CEUR-WS.org/Vol-1525/paper—20.pdf

SPLST'15

Mining Knowledge on Technical Debt
Propagation

Tomi ‘bgt’ Suovuo, Johannes Holvitie, Jouni Smed, and Ville Leppénen

TUCS — Turku Centre for Computer Science,
Software Development Laboratory &
University of Turku,

Department of Information Technology,

Turku, Finland
{bgt, jjholv, jouni.smed, ville.leppanen}@utu.fi

Abstract. Technical debt has gained considerable traction both in the
industry and the academia due to its unique ability to distinguish asset
management characteristics for problematic software project trade-offs.
Management of technical debt relies on separate solutions identifying
instances of technical debt, tracking the instances, and delivering infor-
mation regarding the debt to relevant decision making processes. While
there are several of these solutions available, due to the multiformity of
software development, they are applicable only in predefined contexts
that are often independent from one another. As technical debt man-
agement must consider all these aspects in unison, our work pursues
connecting the software contexts via unlimited capturing and explana-
tion of technical debt propagation intra- and inter-software-contexts. We
mine software repositories (MSR) for data regarding the amount of work
as a function of time. Concurrently, we gather information on events that
are clearly external to the programmers’ own work on these repositories.
These data are then combined in an effort to statistically measure the
impact of these events in the amount of work. With this data, as future
work, we can apply taxonomies, code analysis, and other analyses to
pinpoint these effects into different technical debt propagation channels.
Abstraction of the channel patterns into rules is pursued so that develop-
ment tools may automatically maintain technical debt information with
them (the authors have introduced the DebtFlag tool for this). Hence,
successfully implementing this study would allow further understanding
and describing technical debt propagation at both the high level (longi-
tudinal technical debt propagation effects for the project) and the low
level (artifact level effects describing the mechanism of technical debt
value accumulation).

1 Introduction
Technical debt is a software development concept that is interested in exposing

asset management characteristics for project trade-offs [5]. Working with scarce
resources to fulfill ever-changing requirements, software projects often need to

281



SPLST'15

emphasize certain development driving aspects over others, such as delivery
deadlines over thorough documenting. Further, invalid or lacking knowledge on
certain aspects of the development may lead to emphases made that improperly
reflect the actual situation. In both cases the informed and uninformed decisions
result to trade-offs that accumulate technical debt [13].

It has been argued [16] that a key factor for the adoption of technical debt
management into software development is the capability to produce and maintain
technical debt information within the project. That is, the project trade-offs must
be identified, their distribution and effects defined, and this information must
be maintained to reflect the true software project state. Undoubtedly, failures in
the information delivery result in unmanaged technical debt, or decisions being
made based on outdated information, both of which, implicitly or explicitly,
affect the project.

Technical debt research has been proficient in suggesting identification, track-
ing, and governance solutions to overcome the technical debt information pro-
duction issues [12]. The problem is that while solutions have been proposed and
trialed on various software contexts, no prior research has properly investigated
the whole software context space. That is, identifying and classifying where and
how technical debt exists and how does it propagate intra- and inter-software-
contexts. This higher level structure may be described in some studies as the
concept of technical debt interest and its accumulation, but it has not been ex-
plicitly examined; being less important to the relevant studies’ goals. Arguably,
however, in order to make technical debt management applicable, the various
solutions must function together, and in this the enabling factor is technical debt
propagation.

Today, the software projects that plug into social media services through
APIs (Application Programming Interface) are an exemplar field of software
context versatility. Updates to these APIs, invoked by their external authors,
indicate sources of technical debt accumulation and propagation in their clients’,
often business critical, software. Mining Software Repositories (MSR) for the
clients that are subject to these updates enables studying the software context
space to address the cap in technical debt propagation knowledge.

In the 1980s software applications were relatively simple and they were de-
livered as is. They were relatively bug free and needed no updates. Once an ap-
plication was released, any existing technical debt was outside the organization’s
control. As software grew increasingly complex, especially with the emergence
of the Internet in the 1990s, bigger applications were released with more issues
remaining. The practise eventually turned out having regularly released patches
as a norm, as they were also easily distributed through the net. Technical debt
was feasible and also realized. Now, in the 2010s we have complex applications
that not only utilize third party libraries, but also third party services through
APIs. There are regular updates to the libraries and the APIs, as well as to the
client applications themselves. These all are sources of technical debt. Further, as
previously shown [6], a singular technical debt instance rarely limits to a single
software development component but rather spans over multiple (e.g., design,

282



SPLST'15

implementation, and testing), making the emerging debt even more cumbersome
to track.

