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Abstract. Knowledge workers solve problems, which are usually non-routine 

and where no standardized solutions can be applied. During the problem-

solving process, the overarching task is broken down into a sequence of 

activities. To support the coordination of these steps Adaptive Case 

Management (ACM) emerged as a novel paradigm in Business Process 

Management research. However, current ACM systems lack in supporting the 

decision making of knowledge workers to prioritize their activities. The 

objective of this research in progress is to consolidate different approaches in 

process mining literature and integrate them as an activity recommender system 

into an existing ACM tool. Based on 25 sample cases, different predictive 

models are created to recommend actions to shorten case running time, to 

mitigate deadline violations, and to support case goals. A preliminary 

evaluation of the models indicates moderate positive results regarding their 

accuracy. In addition, starting points for further improvement are discussed. 

1   Motivation 

The nature of knowledge work is neither routine nor predictable, and therefore 

requires human judgment by the knowledge worker [1]. Therefore, knowledge 

workers face different challenges in their daily working context. For example, 

questions like what actions they should perform next, what actions contribute in 

achieving their project goals and to whom a certain task should be assigned. 

Without guidance, knowledge workers face a high complexity in such decisions. 

They may choose a non-optimal action leading to delays, deadline violations, or an 

inefficient utilization of resources. To reduce this complexity and to guide knowledge 

workers, decision support is essential. A common approach is to provide prediction 

and recommendation capabilities to help the knowledge workers determining the 

optimal order of actions for a certain case. 

In recent years, process mining emerged from process model discovery to 

operational support. Originally, process mining “aims to discover, monitor, and 

improve real processes by extracting knowledge from event logs readily available in 

today’s information systems” [2]. However, the original approach can only be used in 

offline settings, i.e., after process execution. New types of process mining suggest an 
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operational deployment. That includes types of process mining that check the 

conformity of currently running process instances, predict their future state, and 

provide recommendations for appropriate next step actions [3]. 

Research already has shown the applicability of process mining for generating 

predictions and recommendations with promising results. These concepts may be 

applied to the field of knowledge work as well. The goal of this research is to 

consolidate current process mining approaches and integrate them in an executable 

ACM prototype that gives predictions and recommendations based on running case 

instances. That means that this happens in a flexible environment with no predefined 

processes, i.e., where the process outcome is highly depended on the executing 

subjects, the knowledge workers. 

2   Research Methodology 

To support the achievement of case goals in the domain of ACM, this paper provides 
an approach for optimizing the execution of cases, based on a next step recommender 
system. It follows the idea that a complex system (with non-linear relations between its 
parts), like multiple knowledge workers executing multiple cases collaboratively, 
cannot be optimized globally. Therefore, it follows a divide-and-conquer inspired 
approach: By emphasizing the knowledge worker’s importance and the enhancement 
of their task sequences, all cases are more likely to get completed in time.  

For its realization, a recommendation system is utilized. Contrary to other 
application areas, e.g., the recommendation of products in a web shop [4], the 
recommended items are steps to be executed next. Therefore, the underlying 
mechanisms are located in the data and process mining field of research. 

First predictions have to be made, how long cases are estimated to run, which case 
goals may not be achieved, and which deadlines may be violated. Based on these 
predictions, recommendations can be derived, which tasks should be handled 
immediately. Finally, the presented approach offers the possibility to shape 
personalized processes dynamically, based on the knowledge workers’ interactions.  

Summarizing, the research methodology follows a three-step approach: In the 

following, publications from different research areas regarding predictions and 

recommendations are discussed (1). Based upon the literature review, the conceptual 

approach for a software prototype is depicted and implemented (2). Finally, the quality 

of the prototype is evaluated (3). 

