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Abstract. This paper describes the winning solution to the Taxi Trip
Time Prediction Challenge run by Kaggle.com. The goal of the compe-
tition was to build a predictive framework that is able to predict the
final destination and the total traveling time of taxi rides based on their
(initial) partial trajectories. The available data consists of all taxi trips
of 442 taxis running in the city of Porto within one year. The presented
solution consists of an ensemble of expert models combined with a spa-
tial clustering approach. The base classifiers consist of Random Forest
Regressors where as the expert models for each test trip where based
on a combination of gradient boosting and random forest. The paper
shows how these models can be combined in order to generate accurate
predictions of the remaining traveling time of a taxi.
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1 Introduction

The goal of the Taxi Trip Time Prediction Challenge run by Kaggle.com was to
build a predictive framework that is able to predict the final destination and the
total traveling time of a taxi. Due to change from VHF-radio dispatch system
to an electronic dispatch system in Porto in recent years, most drivers don’t
indicate the final destination of their current trip. With a predictive framework
the taxi central is able to optimize the efficiency of their electronic dispatch
system.

Multiple works in literature have investigated operational dynamics of taxi
services (see [2] for a survey). The goal is to use the taxi trajectories to look for
common patterns, which can be used to optimize the taxi service. For example,
Liu et al. used spatiotemporal patterns to explore driving behavior differences
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between top and ordinary drivers [8]. The work presented in [10] uses short-term
forecast models to predict passenger demand patterns over a period of time in
order to increase the profitability of the taxi industry.

In general, the driving behavior of people is very repetitive because of daily
routines and therefore the final location of a trip can be predicted most of the
time with high accuracy [5]. On the other hand, taxi drivers serve a diversity
of passengers, and the final destination of the taxi can be anywhere in the city.
Thus, the prediction of the final destination of a taxi based on the initial tra-
jectory is quit difficult. However, there are some patterns which most drivers
obey. For example, most taxi drivers use the fastest path to the final destina-
tion. Given only a part of the trajectory, the continuation of the track is subject
to a range of factors, including the current position, the type of the road the
taxi is (e.g. highway or not), the current time, weather conditions, and calendar
effects. Some of these factors can be inferred from the trajectory itself (e.g. speed
is an indicator if the taxi is currently on a highway), others could be derived
from the separately delivered meta data. Consequently, the task was to find high
level features which are a good representation of a partial taxi trip.

2 Problem Statement and Main Idea

The final destination of a taxi trip and also the remaining driving time depends
strongly on the last position of partial trajectory of the trip. For example, the
last known position of the taxi for trip 15 of the test set is on the highway close
to airport and it is very likely that the final position of the taxi will be at the
airport. The top left plot of Figure 1a shows the end locations of all taxi trips
(red) in the training set which cross the end position of the partial trajectory of
T15 at some point in time. The plot shows that most but not all of these trips
are indeed going to the airport. A precise prediction of the final destination as
well as for the remaining traveling time (see Fig. 1b) is feasible.

Unfortunately, not all positions are equal predictive. For trip T50 (upper left
plot in in Fig. 1), the dependency between the last known taxi position (black
dot) and the final destination (red) is not as strong as for trip T15 and therefore
only some broader tendency can be inferred. The left bottom plot shows the
final destinations for trip T312. Taxis which cross the marked position (black)
basically go to all parts of the city. A precise prediction is not feasible. Although
a closer look at the data reveals, that tracks with a certain initial length (e.g.
number of points > 30) show a clear spatial pattern (right bottom plot in Fig.
1). This is also true for the prediction of the remaining traveling time, as Fig. 1b
shows. For trip T15 the histogram of the average length of the trip to the end
position shows a clear peak, whereas for the other three trips the distribution is
much broader.

From these observations the following framework is derived. It consists of a
hierarchy of expert models where in the first layer an expert model for every
trip in the test set is generated. On the next level a combination of some base



(a) Taxi trip end positions

(b) Travel time

Fig. 1. a) Start (green) and end (red) positions of all taxi trips in the training set,
where the trip crosses the lsat known position (black) of the selected test trip. The
dotted rectangle shows the main area of Porto. b) Histogram of the total trip length
and the remaining trip length of the test trip shown in a).



models is generated and used when the size of the training set of the models in
the first layer is too small. In particular the following were trained:

– Expert models for each test trip (e.g. trained on tracks which cross the test
trip at the last known position).

