
A “Case Mining”-based Recommender System for

Knowledge Workers

Sebastian Huber1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg,

Lange Gasse 20,

90403 Nürnberg, Germany

Sebastian.Huber@fau.de

Abstract. Knowledge workers solve problems, which are usually non-routine

and where no standardized solutions can be applied. During the problem-

solving process, the overarching task is broken down into a sequence of

activities. To support the coordination of these steps Adaptive Case

Management (ACM) emerged as a novel paradigm in Business Process

Management research. However, current ACM systems lack in supporting the

decision making of knowledge workers to prioritize their activities. The

objective of this research in progress is to consolidate different approaches in

process mining literature and integrate them as an activity recommender system

into an existing ACM tool. Based on 25 sample cases, different predictive

models are created to recommend actions to shorten case running time, to

mitigate deadline violations, and to support case goals. A preliminary

evaluation of the models indicates moderate positive results regarding their

accuracy. In addition, starting points for further improvement are discussed.

1 Motivation

The nature of knowledge work is neither routine nor predictable, and therefore

requires human judgment by the knowledge worker [1]. Therefore, knowledge

workers face different challenges in their daily working context. For example,

questions like what actions they should perform next, what actions contribute in

achieving their project goals and to whom a certain task should be assigned.

Without guidance, knowledge workers face a high complexity in such decisions.

They may choose a non-optimal action leading to delays, deadline violations, or an

inefficient utilization of resources. To reduce this complexity and to guide knowledge

workers, decision support is essential. A common approach is to provide prediction

and recommendation capabilities to help the knowledge workers determining the

optimal order of actions for a certain case.

In recent years, process mining emerged from process model discovery to

operational support. Originally, process mining “aims to discover, monitor, and

improve real processes by extracting knowledge from event logs readily available in

today’s information systems” [2]. However, the original approach can only be used in

offline settings, i.e., after process execution. New types of process mining suggest an

173

operational deployment. That includes types of process mining that check the

conformity of currently running process instances, predict their future state, and

provide recommendations for appropriate next step actions [3].

Research already has shown the applicability of process mining for generating

predictions and recommendations with promising results. These concepts may be

applied to the field of knowledge work as well. The goal of this research is to

consolidate current process mining approaches and integrate them in an executable

ACM prototype that gives predictions and recommendations based on running case

instances. That means that this happens in a flexible environment with no predefined

processes, i.e., where the process outcome is highly depended on the executing

subjects, the knowledge workers.

2 Research Methodology

To support the achievement of case goals in the domain of ACM, this paper provides
an approach for optimizing the execution of cases, based on a next step recommender
system. It follows the idea that a complex system (with non-linear relations between its
parts), like multiple knowledge workers executing multiple cases collaboratively,
cannot be optimized globally. Therefore, it follows a divide-and-conquer inspired
approach: By emphasizing the knowledge worker’s importance and the enhancement
of their task sequences, all cases are more likely to get completed in time.

For its realization, a recommendation system is utilized. Contrary to other
application areas, e.g., the recommendation of products in a web shop [4], the
recommended items are steps to be executed next. Therefore, the underlying
mechanisms are located in the data and process mining field of research.

First predictions have to be made, how long cases are estimated to run, which case
goals may not be achieved, and which deadlines may be violated. Based on these
predictions, recommendations can be derived, which tasks should be handled
immediately. Finally, the presented approach offers the possibility to shape
personalized processes dynamically, based on the knowledge workers’ interactions.

Summarizing, the research methodology follows a three-step approach: In the

following, publications from different research areas regarding predictions and

recommendations are discussed (1). Based upon the literature review, the conceptual

approach for a software prototype is depicted and implemented (2). Finally, the quality

of the prototype is evaluated (3).

3 Related Work

There is only sparsely literature available on mining case associated data for
predictions and recommendations, due to the youth of ACM as a field of research.
Therefore, different relevant research areas are presented in the following: case
management related work, workflow and process mining approaches as well as
concepts regarding case-based reasoning (CBR). Finally, the applicability of the
available approaches is discussed shortly.