 

3   Related Work 

There is only sparsely literature available on mining case associated data for 
predictions and recommendations, due to the youth of ACM as a field of research. 
Therefore, different relevant research areas are presented in the following: case 
management related work, workflow and process mining approaches as well as 
concepts regarding case-based reasoning (CBR). Finally, the applicability of the 
available approaches is discussed shortly. 
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The only case management system that offers recommendations is the IT Support 
Conversation Manager (ITSCM) found in [1]. It allows the recommendation on best 
next steps and experts to invite in current running cases by analyzing previous case 
resolutions. The ITSCM architecture consists of two major components: annotated 
model discovery and steps/experts recommendation. The annotated model discovery 
component analyzes previous cases in a repository and constructs an annotated step 
flow model. The steps recommendation component takes a currently running case and 
tries to match it into the annotated step flow models. Afterwards, it creates an ordered 
list of recommended steps and suggests IT staff members that have performed such 
task in the past. Performance tests reveal an advantage of pre-building the model 
offline, and using this model for generating recommendations at run-time, rather than 
building the model ad-hoc. The approach focuses of next item recommendations in the 
case management domain. Evaluation has shown that adding case-related information, 
such as type, title, or tags, lead to more relevant recommendations compared to adding 
only process-information. Performance tests reveal an advantage of pre-building the 
model offline, and using this model for generating recommendations at run-time, rather 
than building the model ad-hoc. 

Contrary, mining previously executed process instances is extensively discussed in 
the process and workflow mining literature. [5] propose a service that gives 
recommendations on possible next steps during process execution of a partial case and 
process instance respectively. This is done by considering specific optimization goals 
of similar process executions. Following this approach each business process is 
described as a process model loaded into a process-aware information system (PAIS). 
The PAIS runs single process instances and records information about executed 
activities in event logs during run-time. Those event logs are later used by the service 
to generate recommendation results. For this purpose, the service requires information 
about the currently executed partial case, i.e., currently enabled activities and the 
partial trace of executed activities in the past. With this information, the 
recommendation decides what activities to perform. The final recommendation for an 
executed activity is then calculated by a “do value”, the expected outcome of the target 
value when an enabled activity is executed, and a “don’t value”, the expected target 
value of not executing the enabled activity. Finally, differently executed activities are 
collected in an ordered recommendation result and returned back to the user. 
Experiments on the recommendation service have shown that the more heuristic 
information are used, the better the quality of the recommendation. The performance of 
their system depends on process characteristics and the degree of abstraction. For 
instance, by comparing the cycle times of traces generated by the different abstractions 
and randomly created traces, the prefix abstraction of events outperforms random 
samples, set abstractions and multi-set abstractions. In general, it has been shown that 
goals, such as cycle times, can be reduced through the support of recommendations [5]. 
[5] investigated different cycle time predictors using historic information from event 
logs. Their goal is to answer questions about the completion time of a process instance 
by using the average cycle time and deducting the remaining cycle time considering 
the past time of the case. However, this approach is not sufficiently accurate. Hence, 
they additionally define different non-parametric regressions: Activity occurrence 
estimator, activity duration estimator, case attribute estimator and a combined 
regression estimators. The activity occurrence estimator determines the remaining 
cycle time based on the occurrence of activities. The activity duration estimator uses 
duration of each activity for remaining cycle time calculation. The case attribute 
estimator applies case data attributes from event logs as ordinal variables to estimate 
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the remaining cycle time. The combined regression estimators multiplies all three 
estimator’s kernel functions that is then used in the regression. Experiments show that 
regression estimators from [5] outperform the average cycle time estimator with case 
attribute and combined estimators as the best-performing ones. 

[7] coined the term predictive workflow management. They argue that the 
integration of predictions into workflow enactment benefits in improved workflow-
related decisions, such as decisions on setting execution time of single workflow steps 
or completion time of the whole workflow. They demonstrate a concept that can assign 
a deadline, i.e., the completion time, to workflows through predictions, and is able to 
escalate when a deadline violation is foreseeable. A similar framework can be found in 
[8]. This approach ensures that process deadlines are met and no time constraints are 
violated by computing activity deadlines. More precise, it checks at build time for time 
constraints and constructs a timed activity graph that includes deadline ranges. This 
graph is extended on process instantiation times with concrete deadlines. It monitors on 
run-time whether a given time constraint for remaining activities is satisfied based on 
already executed activities and activity completion times. On deadline or time 
constraint violation it triggers exception-handling activities (escalation). 