Our intention is to understand the technical debt propagation context by
investigating the latest trends: use of external APIs and especially those of social
media services. The paper is structured as follows: we begin in Section 2 by
reviewing the background. Section 3 builds on this and introduces our technical
debt propagation research objectives. We introduce our approach to overcome
the objectives and initial results in Section 4. The concluding remarks appear in
Section 6.

2 Background

We will introduce here related work regarding technical debt, propagation in
the software context, and APIs. Whilst defining core concepts for the article’s
foundation, empirical work is also visited so as to further understand the state
of current research.

2.1 Technical Debt and Its Propagation

The term “technical debt” was initially coined by Ward Cunningham [2]. In
his experience report, releasing code was paralleled to going into debt: trade-
offs are made in the software project to meet a deadline, and these trade-offs
can be considered debt that should be paid off when resources permit. Until
the debt is paid off, it will incur interest payments—that is, later work in the
project must accommodate the inoptimalities resulting from the trade-offs. This
description has remained applicable to these days. Later revisits to the definition
have mainly captured dimensions that further explain the role of the debt in the
project: McConnell [13] provides a definition for intentional and unintentional
technical debt, while Brown et al. [1] give a further description of the debt’s
effects via reflection to the financial domain and discussion on the resolution
probability.

Firstly, McConnell [13] provided a definition for the intentionality behind the
debt: intentional debt is a trade-off made whilst fully aware of its consequences,
an investment with an expected return. Unintentional debt on the other hand
is accumulated due to, for example, lack of knowledge. This type is a cause for
concern as it remains unmanaged until discovered. Secondly, Brown et al. [1] gave
a further description of the debt’s effects via reflection to the financial domain:
the earlier trade-offs accumulate interests payments manifesting as increased
future costs, and trained decisions should evaluate if paying the interest is more
profitable over reducing the loan via refactoring. Differing from the financial
domain, here, the debt’s interest has a probability that captures if the trade-off
will have visible effects on future development: debt within a software artifact
that will not be visited has a realization probability of zero.

Management of technical debt requires that we are capable of identifying and
tracking the trade-offs, the atomic instances, that form the debt for a project.

283



SPLST'15

Without this information readily available, trained decision regarding the debt’s
governance cannot be made [16]. The software context, however, makes the iden-
tification, and especially, the tracking an arduous task: instances of technical
debt can span over multiple development phases and the most affected part is
the software implementation [6] which arguably grows exponentially complex in
the future through various abstraction layers and techniques. Nevertheless, the
tracking should be able to follow a technical debt instance in this context.

From the latest systematic mapping study on technical debt [12] we can see
that several solutions for tracking technical debt are available. However, we also
observe (see Figure 10 in [12]) that there are areas in the software development
context that are not covered by any solution; whilst most of the solutions cover
sub-contexts focusing on predefined environments and specific parts of the soft-
ware life-cycle. Furthermore, from Kruchten et al. [10] and Izurieta et al. [7] we
can see that the causes for technical debt are various and they can be described
using various characteristics. We consider all these findings indicative of the mul-
tiformity of the context of technical debt in software projects. Thus, in addition
to searching for solutions in this context, technical debt research should pursue
mapping the full context space and an understanding of technical debt’s value
in it.

Lastly, we note that technical debt tracking is the process of indicating tech-
nical debt propagation in the software context. To this end, the authors identify
only the work by McGregor et al. [14] to explicitly address this issue. Here, con-
sidering mainly the software implementation, they note that technical debt for
a new software asset is affected by the technical debt in relied upon assets, the
amount of abstraction layers may diminish the amount of technical debt that
propagates, and, in another scenario, rather than being directly accumulated
from integrated assets, the technical debt has an indirect effect on the asset’s
users—for example, by making adoption more difficult.