174

The only case management system that offers recommendations is the IT Support
Conversation Manager (ITSCM) found in [1]. It allows the recommendation on best
next steps and experts to invite in current running cases by analyzing previous case
resolutions. The ITSCM architecture consists of two major components: annotated
model discovery and steps/experts recommendation. The annotated model discovery
component analyzes previous cases in a repository and constructs an annotated step
flow model. The steps recommendation component takes a currently running case and
tries to match it into the annotated step flow models. Afterwards, it creates an ordered
list of recommended steps and suggests IT staff members that have performed such
task in the past. Performance tests reveal an advantage of pre-building the model
offline, and using this model for generating recommendations at run-time, rather than
building the model ad-hoc. The approach focuses of next item recommendations in the
case management domain. Evaluation has shown that adding case-related information,
such as type, title, or tags, lead to more relevant recommendations compared to adding
only process-information. Performance tests reveal an advantage of pre-building the
model offline, and using this model for generating recommendations at run-time, rather
than building the model ad-hoc.

Contrary, mining previously executed process instances is extensively discussed in
the process and workflow mining literature. [5] propose a service that gives
recommendations on possible next steps during process execution of a partial case and
process instance respectively. This is done by considering specific optimization goals
of similar process executions. Following this approach each business process is
described as a process model loaded into a process-aware information system (PAIS).
The PAIS runs single process instances and records information about executed
activities in event logs during run-time. Those event logs are later used by the service
to generate recommendation results. For this purpose, the service requires information
about the currently executed partial case, i.e., currently enabled activities and the
partial trace of executed activities in the past. With this information, the
recommendation decides what activities to perform. The final recommendation for an
executed activity is then calculated by a “do value”, the expected outcome of the target
value when an enabled activity is executed, and a “don’t value”, the expected target
value of not executing the enabled activity. Finally, differently executed activities are
collected in an ordered recommendation result and returned back to the user.
Experiments on the recommendation service have shown that the more heuristic
information are used, the better the quality of the recommendation. The performance of
their system depends on process characteristics and the degree of abstraction. For
instance, by comparing the cycle times of traces generated by the different abstractions
and randomly created traces, the prefix abstraction of events outperforms random
samples, set abstractions and multi-set abstractions. In general, it has been shown that
goals, such as cycle times, can be reduced through the support of recommendations [5].
[5] investigated different cycle time predictors using historic information from event
logs. Their goal is to answer questions about the completion time of a process instance
by using the average cycle time and deducting the remaining cycle time considering
the past time of the case. However, this approach is not sufficiently accurate. Hence,
they additionally define different non-parametric regressions: Activity occurrence
estimator, activity duration estimator, case attribute estimator and a combined
regression estimators. The activity occurrence estimator determines the remaining
cycle time based on the occurrence of activities. The activity duration estimator uses
duration of each activity for remaining cycle time calculation. The case attribute
estimator applies case data attributes from event logs as ordinal variables to estimate

175

the remaining cycle time. The combined regression estimators multiplies all three
estimator’s kernel functions that is then used in the regression. Experiments show that
regression estimators from [5] outperform the average cycle time estimator with case
attribute and combined estimators as the best-performing ones.

[7] coined the term predictive workflow management. They argue that the
integration of predictions into workflow enactment benefits in improved workflow-
related decisions, such as decisions on setting execution time of single workflow steps
or completion time of the whole workflow. They demonstrate a concept that can assign
a deadline, i.e., the completion time, to workflows through predictions, and is able to
escalate when a deadline violation is foreseeable. A similar framework can be found in
[8]. This approach ensures that process deadlines are met and no time constraints are
violated by computing activity deadlines. More precise, it checks at build time for time
constraints and constructs a timed activity graph that includes deadline ranges. This
graph is extended on process instantiation times with concrete deadlines. It monitors on
run-time whether a given time constraint for remaining activities is satisfied based on
already executed activities and activity completion times. On deadline or time
constraint violation it triggers exception-handling activities (escalation).

CBR is a research topic that has gained attraction in the 1990s. According to [9] "a
case-based reasoner solves new problems by adapting solutions that were used to solve
old problems". By this definition, a case-based reasoner finds cases that solved similar
problems in the past and adapts previous solutions to the current problem. [10]
developed a CBR cycle. First one or more past cases are retrieved to solve the problem.
Then, the information and knowledge in the previous case are reused to solve the
problem. Next, the proposed solution is revised and confirmed. Finally, experiences
made by applying the solution are retained for future problem-solving. CBR suggests
solutions to knowledge workers, which they can use as a guidance for next steps. The
integration of CBR in operational systems, like workflow management systems, has
been introduced [10]. In their prototype a workflow is extended with conversational
CBR, an interactive system that retrieve a similar case for problem solving and
exception handling through question-answering sequences. That allows dynamic
changes of the predefined process model and provides learning capabilities for process
model improvements.