– General base model: Based on a data set, where the features were extracted
from all the tracks in the training set, and longer tracks were sampled more
frequently than shorter ones.

– General expert models for short trips (e.g. only 1, 2 or 3 positions of the
initial trajectory are known).

2.1 Methodology

On many competitions on Kaggle.com as well as in the literature it has been
shown, that an ensemble of learning algorithms achieves a better performance
than any single one in the ensemble [3, 12]. The framework of this paper follows
the same approach and integrates different base models and track dependent
models for the prediction of the remaining traveling time. As base classifiers
either a random forest regression [1] or a gradient boosting regression [4] has
been used. All models are trained using a 5 fold cross-validation technique. For
both classifiers the implementation within the python package scikit-learn[11]
has been used.

The ensemble prediction is modeled as follows:

Yi(xi) = wiEi(xi) +
3

∑

j=1

vijSj(xi) + uiB(xi) (1)

where

– Ei(xi) is the expert prediction for the remaining traveling time or the final
destination trained for the last position of the sample track xi, respectively;

– Sj(xi) is the prediction of the general short trip expert classifier, trained on
all trips in the training data set using only the j first GPS positions;

– B(xi) is the prediction of the general base model trained on sampled trips
from the data set;

– wi, vij , and ui are the corresponding weight factors.

Ideally, the weight factors are tuned on a hold out test set with Bayesian Op-

timization as proposed in [7]. However, because of time constrains, the weight
factors for the winning submission are set after carefully inspection of the cross
validation plots in the following (heuristic) way:

– For all test trips with a sufficient large training set for the expert model, the
prediction of the expert model was used (e.g. for the final submission to the
contest wi = 1 and vij , ui = 0 for all trips where the number of samples in
the training set was above 1000 and wi = 0 otherwise).

– For all other test trips the prediction was a blend of the different base models.
For the final submission the prediction was the average of all four models if
the trajectory length was below 15 (e.g. vij = 0.25, ui = 0.25) and otherwise
the prediction of the general base model B(xi) with weight ui = 1.



2.2 Data Acquisition and Preprocessing

The training dataset used for this competition is available from [9]. It consists of
all the trajectories of 442 taxis running in the city of Porto within one year (from
01/07/2013 to 30/06/2014). Each taxi has an telematic system installed, which
acquires the current GPS position and some additional meta data: (1) CALL TYPE,
which identifies the way the taxi service is demanded. (2) ORIGIN CALL: Unique
id to identify the caller of the service. (3) ORIGIN STAND: Unique id to identify
the taxi stand. (4) TAXI ID: Unique id of the taxi driver. (5) TIME STAMP: Start
time of the trip. (6) DAY TYPE: Identifier for the day type of the trip’s start.
(7) MISSING DATA: Indicates if partial data of the trip are missing. A detailed
description of the dispatching system and the data acquisition process can be
found in [10]. For the time prediction task only the LATITUDE and LONGITUDE

coordinates of the taxi trips and the TIME STAMP attribute are used.
The training set contained a lot of very short trips as can be seen in the

left plot of Figure 2, which shows a histogram of the total trip length. The high
fraction of trips less than 4 does not follow the general type of the distribu-
tion, and were therefore excluded them from the analysis. Another type of error
that occurred frequently was misread GPS coordinates, which increased the cu-
mulative trip length considerable. They were excluded by cutting of very long
distance trips. The threshold was set such that 0.1 percent of the longest trips
were removed. The remaining trips were used for the generation of the model
specific training sets.