2.2 Software Change Analysis

What is pursued herein is a better understanding of the context of technical debt
propagation in software. We argue that software change should be considered the
fundamental unit for this. Something that Schmid [15] also considered core to
technical debt modelling during software evolution. Capturing software changes
and distinguishing between technical debt inclined and other changes (that is,
changes using information relatable to technical debt properties described by
Brown et al. [1] and discussed in Section 2.1, and changes with no such proper-
ties) would allow non-restricted observation of technical debt in the full software
context. Identifying software change retrospectively for projects corresponds to
Mining Software Repositories (MSR).

Kagdi et al. [8] produce a taxonomy on MSR techniques, defining software
change as “the addition, deletion, or modification of any software artifact such
that it alters, or requires amendment of, the original assumptions of the subject
system.” Here, a source code change is indicated as the fundamental unit for

284



SPLST'15

software evolution, but as the causes [10, 7] and the manifestations [6] for tech-
nical debt do not limit to the implementation, we adopt software change as the
fundamental unit.

In this work, the mining efforts focus on large open-source, social-networking-
enabled, repositories in order to maximally cover the diversity of software change.
Tsay et al. [18] note that in GitHub handling of pull-requests is affected by social
factors: highly discussed requests enjoy a lower acceptance rate, while submit-
ters relations to—especially the manager of— the accepting project increases
acceptance; this is supported also by [3]. Kalliamvakou et al. [9] survey GitHub
as a MSR target. They conclude that the repository gives solid data on basic
project properties, such as program language use, but synthesizing more ab-
stract conclusions requires careful assessment. The main cause for concern here
is GitHub’s utilization as infrastructure for personal projects. This form of usage
vastly deviates from others. To counter this bias, Kalliamvakou et al. [9] suggest
considering only projects with more than two authors and demonstrated activity
in both commit and pull requests.

3 Seeking Technical Debt Knowledge

In the following we address our ongoing technical debt propagation research on
two distinct levels: the inter-dependency effects at the software artifact level and
the longitudinal effects at the project level.

3.1 Inter-Dependency Effects within Software Artifacts

As discussed in Section 2, a multitude of solutions exist for both identifying
and tracking technical debt. However, most of the solutions are intended for
pre-defined software development contexts; for example, limiting their use to
a specific sub-set of implementation techniques and herein, during continued
software development, to certain mechanisms for technical debt propagation.

However, the ability to produce exhaustive technical debt information re-
quires that all possibilities for technical debt propagation are acknowledged. We
postulate, based on the properties of technical debt identified by Brown et al. [1]
and to the average cover of single technical debt instances queried by Holvitie
et al. [6], that the propagation “stream” for technical debt is capable of leaving
the current host technique and merging into others. This is indicative of several
sub-areas within technical debt research.

Foremost research area for technical debt propagation in software artifacts,
is (1) to show that technical debt propagates between software components that
can exist in external and independent projects and be implemented using differ-
ent technologies. The interest and even the whole initial debt can be created in an
external, but linked project that is worked by another team. The works referred
here do not dispute this information, and may even implicitly assume this, but
it is important to recognize this phenomenon explicitly and have quantitative
research conducted on it to indisputably point it out.

285



SPLST'15

Second research area, partially reliant on the first, is (2) to accumulate a
documentation that describes the possible ways in which technical debt can
propagate. Preferably, this would be a taxonomy capturing the unique propaga-
tion channels for technical debt. Finally, in order to enable information delivery
for technical debt management purposes, (3) the channel descriptions must be
enriched with information regarding technical debt value accumulation for all
unique accounts of propagation. This would enable, possibly automated, tech-
nical debt information maintenance as the taxonomy is capable of tracking and
valuating technical debt through out the software project.

Internal
Adapter

Fig. 1: Coarse classification for different chains of projects (COP)

3.2 The Chain of Projects

One way to identify the propagation of technical debt is to make longitudinal
studies of increased debt in different phases of a project and connect them with
the root causes. Technical debt can be identified as matters, such as discovered
vulnerabilities, updates, and feature discontinuation in systems related to the
project. Also, adding a new feature in a utilized external service API may cause
technical debt when the project customer wants the new feature implemented in
the project. We can identify different propagation paths by following how such

286



SPLST'15

an event causes extra work in the chain of projects (COP) that are all linked
with each other.