Overall, only one solution focuses on collaborative knowledge-intensive processes.
Most other approaches are tailored to scenarios that are characterized by pre-definable
business process models that are run by process engines. Such solutions are suitable for
executing predictable routine work, but only restricted in unpredictable knowledge-
intensive processes. No existing approach is meeting requirements of a context where
flexibility and autonomy of the executing knowledge workers is essential.

4 Concept

The objective of this paper is to adapt existing ideas in the literature to knowledge-

intensive processes in ACM. Due to the unique challenges in the context of ACM, this

chapter will introduce a concept that uses combined multiple approaches for

considering various perspectives for suggesting next step predictions and

recommendations for guiding knowledge workers during case handling.

176

4.1 Architecture

The prototype consists of three main parts: The event log generator, the model

builder, and the predictor/recommender (cf. Figure 1). The event log generator

produces log entries, which represent the subject’s activities in a standardized XES

event log format. Those logs are based on historic events and operational data from

the ACM system. The event logs are used by the model builder to construct

underlying models based on different approaches. Those models are merged into a

composite model, which is capable of predicting possible future states and

recommending items based on various process and data mining techniques.

Fig. 1. Architecture overview

Event Log Generation: The event logs are generated based on different data sources

within the application. Therefore a classical extract, transform and load (ETL) process

is used before the event logs are finally stored in a standardized format. A XML-

based standard, the Extensible Event Stream (XES) is used as a data format to store

the generated event logs. In the first step for the event log generation, data is extracted

from case, template, organization, user and activities data. Most relevant is the

activities data store. There, all activities which occurred on the platform are stored,

inspired by the official standardized activity streams schema. In the second step data is

transformed for operational needs. Activities are transformed into events and assigned

to traces, which are stored according to the XES format. Optionally, filtering may

happen in cases where redundant actions on business objects were recorded. Finally, in

the third step, the data is loaded to be used by the model builder.

Model Building: The model builder uses the stored activities to derive different
models. Four models covering various aspects (time, deadline, decision, and goals)
are created by applying different algorithms. Separate results are generated by every
model, before they are combined into a composite model:

1. Time-based: The first component of the composite model is a time-based

model, based on the timestamps of the recorded log-file entries. The time-

based model can look for similar events and return the remaining time (or

177

average remaining time) as a prediction. Based on the history of events in

other cases, the following event with the smallest expected remaining time is

selected and then recommend to the user. Thereby, the likelihood for delays

regarding the running time of case is considerably reduced. The model is

represented as an annotated transition system according to [3].

2. Deadline-based: The deadline-based model is an extension to the time-based

model. It takes the possible violation of case deadlines into consideration.

Predictions are made to identify possible deadline violations. Then

recommendations are made which tasks should be completed to avoid a

deadline violation.

3. Decision-based: During the progress of a case, knowledge workers have to

make decision how to proceed. Decision mining, introduced by [4], aims to

extract rules to explain why certain choices are made. Decision points in

progress of a case are characterized by multiple outgoing paths with different

sequences of activities. Two challenges have to be mastered with regard to

decision mining: identifying decision points and finding meaningful rules

[4]. With knowledge workers shaping their daily activities, the first problem

is irrelevant, because every recorded event is the triggered result of a

decision. The second problem is a classification problem. Here decision trees

can be applied [4]. Case attributes can be used as attributes for classification

to identify class labels. For the construction of the decision tree, the

algorithm of [5] is used. The tree’s class labels as recommendations are

activities which were chosen in other cases with similar labels and therefore

should be performed by the knowledge worker in the current case.

4. Goal-based: A case always follows one or multiple goals. Tasks in a case are

linked with the goals. Therefore, the goal-based model provides next step

recommendations of activities that favor the attainment of particular case

goals. The goal-based model is based on the approach of [5]. For every

stored trace of events in the log, a target value for a case goal can be

computed. “Do calculations” are performed to determine the expected target

value if an activity is executed. “Don’t calculations” compute the expected

target value in the case that the activity is not executed. Using the results of

the calculations for events and their traces in the logs, goal-supporting

activities can be recommended.

Prediction and Recommendation: The predictor and recommender is using the models

described above, based on the current state of the running case. As each underlying

predictor and recommender outputs their respective suggestions, this component

combines the outputs into a final prediction and recommendation set by realizing the

ensemble method according to [12]. It considers the four different aspects for a

recommendation by weighting them individually. Finding the correct weights is not a

trivial task and discussed as part of the evaluation.

