software Repositories with iS-
PARQL and a Software Evolution Ontology. In: Proceedings of the 15th Inter-
national Conference on World Wide Web. p. 10. MSR 2007, IEEE, Washington,
DC, USA (2007)

9. Mattila, A.L., Lehtonen, T., Systä, K., Terho, H., Mikkonen, T.: Mashing Up
Software Issue Management, Development, and Usage Data. In: Proceedings of
RCoSE – 2nd International Workshop on Rapid Continuous Software Engineering
(2015)

10. Mattila, A.L., Luoto, A., Terho, H., Hylli, O., Sievi-Korte, O., Systä, K.: Unified
model for software engineering data. In: 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015) (September 2015)

11. Vassiliadis, P.: A survey of extract-transform-load technology. International Jour-
nal of Data Warehousing and Mining 5(3), 1–27 (2009)

12. Zanetti, M.S., Scholtes, I., Tessone, C.J., Schweitzer, F.: Categorizing bugs with so-
cial networks: a case study on four open source software communities. In: Proceed-
ings of the 2013 International Conference on Software Engineering. pp. 1032–1041.
IEEE Press (2013)

SPLST'15

265

	splst15_proceedings_paperit_headerilla
	9999990251