If an API is not interfaced directly but through a third party library, it may
be that the customer is not happy to wait until the library is updated with the
new feature. This will cause the project debt to be paid by implementing this
new feature quickly with an internal solution. This will become a new kind of
a debt, from the opposite end of the COP, when the referred library is finally
updated. Here, the internal solution becomes legacy and requires refactorization
into a solution that utilizes the library again, for example, in accordance to the
coding conventions followed by the programming team.

There are cross waves moving back and forth in the COP from the root cause,
through the library, to the end of chain application. These can be tracked by
following the amount of increased work in each area.

Figure 1 demonstrates a sample classification for COPs. Here, case 1 demon-
strates a monolith project that has internally implemented services with no
outside dependencies. This is a classical, and probably the most studied, sce-
nario for technical debt management, where the debt is only internally caused,
felt, and managed. Cases 2 through 4 depict more modern scenarios, where the
projects depend on external service providers. In case 2, the project has a direct
dependency to the service and adapts explicitly and directly as invoked by the
service. A slightly dampened version, but still fully managed by the project or-
ganization is presented in case 3, where the project, possibly alongside with the
organization’s other projects, uses an internally produced adapter to access the
service. Hence, the project itself does not directly feel changes in the external
service, but adaptation to them is still managed internally. Finally, in case 4
the project uses an external adapter to access the service. The external adapter
generally serves a broader range of projects and hence is not customized for the
needs of specific projects. On the other hand, external adapters tend to retain
compatibility as long as possible which dampens change speeds invoked by the
external service.

The classification in Figure 1 is especially important from the viewpoint
of distinguishing between the “noisy” and the technical debt inclined software
changes, as the monolith projects of similar size can be used as the baseline
when studying how the external service invokes and propagates technical debt.
Further, as per the previous description, it can be expected that the invoked
technical debt will propagate quicker in the directly dependent cases than in the
indirect cases 2 to 4.

4 Exploiting Open-Source Projects

Exploiting open source code repositories enables us to make longitudinal surveys
of the history. The GitHub code repository service ! appears as a treasure trove
for this kind of research. We can take a project from GitHub, and we can find
for it, neatly logged, each change and its date with great detail.

! See https://github.com/

287



SPLST'15

GitHub gives an open access to several different projects. However, there
is also an option of hosting private projects for premium users as mentioned in
Section 2.2. With only the public access to the repositories, the sample is likely to
be biased. This means that traditionally non-disclosed for-profit projects cannot
be found in GitHub like this, which entails that a lot of professional work is not
covered by this study. However, it can be argued that functionality is delivered
via the same technologies in closed-source projects.

Furthermore, regarding mapping the software change (as discussed in Section
2), the GitHub API gives an easy access to byte-wise size of source files and
line-wise size of code change per commit. Through this we have the scale of
the whole project in bytes, but the scale of changes in lines of code. Optimally
both variables would be measured identically, but we can only rely on these
two measures being sufficiently comparable. The only other option would be to
go through the source files and count the line breaks outside the GitHub API
support.

As elaborated in Section 3, we want to observe the propagation of technical
debt on both at the software project and the software artifact levels, and with as
little constrain as possible so as to capture the propagation context as complete
as possible. Herein, we face the problem of how to identify technical debt in a
highly diverse setting, and this is the reason why we emphasize the novelty of
researching open-source social-networking-enabled projects.

X
\
\
\
<
\
AIRY
<,
v
) .
1 \
’
b
4 \
_—
.
.
.
.
.
2
3

Fig. 2: Coarse classification for technical debt accumulation in projects with dependen-
cies to external services

288



SPLST'15

Figure 2 captures the different technical debt accumulation classes for projects
with dependencies to external services. Case 3 depicts the most common situa-
tion in which the project accumulates technical debt that realizes at a certain
point in time. In case 1 factors external to the component and its development
invoke technical debt, and it may realize and invoke management needs at a
point in time. In case 2 technical debt has realized (its interest probability is
one, or a decision to remove the debt has been made) and it affects the project.
In this scenario, the debt will propagate onwards, directly or through interme-
diaries, and accumulate in dependants. Accumulation channels are addressed in
Figure 3.

