
Reusable Navigation Templates to Support Navigation Design in Hera

Peter Barna, Geert-Jan Houben, Ad Aerts, Flavius Frasincar,and Philippe Thiran
Technische Universiteit Eindhoven

PO Box 513, NL-5600 MB Eindhoven, The Netherlands
{p.barna, g.j.houben, a.t.m.aerts, f.frasincar, ph.thiran}@tue.nl

Abstract

Reuse is a fundamental concept in software design. It
has many aspects and can be applied at various levels of
abstraction. In this paper we focus on the reuse of high-
level (design model) specifications of software components
in the design of web applications. Concretely, we discuss
the reuse of navigation templates to specify (parts of) nav-
igation models in different application domains based on
different data sources. While supporting this diversity of
applications, at the same time navigation templates should
allow easy deployment. In this paper we propose a solution
to this apparent contradiction using a component-specific
conceptual model. By applying a mapping from this model
to a concrete domain model, an automatic deployment of
the navigation templates can be performed. The process of
navigation template design and deployment (including the
process of defining the mapping) is explained and demon-
strated on two examples using the Hera framework and its
HPG software.

1 Introduction and Related Work

One of the major concepts in software design is the reuse
of software artifacts applied at different levels of abstraction
- from reuse of system requirements to reuse of software
code, and at different levels of granularity - from reuse of
software packages or whole applications through use of de-
sign patterns [4] to reuse of classes (concepts) organized in
hierarchies.

The benefits of reuse are obvious, and include saving
software development effort (avoiding redundant design),
facilitating the maintenance of software systems, and mak-
ing the design traceable and transparent.

Due to the specific nature of the Web, extensions of tra-
ditional software design methods have been proposed for
the development of web applications. The support of nav-
igation and the necessity of navigation modelling is what
distinguishes web systems and web design methods from
traditional systems and design methods. In the navigation

modelling, reuse of navigation structure specification (often
referred to as ”Web Patterns” or ”Web Design Patterns”) is a
very useful technique, but its full exploitation is still anopen
problem. A good overview of common web patterns is pre-
sented in [11]. The descriptions of patterns presented there
serve as a set of handy guidelines for web designers. Exist-
ing software libraries offer a wide variety of useful generic
primitives that can be (re)used during the construction of
web applications, but they rarely contain larger navigation
patterns. Since navigation models are usually tightly cou-
pled with concrete domains, specified by Conceptual Mod-
els (CM), the achievement of the domain portability is not
a trivial task.

Current methods for web design already benefit from
the reuse concept in various ways. WebML [3] specifies
the navigation structure by means of different (predefined)
types of units. The method allows easy and convincing
composition of different units. Most of the units how-
ever are associated with concrete data (specified in a data
model), so using such composed patterns for different do-
mains is not trivial. Object-oriented approaches like OO-
H [5], UWE [7], or OOWS [10] show a solid approach
supporting object-oriented reuse techniques like class ab-
straction. The problem of domain portability of navigation
models in object-oriented environments using the OOHDM
method is discussed in [13]. The web design framework
introduced there represents abstract navigation models that
are isolated from concrete domains and can be instantiated
to a concrete domain. The deployment process consists
of the derivation of a concrete OOHDM model from an
OOHDM-frame (a generic conceptual model). It is possible
to build common navigation patterns, however the naviga-
tion classes are derived from conceptual classes describing
a concrete domain.

In this paper we propose a practical approach for the de-
sign and deployment of domain portable reusable naviga-
tion patterns called Navigation Templates (NT). We focus
on the explanation of the mapping from a Template Con-
ceptual Model (TCM) describing the structure of data used
within an NT, to a concrete domain conceptual model (CM).

1

For an NT, such mapping is defined for every concrete do-
main, and it is a kind of NT parametrization. It allows not
only a relatively easy deployment of an NT to a concrete
domain, but it also facilitates the specification of possible
data manipulations in an NT. A mapping is similar to a data
(schema) integration model, and we can benefit from ex-
isting knowledge in this field of research. The process of
deployment of such an NT to a concrete domain can be au-
tomated by using an NT specification and an appropriate
mapping to a concrete domain. This deployment process
is demonstrated on two examples using the Hera frame-
work [6, 16]. Despite the use of a concrete method for rea-
sons of illustration the proposed approach of mapping NTs
to concrete domains can be used for other methods.