178

4.2 Prototype

The previously described concept is integrated in an ACM software solution called

Collaborative Case Management (CoCaMa) (more details can be found in [13]). It is

applied as a plug-in to extend the range of its functionality. The core of CoCaMa,

which directly supports collaboration, is the case workspace. With an intuitive “drag

and drop” behavior it is possible to create different lists and freely arrange all objects

that are used in the case. In that way hierarchical relationships between tasks

(milestones, subtasks) or the assignment of documents to discussions, etc. can be

realized. This is the primary part where the knowledge workers designs the different

views on a respective case. In Figure 2 an example of a task board is depicted that is

used in agile software development (SCRUM).

Fig. 2. Case Workspace

Based on that principle, two views on recommendations are available. First a

general view, recommending what steps should be executed next, without being

limited to a single case, but providing an overview of next step recommendations on

all cases. This guides the knowledge worker by generating and suggesting a subject

focused process dynamically, based on past personal actions as well as historic

actions of others. The prototype’s general view can be seen in Figure 3.

179

Fig. 3. Case-spanning Predictions and Recommendations

Predictions are presented by a progress bar that visualizes the remaining time. The

progress in green indicates the elapsed time in proportion to the total time. The

remaining space in the progress bar stands for the remaining time in proportion to the

total time. A duration indicator on the left side shows the remaining case time in days.

The two dates below the progress bar represent the starting data of the case and the

estimated completion date. The second visualization shows whether a deadline

violation occurs or not. A deadline violation is indicated by a red bar, whereas a non-

violation bar is shown in green. The duration indicator inside the visualization

demonstrate whether the case is estimated to finish earlier than the specified due date

(X days less) or to finish later than the specified due date (X days more). The dates

below correspond to today’s date, due date, and estimated completion date. The due

date is emphasized by a bold typeface. The third visualization shows the proportion of

case goals that are supported and unsupported by the current case progress. A case

goal is supported when similar cases in the past share the same goals. A case goal is

unsupported when those similar cases do not include those goals. The higher

proportion is further emphasized in green (supported) or red (unsupported) and by a

percentage value.

Recommendations are visualized in rows. A recommendation includes the

recommended item and reasons why this case item is recommended. A

recommendation row presents the case item title and its type through its icon. The

reason is shown below the title. Four reasons are possible, based on the underlying

models of the composite model: The recommendation shortens the case duration,

avoids deadline violations, supports case goals, or has been used in similar cases.

With the help of the reasons, the users can determine the benefits of the

recommendation. Besides the general view, predictions and recommendations can be

used case specific within currently running cases (cf. Figure 4).

180

Fig. 4. Case-specific Predictions and Recommendations

In addition, a settings view allows the user to set the prioritization and weights of

the algorithm parameters. Currently, the model is not build and updated continuously

to avoid performance consumption while CoCaMa is used during the day. The models

are used to make situation depended recommendations, but the update frequency can

be controlled in the settings view as well.

5 Evaluation

The evaluation of the predictive and recommendation quality is based on a

knowledge-intensive customer inquiry process. Altogether, 25 historic cases and five

running cases have been defined that follow the predefined inquiry process. The

process itself is derived from a real-world example, but the execution path has been

fictively defined with the help of experts. Those test cases are manually populated

into the database of the case management system. The prototype evaluation focuses

on three different aspects:

1. Event Log Generation Evaluation: Goal of this evaluation is to determine

whether the prototype can construct an event log. Further, the event log

should include information from the given cases and activities. The

evaluation of the event log generation is defined in four tests. The first test

creates an organization event log, the second test two template event logs,

the third test four user event logs, and a forth test five case event logs.

2. Model Building Evaluation: The evaluation of model building tests whether

all models can be built from event logs. Based on the data from the event log

generation this test builds all underlying models (time, deadline, decision,

and goal) and a combined version.

181

3. Prediction and Recommendation Evaluation: The built models are used in

this evaluation phase to examine the predictive and recommendation outputs

of the models. Case event logs of partial traces are used with a set of current

case items to generate predictions and recommendations out of each model.

The partial traces are constructed in a way that some predictions are known

beforehand. Ten major prediction or recommendation tests are provided that

describes the major scenarios in the customer inquiry process.

As a first result, the prototype is able to build all composite models and the

underlying models. As for the time-based and decision-based models, the log files

reveal that the annotation transition system contained all required nodes and edges.