The classification in Figure 2 is important for distinguishing technical debt
inclined software change, as we must be able to distinguish between invoked
change (case 2) and internally accumulated debt (case 1 and 3). This is because
the monolith projects (see Figure 1) are able to internally accumulate technical
debt, and we must form the baseline whilst aware of this.

In addition to source code, open-source projects provide access to documen-
tation and other descriptors. Of these, the social media enabled ones form a set of
projects that share a joint technical debt inducer: the social media APIs. These
APIs provide business critical functionality for the projects, and every time they
change, it causes several changes for their clients. Due to the massive adoption
of social media services, their APIs (e.g., the Facebook Graph API ? and the
Google OpenID API ?) integrate into and affect a vast amount of projects. This
diverse collection of technologies, which all connect to the APIs that now cause
changes for them, unveils a unique opportunity for technical debt research. As
the changes propagate through various different technologies, they demonstrate
a variety of technical debt propagation paths. Whilst our survey on to the social
media involved open-source does not capture the full propagation space, par-
ticularly, propagation to business processes, it does yield a formidable library
for the propagation of technical debt in delivered software and its supporting
structures. Considering that usually this corresponds to the projects’ delivered
value, research should have a special interest to it.

Figure 3 demonstrates two channels, from a plethora of foreseeable options,
through which technical debt can propagate and accumulate in new components.
The upper channel captures a more problematic propagation method, in which
no explicit dependency exists. In this, accumulated technical debt in the form
of incomplete documentation causes a misunderstanding in a conceptualization
phase of software development and leads to a complex component design. The
lower channel demonstrates an explicit channel, where an interface change is felt
in the dependent project as component disconnection. For example, a referred
class is renamed in the service due to which the client can not access it in the
original fashion. This leads to an erroneous implementation state in the depen-
dent and undoubtedly invokes reparation efforts. In our MSR of open-source
projects, over going both the human-produced messages and the automatically

2 See http://graph.facebook.com/

3 See https://profiles.google.com/

289



SPLST'15

_AY /N\

1 Incomplete = Misunderstanding CComplex
Documentation s e T == m m e = = =P omponent
1 i <<Conceptualization>> Design
- -
Component disconnection Erroneous
juicrace ) Implementation

Change \ <<Dependency>> / State

Fig. 3: Two examples of technical debt propagation channels

identified changes should reveal instances that fit both channels shown in Figure
3, but due to its implicit nature, identification of cases in the upper channel will
be difficult.

4.1 Study Approach

We use the GitHub API through PyGithub/PyGithub library 4. Our crawler is
a Python program ® designed to crawl through all commits of a given project
and report, for each commit, the date it was committed, the amount of changes
(as the amount of added and removed rows), and the changed files. As such, our
crawler is in itself an end part of a COP.

For an initial test of concept we chose Google’s closing of OpenlD 2.0 service
on April 20*" 2015 [4] as a source of technical debt. We made a manual search
in GitHub and discovered two Java projects which had closed issues mention-
ing Google closing the service. One was the Passport-based User Authentication
system for sails.js applications—GitHub repository tjwebb/sails-auth. The other
was a Grails website that provides information about festivals—GitHub reposi-
tory domurtag/festivals. For a control project we selected another Java project
that was similarly a user authentication system for sails.js as sails-auth, but
did not appear to be involved with Google services—GitHub repository water-
lock/waterlock

4.2 Initial Results

Our analysis produced the graphs shown in Figure 4.The blue colour is used for
sails-auth, red for festivals and cyan for waterlock. The X-axis marks the time.
The dots denote the amount of changes in a commit. The bars denote commits

4 see https://github.com/PyGithub/PyGithub and in similar fashion for the other
mentioned repositories as well
® GitHub repository tomibgt/GitHubResearchDataMiner

290



SPLST'15

Removal Time
(May 20, 2015)

10"

0
3% 2012 01

Removal Time
(May 20, 2015)

Removal Time
(May 20, 2015)

0
59\: 2014 Nov 2014 Dec 2014 Jan 2015 Feb 2015 Mar 2015 Apr 2015 May 2015 Jun 201¢

Fig. 4: Commit amount analysis for the three selected GitHub repositories

291



SPLST'15

for a time period at least a week long. The lines denote commit frequency for
previous time interval of at least a week. Finally, on the graph is marked the
date-of-interest, April 20th 2015.