Section 2 explains the requirements for NTs and the con-
text of their usage. The core of the paper is Section 3 that
explains the approach in detail using two examples in Hera
and HPG (Hera Presentation Generator web server soft-
ware). Potential mapping (data integration) problems and
solutions are also discussed here. The current work on the
creation of software tools supporting the design and deploy-
ment of NTs for Hera is briefly explained in Section 4 and
the text is concluded by Section 5.

2 Navigation Templates Overview

A Navigation Template (NT) is a parameterized concep-
tual specification of a navigation structure. This specifica-
tion has well-defined interfaces in terms of links and types
of information they can carry. The NT parametrization al-
lows its deployment within existing navigation models of
similar applications based on different data domains. An
example of a primitive NT is a user-selection device (a vir-
tual shopping basket) that is used in a web application for an
online sport equipment shop as a classical shopping basket,
and in a university online library it can be used for instance
as a tool facilitating the searching of publications by choos-
ing topics of interest.

Besides the navigation structure, NTs define also some
basic application logic (functionality), in most cases related
to dynamic updates of the navigation structure and under-
lying data, both based on the user interaction. Although
NTs represent conceptual reusable units, we demonstrate
how they can be converted to a specification that is directly
used by a web server software to provide desired function-
ality on the Web.

For the generation of a deployed NT we need two kinds
of specification:

• An NT specificationthat contains two sub-models:

– The Template Conceptual Model (TCM) de-
scribes the structure of data concepts (and their

concept relationships) that are used in the de-
scription of the NT’s navigation structure (TAM).
Note that the content domain described by a
TCM is not necessarily materialized, but the
TCM is used in the parametrization when the NT
is deployed.

– The Template Application Model (TAM) de-
scribes the navigation structure of the NT and its
application logic. It is based on the data defined
in a TCM.

• An NT parametrization that defines the mapping
from the TCM to a concrete domain. This mapping
allows a (semi-)automatic translation of the NT into
(parts of) a concrete navigation model.

With a certain level of abstraction we can see an anal-
ogy between NTs and MDA [9] models. A main concern of
MDA is the support for the design and integration of sys-
tems based on different platforms. In the same spirit, NTs
represent domain independent models, so if we replace the
notion of platform with the notion of domain, a PIM (Plat-
form Independent Model) of MDA can be compared to a
domain independent NT specification, and PSM (Platform
Specific Models) to concrete deployed NTs. Analogically,
domain independent NTs can be (semi)automatically de-
ployed for different domains and frameworks using differ-
ent transformation (deployment) tools.

2.1 Benefits of NT Reuse and Methodological Is-
sues

The main benefit of building NTs and their later deploy-
ment lies in saving development effort for parts of web ap-
plications that can be used again and again for different do-
mains. An interesting application of NTs is the composition
of new web applications from an available NT on already
existing domains (for instance on legacy databases). Fig-
ure 1 sketches how NTs can be deployed within a naviga-
tion model. The thick arrows represent hyperlinks (possi-
bly) carrying parameters (the depicted internal structureof
the NT does not reflect any real structure and is sketched
only for illustration purposes). The thin arrows show the
deployment process with the transformation of an NT spec-
ification to a concrete (part of) navigation model based on
a CM. This transformation is automatic, but uses a manu-
ally built TCM-to-CM mapping. The situation in Figure 1
requires two mappings, since the same shopping basket NT
is used for different data concepts (though within the same
(larger) domain). The real benefit of NT as a conceptual
unit of reuse depends on several aspects including:

• generality of NT design, in the sense of how easily
they can be used for different applications. This is in-

2

Page 1

Page 2
 Page 3

 Navigation Template
SB

Instance (Shopping
 Basket1
)

 Navigation Template
SB

Instance (Shopping
 Basket2
)

In

(all
 Products1
)

Out

(selection of
 Products1
)

In

(all
 Products2
)

Out

(selection of

Products2
)

Library of

Navigation Templates

NT
 To
Nav
.

Model

Transformer

Mapping 1
 Mapping 2

Nav
. Template
SB

Deployment Process

Figure 1. NT deployment example

fluenced by a good selection of ”typical” web appli-
cation patterns NTs represent, and also by minimizing
the structure of NTs (smaller and simpler units are eas-
ier to deploy and specialize).