The following features were used to describe a taxi trip in the training set.
(1) WORKING DAY: Derived from the time stamp attribute it indicates the week
day the trip started (0-6: Mon-Sun). (2) HOUR: The current hour the trip started
(from 0 to 23). (3) TRIP LENGTH: The number of GPS readings. (4) XS: Lati-
tude coordinate of the trip start location. (5) YS: Longitude coordinate of the
trip start location. (6) XC: Latitude coordinate of the current taxi position (e.g.
cut-off location). (7) YC: Longitude coordinate of the current taxi position. (8)
DIST CC: Harversine distance from the taxi start position to the city center. (9)
DIRECTION CC: Direction from the start position to the city center (in degrees).
(10) DIST TX: Harversine distance from the city center to the current taxi posi-
tion. (11) DIRECTION TX: Direction from the city center to the current position
of the taxi (in degrees). (12) CUM DIST: Cumulative distance of the taxi trajec-
tory from start to current location. (13) MED V: Median velocity of the taxi from
start to current position. (14) VEL: Current velocity of the taxi. (15) HEADING:
Heading of the car at the current position (in degrees).

The training sets of the different models were generated as follows:

– Base model: The training set contained all trips. The current position of
the taxi was determined by randomly cut-off the trajectory in between (uni-
formly). The right plot in Figure 2) shows the distribution of the trip length
up to the cut-off position (blue curve) in comparison with the trip length in
the test data set (black dotted line). The number of short trips is consid-
erable higher as in the test set, because the test set contains a snapshot of
the current network status on 5 specific time points and is therefore more



Fig. 2. Left plot shows the distribution of trip lengths. Right plot shows the trip length
of the training set after sampling. More frequent sampling of longer trips decreases the
number of short trips in the training set and the resulting distribution more similar to
the test set distribution (black dotted line).

likely to include longer trips. To correct for the different sampling mecha-
nism, more samples were drawn from longer trips. Figure 2 shows that by
increasing the sampling frequency for longer tracks linearly with trip length,
the frequency of short trips can be reduced. The resulting distribution is
closer to the one of the test set (black dotted line).

– Expert models for short trips: For every expert (trip length is 1,2,3 or 4) a
separate training set was build using only the first few GPS readings of all
trips. For the data set which is based only on the start position (trip length
= 1), some of the features can not be calculated (e.g. velocity) and were
therefore excluded from the data set.

– Expert models for each test trip: Here a spatial clustering approach was used
in order to select all the trips which were close to the current position of the
taxi [6]. A trip in the training set was selected if there was a GPS position
in the trajectory with a distance smaller than 50m to the last known taxi
position. The trajectory up to this position was than used to calculate the
track features.

3 Results and Discussion

3.1 Taxi Trip Time Prediction

The performance of the different models is measured using the Root Mean
Squared Logarithmic Error (RMSLE) on the left out fold of the cross validation.
The RMSLE is calculated as

√

1

n

n
∑

i=1

(log(pi + 1)− log(ai + 1))2 (2)



Fig. 3. Left plot shows the cross validated prediction error of the base model as a
function of trip length. The Random Forest Regressor (RFR, blue) performs slightly
better than the Gradient Boosting Regressor (GBR, red). The predictions of the short
trip experts (blue (RFR)/red (GBR) circles) are considerably lower than the predic-
tions of the base model. The right plot shows that models trained on a selection of the
training set with fixed trip length (cyan curve) do not perform better than the actual
base model trained on the whole data set (see text for further details).

where

– n is the number of trips in the left out fold of the cross validation;
– pi is the predicted time of taxi trip i in seconds;
– ai is the actual time of taxi trip i in seconds;
– log is the natural logarithm.

Figure 3 summarizes the result. The left plot shows the prediction error of
the Random Forest Regressor (blue curve) and the Gradient Boosting Regressor
(red curve) as a function of the initial trip length for the base model. The error
decreases fast to values below 0.3 because of the logarithmic transformation of
the predicted travel times in the error function. The prediction error is especially
high for very short trips, because very little information can be gained from the
first few points. Because of the sampling strategy used to generate the training
set for the base model, the number of short tracks is rather slow. It makes sense
to leverage the information of the whole data set by training specialist models
utilizing only the beginning of all the tracks. The prediction error of these models
is shown with blue (RFR) and red (GBR) circles in the plot. The prediction error
is considerably lower, which indicates that the classifier is able to generalize more
strongly from the increased size of the data set.