The lines show a general decline, which would appear to indicate that as a
project progresses, less and less changes are made for it. Note that the Y-axis is
logarithmic, which makes the lines curve down, instead of appearing linear.

It would appear to be supporting our hypothesis, where, after the marked
date, sails-auth and festivals show decrease in the decline, unlike the control
project waterlock. With only three projects and without more precise investiga-
tion we can not, of course, claim this to be strong evidence, but it is enough to
encourage us in continuing with this approach.

Table 1: Commits for the festival reposi-
tory file show.gsp around Removal Time

Time Add Remove Delta

5/18/2015 0 2 9 Table 2: Technique-wise recorded changes
5/18/2015 7 12 -5 around Remowval Time

4/19/2015 3 1 2 Type Add Remove Delta
4/19/2015 14 0 14 js 86 2 84
12/29/2014 11 6 5 gsp 35 3 32
12/29/2014 2 2 0 jpg .

12/29/2014 2 1 1

12/28/2014 7 3 4

12/28/2014 8 14 -6

With moderate work, the analyser can be modified to point out the files where
there has been increasing changes in the commits correlating to the investigated
events. (See Tables 1 and 2.) Looking into the changes made into these files
should help us to analyse further the effort put by the programmers to pay the
specific technical debt. Also, it should be possible to follow the wave of changes
throughout the COP and analyse the propagation of the debt and the involved
work and communication.

5 Applicability and Limitations

The aforedescribed approach is limited by certain factors which we would like
to address here. Firstly, we described this method as a possibility to explore the
complete software context space, but the study design suggests using service calls
to, especially social media, APIs and libraries as the method. It can be assumed,
as previously discussed, that this approach does not capture all possible varieties
of software change (see 2.2). This is a foreseeable data limitation even though it
can be argued that the volume of captured changes would produce a represen-
tative set for analysis; accumulating enough assurance to allow abstraction to
non-captured context areas.

292



SPLST'15

Second, there are limitations potentially affecting the identification of techni-
cal debt instances. We discussed the technical debt properties which can be used
to associate a software change with managing technical debt. While this set of
properties currently accounts the state-of-the-art from technical debt research,
if not exhaustive, the properties may lead to missing particular sub-classes of
technical debt. Approach discussed in the following paragraph, can be considered
a partial remedy to this.

Finally, foreseeable limitations may also affect the tracking of technical debt
instances. As a premise for tracking, [6] showed the instances’ ability to span over
multiple components. Modelling of the chain of projects was introduced as the
method to allow capturing this behaviour. The current classification presented
in Figure 1 considers one dimension for the COPs—presumed to be the most
dominant. This classification can be a limiting factor, especially in large hybrid
COP projects, but we argue that this can be countered by iteratively exploring
more dimensions for the COPs until all technical debt inclined changes have
been successfully associated to the technical debt instances.

Overcoming the limitations and achieving the study’s objectives, there is a
number of applications for the results (discussed in Section 3.1). Firstly, demon-
strating technical debt’s ability to propagate, almost boundlessly, between soft-
ware projects and artifacts should fuel the apparent paradigm shift in software
life-cycle management where the inter-connectivity of software project entities
carries increased value. Second, documenting the ways in which technical debt
can propagate should provide an interface for integrating knowledge from other
research domains to enhance technical debt management by for example ap-
plying financial models for technical debt strategization. Lastly, associating the
documentation’s technical debt propagation channels with information regarding
their value accumulation allows automated tooling approaches to be introduced,
but also makes technical debt an integral and explicit component of the software
project’s value production and its assessment.

6 Conclusions and Future Work

With similar studies in the future, using different event markers, it is possible
to map the propagation of technical debt by observing the amount of increased
work caused by different causes of technical debt. It is possible to observe who
pays the technical debt and how it is propagated from the original cause (e.g., a
change in a fundamental library used by many projects) through facade libraries
and components to the final applications.