• complexity of NT deployment, including:

– complexity of its parametrization. That can be in-
fluenced by proposing simple TCMs with a min-
imal number of mappings to a concrete domain.
The mapping specification can be facilitated by
design tools.

– automation of the transformation of the NT and
appropriate mapping to a concrete models and/or
executable specification eventually. This is given
by availability of appropriate software transla-
tors.

In the context of the NT design process, we consider two
possible types of the design cycle:

• Data-driven design, where first the TCM (or a set of
TCMs) is defined and then the TAM is built on top of
it (in other words, first the data, then the navigation).
This approach can be used when a simple and straight-
forward NT parametrization (mapping to a concrete
domain) is vital. For instance, when we want to use
concrete, complex legacy databases, TCMs are better
starting points. A concrete web application based on
such a legacy database then can be easily composed
from already built NTs, because the structures of the
concrete TCM are in accordance with the CM at hand.

• Process-driven design, where on the basis of user
requirements, a process model is defined for an NT

and then subsequently enriched with appropriate data
model and data manipulation specifications (in other
words, first the process, then the navigation). From the
data model an NT specification can be derived. This
interesting, process-driven approach is part of ongoing
work and will be described in a separate paper.

The details of the NT specification and deployment tech-
niques may depend on the concretely used approach. In the
following text we explain the principles of NT specifica-
tion and deployment using two examples. The first example
demonstrates a multiple use of a simple NT (in this case a
guided tour) in a single application, and the second high-
lights potential problems associated with mapping a TCM
to a concrete domain and their resolution.

3 Navigation Templates in Hera

For a better explanation of the NT concept, we demon-
strate its basic principles using the Hera framework and two
examples. In the Hera design cycle, an NT can be generated
from a more abstract process model, or it can be designed
manually. The role of NTs in the method and its models is
depicted in Figure 2. It has already been mentioned, that
an NT contains a TCM describing the structure of the infor-
mation that will be presented and processed, and it contains
an appropriate TAM specifying the navigation view on the
TCM. TheArticulations (see [16]) represent the NT para-
metrization - the mapping from the TCM to a concrete CM,
i.e. the ”binding” of the TCM to the concrete domain. The
NT specification together with theArticulationsare used by
theNT2AM Transformerto generate a concrete (part of an)
AM describing the navigation structure and functionality of
a concrete web application. The AM can then directly be
used by a Hera engine such as HPG-Java for the online gen-
eration of pages in the web application.

3.1 Brief Overview of Hera

Within the Hera project we investigate methods for the
specification of (dynamic) hypermedia presentations and
we build and maintain appropriate server software and de-
sign tools. The methodology determines a number of design
steps resulting in a set of models (that specify how the hy-
permedia presentations get generated). The conceptual de-
sign phase results in a Conceptual Model (CM) defining the
structure of source data used in presentations. The appli-
cation design phase results in an Application Model (AM)
defining a navigation structure over the CM, possibly with
data manipulation associated with user actions. The pre-
sentation design phase produces a Presentation Model (PM)
specifying the layout of presentations. All Hera models are
expressed in RDFS [2].

3

These models are used by a Hera engine, in this case
HPG-Java (a software module running as a servlet hosted
by a web server), first performing data retrieval, and then
performing data transformations resulting in presentation
pages, possibly for different platforms and different for-
mats (HPG supports HTML, WML, and SMIL for presen-
tations without data manipulation, and HTML for presen-
tations allowing forms and data manipulation). The bottom
part of Figure 2 shows the transformations of the Hera/HPG
pipeline, where retrieved data is transformed consecutively
to a CM instance (CMI), an AM instance (AMI), and a pre-
sentation in a concrete format (e.g. HTML). All intermedi-
ate data chunks are internally represented in RDF [8].

The application modelling method is capable of express-
ing more advanced functionality than only a navigation
view over static data content. It supports modelling of
user inputs by means of forms allowing users to enter ar-
bitrary information possibly exploited by data manipula-
tion queries. All queries in Hera AM are expressed in the
SeRQL [1] RDFS query language with slight modifications
(queries are pre-processed by the Hera engine) including the
management of session parameters (variables).