The nodes hold state information and the elapsed time and remaining time

annotations. The edges contained information about preceding and succeeding states

and events leading from one state to another. Overall, the model included all

information necessary to describe the time annotated transition system. Regarding the

decision-based model building, the decision tree could be constructed by the used

Java library for machine learning, WEKA. The evaluation on the basis of WEKA,

however, revealed low accuracy of the tree. In fact, it could only predict a low amount

of the class labels correctly. This result may be due to limited availability of training

data. For goal-based models, terminal printouts show traces along with their

supporting goals.

The time-based predictor generates all expected predictions. It estimates proper

remaining times of the partial event log traces and could provide correct elapsed- and

total times. The time-based recommender provides the right recommended items that

are expected to complete the case in the fastest way. The deadline-based predictor is

able to detect a deadline violation when the due date was set prior to the expected

remaining time of the case. It also successfully detects the non-violation state of the

case. The deadline-based recommender generates some recommendations that

mitigate a deadline violation by offering items that finish the case as soon as possible.

It suggests the same recommendations as the time-based model, which indicates

redundant recommendations to some extent. The decision-based recommender only

provides one single recommendation. In the evaluation, it suggested an event that

occurred in all previous historical cases. Finally, the goal-based predictor is able to

output the expected support and unsupported number of goals. It suggests items that

have been used in related past traces following the same goal.

6 Conclusion

In this research in progress, the design of a next-best action recommender system for

knowledge workers in the context of ACM is illustrated. Activities during a case’s

proceeding are extracted successfully by analyzing the related log-files. Predictive

models for predicting actions to shorten the case running time, to mitigate deadline

violations and to support case goals are created based on artificial test data. According

to preliminary results, these models showed moderate positive results in their

prediction accuracy.

182

Within future research, the developed prototype is to be tested with case-data from

real-word knowledge work scenarios. Beside the accuracy of the predicted next

activities, the general user acceptance of the recommendations has to be evaluated, as

well as their impact on the productivity of the knowledge workers. Another limitation

that has been not addressed yet is scalability in cases that are characterized by a lot of

members, many tasks and a high degree of flexibility.

References

[1] Motahari-Nezhad, H. R. & Bartolini, C. (2011). Next best step and expert

recommendation for collaborative processes in it service management. In: Business

process management, 6896(7), 50–61.

[2] Aalst, W. M. P. van der. (2012). Process mining: overview and opportunities. ACM

Transactions on Management Information Systems, 3(2), 1–17.

[3] Aalst, W. M. P. van der, Pesic, M., & Song, M. (2010). Beyond process mining: from the

past to present and future. In: Advanced information systems engineering, 6051, 38-52.

[4] Ricci, F., Rokach, L., Shapira, B. (2011): Introduction to Recommender Systems

Handbook. In: Recommender Systems Handbook, Springer US.

[5] Schonenberg, H., Weber, B., Dongen, B. van, & Aalst, W. M. P. van der. (2008).

Supporting flexible processes through recommendations based on history. In: Business

process management, 5240, 51-66.

[6] Dongen, B. F. van, Crooy, R. A., & Aalst, W. M. P. van der. (2008). Cycle time

prediction: when will this case finally be finished? In: On the move to meaningful internet

systems, 5331, 319-336.

[7] Panagos, E. & Rabinovich, M. (1997). Predictive workflow management. In: Proceedings

of the 3rd international workshop on next generation information technologies and

systems, 193-197.

[8] Eder, J., Panagos, E., & Rabinovich, M. (1999). Time constraints in workflow systems. In:

Advanced information systems engineering, 1626, 286-300.

[9] Riesbeck, C. K. & Schank, R. C. (1989). Inside case-based reasoning. Hillsdale, NJ, USA,

L. Erlbaum Associates Inc.

[10] Aamodt, A. & Plaza, E. (1994). Case-based reasoning: foundational issues,

methodological variations, and system approaches. AI Commun. 7(1), 39–59.

[11] Weber, B., Wild, W., & Breu, R. (2004). CBRFlow: enabling adaptive workflow

management through conversational case-based reasoning. In: Advances in case-based

reasoning, 3155, 434-448.

[12] Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques (3rd). San

Francisco, CA, USA, Morgan Kaufmann Publishers Inc.

[13] Huber, S., Lederer, M., Bodendorf, F. (2014): IT-enabled Collaborative Case

Management: Principles and Tools. In: Proceedings of the 2014 International Conference

on Collaboration Technologies and Systems, Minneapolis, Minnesota, USA, IEEE by The

Printing House, Inc., Stoughton, 259 - 266.

183