In an effort to efficiently analyse the propagation of technical debt through
propagation channels, a taxonomy of projects in GitHub should be created to
help characterize and predict the characteristics of the projects. To this end,
and to achieve the goals stated herein, we have analyzed over twenty-eight thou-
sand projects from GitHub and have successfully identified a number of projects
with references to suitable external services. According to Lambe [11], even tax-
onomies founded on criteria that do not stand all scrutiny, can allow for reliable

293



SPLST'15

predictions and descriptions of characteristics of new members of the taxonomy
based on very little information. A well created taxonomy combined with our
expected mining results should help us identify different propagation channels
within the projects without even analysing them at the code level. Should we
find two or more clusters of different kinds of change behaviour within a single
taxonomy class, it could suggest that the propagation channels between these
clusters differ from each other.

There can, of course, be other causes to variance within a class. For example,
it would be beneficial to have the information of the process maturity level for
each project team. This kind of information would be significant in understand-
ing the project’s sensitivity to external changes and the general preparedness
and carefulness in the design. [17]

Such work would provide us with a better understanding of the economy of
technical debt, which again would help us give good estimates on the actual
costs of applying, for example, social media APIs in an application system and
compare it with the projected benefits and income. It would help in answering the
question: would applying certain features increase the revenue from the service.

Acknowledgment

J. Holvitie is supported by the Nokia Foundation Scholarship and the Finnish
Foundation for Technology Promotion, the Ulla Tuominen Foundation, and the
Finnish Science Foundation for Economics and Technology grants.

References

1. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCor-
mack, A., Nord, R., Ozkaya, 1., et al.: Managing technical debt in software-reliant
systems. In: Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research. pp. 47-52. ACM (2010)

2. Cunningham, W.: The WyCash portfolio management system. In: Proceedings Ad-
dendum for Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA). pp. 29-30. No. 22 (1992)

3. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in github: transparency
and collaboration in an open software repository. In: Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work. pp. 1277-1286. ACM
(2012)

4. Google Developers: Migrating to google sign-in (2015),
https://developers.google.com/identity/sign-in/auth-migration

5. Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Da Silva, F., Santos,
A., Siebra, C.: Tracking technical debt - an exploratory case study. In: 27th IEEE
International Conference on Software Maintenance (ICSM). pp. 528-531. IEEE
(2011)

6. Holvitie, J., Leppénen, V., Hyrynsalmi, S.: Technical debt and the effect of agile
software development practices on it-an industry practitioner survey. In: Sixth
International Workshop on Managing Technical Debt (MTD). pp. 35-42. IEEE
(2014)

294



SPLST'15

10.

11.

12.

13.

14.

15.

16.

17.

18.

Izurieta, C., Vetro, A., Zazworka, N., Cai, Y., Seaman, C., Shull, F.: Organiz-
ing the technical debt landscape. In: Third International Workshop on Managing
Technical Debt (MTD). pp. 23-26. IEEE (2012)

Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice 19(2), 77-131 (2007)
Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. pp. 92-101. ACM (2014)

Kruchten, P.; Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory
and practice. IEEE Software 29(6) (2012)

Lambe, P.: Organising knowledge: taxonomies, knowledge and organisational ef-
fectiveness. Chandos Publishing (2007)

Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193-220 (2015)
McConnell, S.: Technical debt. 10x Software Development Blog,(Nov
2007). Construx Conversations. URL= http://blogs. construx.
com/blogs/stevemcc/archive/2007/11/01 /technical-debt-2.aspx (2007)

McGregor, J., Monteith, J., Zhang, J.: Technical debt aggregation in ecosystems.
In: Third International Workshop on Managing Technical Debt (MTD). pp. 27-30.
IEEE (2012)

Schmid, K.: A formal approach to technical debt decision making. In: Proceed-
ings of the 9th International ACM SIGSOFT Conference on Quality of Software
Architectures. pp. 153-162. ACM (2013)

Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetro, A.: Using
technical debt data in decision making: Potential decision approaches. In: Third
International Workshop on Managing Technical Debt (MTD). pp. 45-48. IEEE
(2012)

Suenson, E.: How Computer Programmers Work — Understanding Software Devel-
opment in Practise. Ph.D. thesis, Turku Centre for Computer Science (2015)
Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for eval-
uating contribution in github. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 356-366. ACM (2014)

295



	splst15_proceedings_paperit_headerilla
	9999990281