An AM contains basic building blocks called slices that
describe the structure of navigation pages (or their parts
since they can be nested), and their linking (see Figure 3).
Slices can have root concepts (from the CM) drawn as large
ovals in the slice upper part. If a slice does not have the root
concept, it is a constant slice and it can have arbitrary con-
tent. If the target of a link is a non-constant slice, the link
carries parametrization that determines the instantiation of
the target slices (the anchor determines what instance of the
target slice root concept is used for the target slice instan-
tiation). The instantiation of slices can be determined also
by queries associated with slices. A slice can contain at-
tributes (literal properties in the CM) from a root concept
and attributes from concepts related to the root concept (the
bottom part of the slice shape) connected with the root con-
cept by CM properties. User interaction is facilitated by the
use of forms that carry a number of input fields users can
fill in. Forms have associated processing queries that can
retrieve data, change the data content, or update values of
session variables.

3.2 Guided Tour Example

In the first example we demonstrate the multiple use of
a very simple NT. The NT represents a guided tour - a step-
by-step (one per web page) presentation of multiple concept
instances. This concrete NT we deploy twice in a simple
museum application. Once for the presentation of painters,
and once for the presentation of paintings. For every con-
crete deployment we will show a set of articulations (map-
ping the TCM to a CM).

Process

Model

PM2NT

Transformer

NT2AM

Transformer
Articulations

Concrete

CM

Concrete

AM

CMI
 AMI

Concrete

PM

Pres
CMI Creator
 AMI Creator
 Pres.
 Creator

Hera Pipeline (run-time)

Model Transformations (design-time)

Navigation Template

TAM
TCM

uses

from

maps TCM to

used in

Data

NT Instance

nav. view on

navigation view on

Figure 2. Role of NTs in Hera architecture

Figure 3 presents the TCM and TAM of the guided tour
NT. It uses a special predefined sub-class of general slice
(iterator) that allows easy implementation of a guided tour.
A slice of typeIterator comes with a defaultIteratorForm
providing a navigation facility through a collection of the
Item instances and allowing to exit the iteration using the
Outbutton. In the case of exit the instance of the last viewed
Item is provided as the output parameter. The concrete data
source containing information about painters and paintings
is specified by its CM shown in Figure 4.

Figure 5 shows an AM of a simple museum application
using two instances of the Guided Tour NT. They contain
attributes based on a mapping from the TCM to the CM and
also attributes not appearing in the original NT, but added
by the designer. The application presents a set of paint-
ing techniques (theTechniquesListslice), for every tech-
nique a list of paintings exemplifying the technique (the
Technique.PaintingListslice), and the two guided tours for
browsing through the painters and paintings (GD-Painters
andGD-Paintings).

3.3 Publications Example

In the second example we demonstrate possible prob-
lems with mapping a TCM to a concrete CM. To a large
extent, this is a problem of data integration. We show some
typical cases appearing in RDFS schema integration and
present some practical solutions covering the needs of our
method (including the rewriting of selection and data ma-
nipulation queries). Most of the problems have been recog-
nized and studied in [12, 14]. The example application
is a publication database that stores publications, authors
(researchers), and research groups. The Publications NT
is specified in Hera and later deployed to an existing data

4

(Item
 set
)

 Details

(
Iterator
)

Next

Item

Prev
 Out

title

In

Guided Tour

Out

(Item)

Set

figure

Item
 String
Image
 title
figure

IteratorForm

Figure 3. Guided Tour NT, the TCM on top, the
TAM below

Technique
 Painting
 Painter

painted_by

paints

examplified
_by

exemplifies

String

tname

String
 Integer

Image

String

String
 Date

title
 year

picture

name

biography
 bdate

*
 *

String

description

*

Figure 4. CM of a museum application

TechniquesList

Set

 Details

(
Iterator
)

Next

Painting

Prev
Out

GD
-Paintings

Set

IteratorForm

PaintingList

Set

Technique

exemplified_by

Technique

tname

tname

description

Painting

title

year
 picture

Painter

 Details

(
Iterator
)

Painter

Set

GD
-Painters

Set

painted_by

Next
Prev
Out

IteratorForm

name

bdate

biography

Painting

title
Set

paints

In

Out

In

Out

Concepts, Attributes, and Relationships added for a concrete
 NT
 instance

Concepts, Attributes, and Relationships based on mapping from
 TCM
 to CM

title

Figure 5. AM of a museum application deploy-
ing instances of the Guided Tour NT

source with a different data structure. A set of articulations
is defined.