CBR is a research topic that has gained attraction in the 1990s. According to [9] "a 
case-based reasoner solves new problems by adapting solutions that were used to solve 
old problems". By this definition, a case-based reasoner finds cases that solved similar 
problems in the past and adapts previous solutions to the current problem. [10] 
developed a CBR cycle. First one or more past cases are retrieved to solve the problem. 
Then, the information and knowledge in the previous case are reused to solve the 
problem. Next, the proposed solution is revised and confirmed. Finally, experiences 
made by applying the solution are retained for future problem-solving. CBR suggests 
solutions to knowledge workers, which they can use as a guidance for next steps. The 
integration of CBR in operational systems, like workflow management systems, has 
been introduced [10]. In their prototype a workflow is extended with conversational 
CBR, an interactive system that retrieve a similar case for problem solving and 
exception handling through question-answering sequences. That allows dynamic 
changes of the predefined process model and provides learning capabilities for process 
model improvements. 

Overall, only one solution focuses on collaborative knowledge-intensive processes. 
Most other approaches are tailored to scenarios that are characterized by pre-definable 
business process models that are run by process engines. Such solutions are suitable for 
executing predictable routine work, but only restricted in unpredictable knowledge-
intensive processes. No existing approach is meeting requirements of a context where 
flexibility and autonomy of the executing knowledge workers is essential. 

4   Concept 

The objective of this paper is to adapt existing ideas in the literature to knowledge-

intensive processes in ACM. Due to the unique challenges in the context of ACM, this 

chapter will introduce a concept that uses combined multiple approaches for 

considering various perspectives for suggesting next step predictions and 

recommendations for guiding knowledge workers during case handling. 
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4.1   Architecture 

The prototype consists of three main parts: The event log generator, the model 

builder, and the predictor/recommender (cf. Figure 1). The event log generator 

produces log entries, which represent the subject’s activities in a standardized XES 

event log format. Those logs are based on historic events and operational data from 

the ACM system. The event logs are used by the model builder to construct 

underlying models based on different approaches. Those models are merged into a 

composite model, which is capable of predicting possible future states and 

recommending items based on various process and data mining techniques. 

Fig. 1. Architecture overview 

Event Log Generation: The event logs are generated based on different data sources 

within the application. Therefore a classical extract, transform and load (ETL) process 

is used before the event logs are finally stored in a standardized format. A XML-

based standard, the Extensible Event Stream (XES) is used as a data format to store 

the generated event logs. In the first step for the event log generation, data is extracted 

from case, template, organization, user and activities data. Most relevant is the 

activities data store. There, all activities which occurred on the platform are stored, 

inspired by the official standardized activity streams schema. In the second step data is 

transformed for operational needs. Activities are transformed into events and assigned 

to traces, which are stored according to the XES format. Optionally, filtering may 

happen in cases where redundant actions on business objects were recorded. Finally, in 

the third step, the data is loaded to be used by the model builder. 
 
Model Building: The model builder uses the stored activities to derive different 
models. Four models covering various aspects (time, deadline, decision, and goals) 
are created by applying different algorithms. Separate results are generated by every 
model, before they are combined into a composite model: 

1. Time-based: The first component of the composite model is a time-based 

model, based on the timestamps of the recorded log-file entries. The time-

based model can look for similar events and return the remaining time (or 
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average remaining time) as a prediction. Based on the history of events in 

other cases, the following event with the smallest expected remaining time is 

selected and then recommend to the user. Thereby, the likelihood for delays 

regarding the running time of case is considerably reduced. The model is 

represented as an annotated transition system according to [3]. 

2. Deadline-based: The deadline-based model is an extension to the time-based 

model. It takes the possible violation of case deadlines into consideration. 

Predictions are made to identify possible deadline violations. Then 

recommendations are made which tasks should be completed to avoid a 

deadline violation.  