Because of the superior performance of the short trip models the question
arises whether the same performance could be achieved with the base model,
if for all the trips with the same length in the data set a single model would
have been trained. The cyan curve in the top right plot of Fig.3 shows the
predictions of these single random forest regressors. Although the training size



Fig. 4. The blue curve in the left plot shows the cross validated prediction error of the
base model (RFR) as a function of trip length. The red points show the prediction error
of a simple average prediction, if the training set is constrained on the last position of
the test trip (see text for further details). The right plot shows increase of the GBR
prediction error relative to the RFR error for the models trained on the last known
taxi position. For a training set size above 4000 (blue line) the GBR is slightly better
than the RFR.

of these individual RFR was around 106, the RFR trained on all the data (1.6
million) performed slightly better. Thus, a higher number of data points in the
training set allows for a better approximation of the posterior distributions and
thus for a more precise prediction.

Interestingly, a different behavior was found for the experts based on the last
observed position. Since the last position of the taxi can be very indicative for
the final destination (see left top plot in 1a), it makes sense to investigate this
relationship further. A simple base line estimator for the total traveling time
would be the current traveling time plus ti the expected mean of the remaining
traveling time of all trips with the same length.

ŷi = ti +
1

n

n
∑

j=1

(yj − tj) (3)

Figure 4 shows in the left plot the prediction error of the base line estimators
(red) against current trip length. For comparison, the prediction error of the base
model (RFR) is added in blue. The Fig. shows nicely, that for many trips the
simple baseline estimator outperforms the base model. Unfortunately, because
of the restriction on the last position and the trip length, the data set size
is greatly reduced. Therefore the expert models were trained only on the last
position constrain.

For the base models the random forest regressor performed slightly better
then the gradient boosting regressor for all but the single position case (see
Fig.3). However, for the models trained on the end position of the trajectory the



Fig. 5. Left plot shows the cross validated prediction error of the base model (RFR)
as a function of trip length. The red stars indicate the prediction error of the base
line estimators. The right plot shows the prediction error for three last position expert
models plotted against initial trip length. At some cut-off positions a longer initial
track can lead to dramatically reduction of the prediction error (blue and red curve).
See text for further details.

gradient boosting regressor performed slightly better if the size of the training
set was above 4000 (see right plot in Fig.4). Since the difference in performance
is very small, no further investigations in this direction have been carried out.

3.2 Taxi Trajectory Prediction

The framework for the final destination prediction was the same as for the travel
time prediction. For the trips with sufficient training data the expert model based
on the last known position is used. For the other trips, the predicted position
was the weighted average of the single base models. The evaluation metric for
this task was the Mean Haversine Distance between the predicted and the true
position. It was calculated as follows:

a = sin2
(

φ2 − φ1

2

)

+ cos(φ1) cos(φ2) sin
2

(

λ2 − λ1

2

)

(4)

d = 2 r arctan

(√

a

1− a

)

(5)

where φ is the latitude, λ is the longitude, r is the Earth’s radius, and d is the
distance between the two locations, respectively.

Figure 5 summarizes the result. The left plot shows the prediction error
of the Random Forest Regressor (blue curve) as a function of the initial trip
length for the base model. The error decreases fast to values below 3.0 because
very little information can be gained from the first few points. Differently to
the time prediction case, the error start to increase around a trip length of 50



because longer trips are more likely to go outside the main city center leading
to considerable higher prediction errors. Similar to the previous section, the red
stars in the left plot show the prediction error of a simple baseline estimator
trained on a selection of the training set (e.g. based on the last position and trip
length). For some test trips the predicted error decreases dramatically compared
to the base model. Further investigations revealed, that for certain trips the
initial trip length is a very strong indicator for the final destination. The right
plot of 5 shows the dependency of the prediction error on the initial trip length.
Especially for positions close to a sightseeing location, shorter trips indicate taxis
going away from it, where as longer trips are likely to end up there (see also Fig.
1a).

4 Conclusion

The remaining traveling time of a taxi depends mainly on the current position
and heading of the taxi. For some parts of the city the prediction of final des-
tination can be very precise, for others only a tendency can be obtained. The
specific nature of the used error function in the Kaggle competition made it nec-
essary, to predict very short trips with high precision since they were weighted
considerably higher in the final score. For the optimization of a taxi dispatching
systems, however, the very short trips are of less importance, since the informa-
tion gained based on some additional observed points is high. Thus it is very
likely that there is a taxi cab close by with a considerable longer trajectory,
which allows for a more precise prediction in this case.
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