3.3.1 Template Conceptual Model

The TCM contains only those concepts, concept properties,
and literal properties that are necessary for describing the
core navigation structure and functionality (we show only
the addition of a publication) associated with a concrete NT.
The TCM of the Publications NT is presented in Figure 6.

3.3.2 Template Application Model

Unlike the first example, here the TAM also con-
tains the specification of input forms and their process-
ing. The Publications TAM shown in Figure 7 con-
sists of three slices presenting research groups (theGroup
slice), listing researchers in groups (theGroup.Researcher
slice), and listing publications of a researcher (theRe-
searcher.Publicationsslice). TheAddPaperslice allows
adding a publication created by a concrete researcher (only
one in our example). For the sake of simplicity the applica-
tion has not been detailed completely. We omit here more
comprehensive data manipulations, like removing publica-
tions, adding a new researcher, and managing groups. The
AddPaperquery is activated when theAddPaperform is
submitted:

CONSTRUCT DISTINCT
{P}rdf:type{tcm:Paper};

tcm:ptitle(Title);
tcm:url{URL};
tcm:published_at{Published};
tcm:author{Author};
tcm:year{Year}

FROM
{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{session:session}<session:resID>{Author},
{form:AddPaper}<form:Iyear>{Year}

In this query a new instance of a paper is created where its
properties are taken from theAddPaperform inputs. The
value assigned to theAuthorvariable represent the ID of the
last presented researcher (refreshed by theSetResearcher
query during theAddPaperslice instantiation and temporar-
ily stored in thesession:resIDsession parameter). TheSet-
Researcherquery is very simple:

SELECT
R

FROM
{session:session}<session:sliceid>{R}

5

Paper

Researcher

Group

members

*

String

papers

*

String
published_at
String
 ptitle

name
String
 email

Integer

year

String
gname

String
 url

Figure 6. Publications TCM

Thesession:sliceidis a default session variable containing
the URI of the root concept instance of the last completely
instantiated slice (that is why it is attached to theAddPaper
slice and not toResearcher.Publicationsslice, although it
contains the URI of the currentResearcher). The value of
the R variable is in the RDFS TAM specification assigned
to session:resID. The complete query and session parameter
specification does not appear in the TAM diagram, but it is
in the TAM RDFS file:

<rdfs:Class rdf:ID="SetResearcher"
slice:execute="Once">

<rdfs:subClassOf rdf:resource=
"http://wwwis.win.tue.nl/
˜hera/ns/slice#Query"/>

<slice:queryString>
SELECT R
FROM {session:session}

<session:sliceid>{R}
</slice:queryString>

</rdfs:Class>

<rdfs:Class rdf:ID="QueryResult_ID101"
slice:resultName="resID"
slice:useAsSessionVar="Yes">

<rdfs:subClassOf rdf:resource=
"http://wwwis.win.tue.nl/
˜hera/ns/slice#QueryResult"/>

</rdfs:Class>

3.3.3 Mapping NTs to Concrete Domains

A necessary condition for the automated transformation of
an NT to an AM for a concrete CM is the existence of
a mapping from the abstract TCM to a concrete domain
model. We demonstrate the specification of such a map-
ping using the Publications example and show possible sit-
uations. Figure 8 presents a concrete CM describing a do-