3. Decision-based: During the progress of a case, knowledge workers have to 

make decision how to proceed. Decision mining, introduced by [4], aims to 

extract rules to explain why certain choices are made. Decision points in 

progress of a case are characterized by multiple outgoing paths with different 

sequences of activities. Two challenges have to be mastered with regard to 

decision mining: identifying decision points and finding meaningful rules 

[4]. With knowledge workers shaping their daily activities, the first problem 

is irrelevant, because every recorded event is the triggered result of a 

decision. The second problem is a classification problem. Here decision trees 

can be applied [4]. Case attributes can be used as attributes for classification 

to identify class labels. For the construction of the decision tree, the 

algorithm of [5] is used. The tree’s class labels as recommendations are 

activities which were chosen in other cases with similar labels and therefore 

should be performed by the knowledge worker in the current case.  

4. Goal-based: A case always follows one or multiple goals. Tasks in a case are 

linked with the goals. Therefore, the goal-based model provides next step 

recommendations of activities that favor the attainment of particular case 

goals. The goal-based model is based on the approach of [5]. For every 

stored trace of events in the log, a target value for a case goal can be 

computed. “Do calculations” are performed to determine the expected target 

value if an activity is executed. “Don’t calculations” compute the expected 

target value in the case that the activity is not executed. Using the results of 

the calculations for events and their traces in the logs, goal-supporting 

activities can be recommended. 

 

Prediction and Recommendation: The predictor and recommender is using the models 

described above, based on the current state of the running case. As each underlying 

predictor and recommender outputs their respective suggestions, this component 

combines the outputs into a final prediction and recommendation set by realizing the 

ensemble method according to [12]. It considers the four different aspects for a 

recommendation by weighting them individually. Finding the correct weights is not a 

trivial task and discussed as part of the evaluation. 
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4.2   Prototype 

The previously described concept is integrated in an ACM software solution called 

Collaborative Case Management (CoCaMa) (more details can be found in [13]). It is 

applied as a plug-in to extend the range of its functionality. The core of CoCaMa, 

which directly supports collaboration, is the case workspace. With an intuitive “drag 

and drop” behavior it is possible to create different lists and freely arrange all objects 

that are used in the case. In that way hierarchical relationships between tasks 

(milestones, subtasks) or the assignment of documents to discussions, etc. can be 

realized. This is the primary part where the knowledge workers designs the different 

views on a respective case. In Figure 2 an example of a task board is depicted that is 

used in agile software development (SCRUM). 

 

 

Fig. 2. Case Workspace 

Based on that principle, two views on recommendations are available. First a 

general view, recommending what steps should be executed next, without being 

limited to a single case, but providing an overview of next step recommendations on 

all cases. This guides the knowledge worker by generating and suggesting a subject 

focused process dynamically, based on past personal actions as well as historic 

actions of others. The prototype’s general view can be seen in Figure 3.  
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Fig. 3. Case-spanning Predictions and Recommendations 

Predictions are presented by a progress bar that visualizes the remaining time. The 

progress in green indicates the elapsed time in proportion to the total time. The 

remaining space in the progress bar stands for the remaining time in proportion to the 

total time. A duration indicator on the left side shows the remaining case time in days. 

The two dates below the progress bar represent the starting data of the case and the 

estimated completion date. The second visualization shows whether a deadline 

violation occurs or not. A deadline violation is indicated by a red bar, whereas a non-

violation bar is shown in green. The duration indicator inside the visualization 

demonstrate whether the case is estimated to finish earlier than the specified due date 

(X days less) or to finish later than the specified due date (X days more). The dates 

below correspond to today’s date, due date, and estimated completion date. The due 

date is emphasized by a bold typeface. The third visualization shows the proportion of 

case goals that are supported and unsupported by the current case progress. A case 

goal is supported when similar cases in the past share the same goals. A case goal is 

unsupported when those similar cases do not include those goals. The higher 

proportion is further emphasized in green (supported) or red (unsupported) and by a 

percentage value. 

Recommendations are visualized in rows. A recommendation includes the 

recommended item and reasons why this case item is recommended. A 

recommendation row presents the case item title and its type through its icon. The 

reason is shown below the title. Four reasons are possible, based on the underlying 

models of the composite model: The recommendation shortens the case duration, 

avoids deadline violations, supports case goals, or has been used in similar cases. 

With the help of the reasons, the users can determine the benefits of the 

recommendation. Besides the general view, predictions and recommendations can be 

used case specific within currently running cases (cf. Figure 4). 
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Fig. 4. Case-specific Predictions and Recommendations 

In addition, a settings view allows the user to set the prioritization and weights of 

the algorithm parameters. Currently, the model is not build and updated continuously 

to avoid performance consumption while CoCaMa is used during the day. The models 

are used to make situation depended recommendations, but the update frequency can 

be controlled in the settings view as well. 

5   Evaluation 

The evaluation of the predictive and recommendation quality is based on a 

knowledge-intensive customer inquiry process. Altogether, 25 historic cases and five 

running cases have been defined that follow the predefined inquiry process. The 

process itself is derived from a real-world example, but the execution path has been 

fictively defined with the help of experts. Those test cases are manually populated 

into the database of the case management system. The prototype evaluation focuses 

on three different aspects: 

1. Event Log Generation Evaluation: Goal of this evaluation is to determine 

whether the prototype can construct an event log. Further, the event log 

should include information from the given cases and activities. The 

evaluation of the event log generation is defined in four tests. The first test 

creates an organization event log, the second test two template event logs, 

the third test four user event logs, and a forth test five case event logs.  

2. Model Building Evaluation: The evaluation of model building tests whether 

all models can be built from event logs. Based on the data from the event log 

generation this test builds all underlying models (time, deadline, decision, 

and goal) and a combined version. 
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3. Prediction and Recommendation Evaluation: The built models are used in 

this evaluation phase to examine the predictive and recommendation outputs 

of the models. Case event logs of partial traces are used with a set of current 

case items to generate predictions and recommendations out of each model. 

The partial traces are constructed in a way that some predictions are known 

beforehand. Ten major prediction or recommendation tests are provided that 

describes the major scenarios in the customer inquiry process. 

 

As a first result, the prototype is able to build all composite models and the 

underlying models. As for the time-based and decision-based models, the log files 

reveal that the annotation transition system contained all required nodes and edges. 

The nodes hold state information and the elapsed time and remaining time 

annotations. The edges contained information about preceding and succeeding states 

and events leading from one state to another. Overall, the model included all 

information necessary to describe the time annotated transition system. Regarding the 

decision-based model building, the decision tree could be constructed by the used 

Java library for machine learning, WEKA. The evaluation on the basis of WEKA, 

however, revealed low accuracy of the tree. In fact, it could only predict a low amount 

of the class labels correctly. This result may be due to limited availability of training 

data. For goal-based models, terminal printouts show traces along with their 

supporting goals.  

The time-based predictor generates all expected predictions. It estimates proper 

remaining times of the partial event log traces and could provide correct elapsed- and 

total times. The time-based recommender provides the right recommended items that 

are expected to complete the case in the fastest way. The deadline-based predictor is 

able to detect a deadline violation when the due date was set prior to the expected 

remaining time of the case. It also successfully detects the non-violation state of the 

case. The deadline-based recommender generates some recommendations that 

mitigate a deadline violation by offering items that finish the case as soon as possible. 

It suggests the same recommendations as the time-based model, which indicates 

redundant recommendations to some extent. The decision-based recommender only 

provides one single recommendation. In the evaluation, it suggested an event that 

occurred in all previous historical cases. Finally, the goal-based predictor is able to 

output the expected support and unsupported number of goals. It suggests items that 

have been used in related past traces following the same goal. 

6   Conclusion 

In this research in progress, the design of a next-best action recommender system for 

knowledge workers in the context of ACM is illustrated. Activities during a case’s 

proceeding are extracted successfully by analyzing the related log-files. Predictive 

models for predicting actions to shorten the case running time, to mitigate deadline 

violations and to support case goals are created based on artificial test data. According 

to preliminary results, these models showed moderate positive results in their 

prediction accuracy. 
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Within future research, the developed prototype is to be tested with case-data from 

real-word knowledge work scenarios. Beside the accuracy of the predicted next 

activities, the general user acceptance of the recommendations has to be evaluated, as 

well as their impact on the productivity of the knowledge workers. Another limitation 

that has been not addressed yet is scalability in cases that are characterized by a lot of 

members, many tasks and a high degree of flexibility. 
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