Groups

Set

Researchers

Set

Group

Researcher

members

Details

Set

papers

ToAddPaper

AddPaper

AddPaper

iT
 iyear

iT
 iptitle

iT
 iurl

iT
 ipub

SetResearcher

AddPaper

Group

gname

Researcher

name

gname

name

email

Paper

ptitle
 year

url

Publications

Start

URL

Figure 7. Publications TAM

main of publications. There are two categories of mapping.
The first one is concept-to-concept, which facilitates the de-
termination of root concepts and data manipulation queries
during transformation of the TAM slices into concrete AM
slices. The second one is attribute-to-attribute, which al-
lows the transformation of slice attributes and is used in
query transformations as well. We now define mappings of
type concept-to-concept and attribute-to-attribute. We use
path expressions specifying concept-property chains in the
form {Concept1}property1{Concept2}.... Inverse prop-
erties are denoted as{Concept}property−1. If the value
of a TCM property is constructed from the values of sev-
eral properties in the CM (concatenation), we write it as
{Concept1}property1⊙{Concept2}property2. The fact
that the value of a TCM property is retrieved from sev-
eral CM properties is captured as{Concept1}property1∪
{Concept2}property2. In this case the mapping is a union
of values of the given path expressions. The mapping of
concepts relies on the uniqueness of the concept names (in
other case we would need to use path expressions as well),
in our example the mappings for the concepts are:

• for tcm:Groupno mapping is defined

• tcm:Researcheris mapped tocm:Person

• tcm:Paperis mapped tocm:Paper

For the mapping of attributes we define articulations con-
taining pairs of path expressions for the TCM and the CM.
The mapping is described in Table 1. Further details of the
mappings are explained in Section 3.4.

6

Person

Member
 Contributor

Project

Paper

Publication

Proceedings
 Journal
 Thesis

Topic

created_by
 contributed_by

String

String

String

String

String

String
 String

String

String

String

String

String

String

fname
 surname

*
 *

*

role

members

pname

*
 topics

title

link

year
tname
 published_as

ctitle
 location
 jtitle
 issue
 mark

Figure 8. Concrete Publications domain CM

Groups
 Researchers

Set

Person

Details

ToAddPaper

AddPaper

AddPaper

iT
 iyear

iT
 iptitle

iT
 iurl

iT
 ipub

SetResearcher

AddPaper1

Person

fname

fname

sname

Publications

Start

URL

ConstLink

sname

AddPaper2

Paper

Details

Set

PaperQuery

Details

Paper

title

year
 link

Publication

Details

published_as

Publication

Details

Proceedings

Details

ctitle

Journal

Details

jtitle

Details of the

Paper.Details

slice

Details of the

Publications.Details

slice

Figure 9. Deployed Publications NT

Attribute in TCM Mapping to CM
{Group}gname no appropriate range concept in

CM, and thus no mapping. In CM
it will be represented by a constant
string (a name of a working group)

{Researcher}name {Person}fname ⊙
{Person}surname

{Researcher}email no appropriate attribute in CM
{Researcher}papers {Member}created by−1 ∪

{Contributor}contributed by−1

{Paper}ptitle {Paper}title
{Paper}published at {Paper}published as

{Proceedings}ctitle ∪
{Paper}published as

{Journal}jtitle
{Paper}year {Paper}year

{Paper}url {Paper}link

Table 1. TCM to CM attribute mapping

3.3.4 Deployed Navigation Template

When theArticulations are specified, an appropriate de-
ployed NT can be generated. A deployed NT is an (part of)
AM. In this process slice relationships based on the TCM
are replaced by those based on the CM at hand. Due to
possibly different schema structures of a TCM and a con-
crete CM, in some cases simple slice aggregations based on
a single CM relationship must be replaced by more com-
plex queries. For instance, this is the case when for a path
expression in the TCM with the length (number of proper-
ties in the path expression) one, there exists a correspond-
ing path expression in the CM with length more than one
(the result would be a join query). During the deployment
process thepapersslice aggregation in the original TAM
Researcher.Detailsslice is automatically transformed to a
query (we name it herePaperQuery) that is a union of the
two queries (for thePersonsubclassesMemberand Con-
tributor):

SELECT X
FROM {P}contributed_by{X}

and

SELECT X
FROM {P}created_by{X}

whereP is an instance of thePersonconcept given by the
Person.Detailsslice instance.

The AddPaperquery appearing in the original TAM is
during the deployment process automatically transformed
into two different queries, one for theProceedingssubclass
of Publication:

7

CONSTRUCT DISTINCT
{P}rdf:type{cm:Paper};

cm:created_by{M},
{Proc}rdf:type{cm:Proceedings};

cm:ctitle{Title};
cm:link{URL};
cm:year{Year};
cm:ptitle{Published},

{P}cm:published_at{Proc}
FROM

{session:session}<session:resID>{M},
{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{form:AddPaper}<form:Iyear>{Year}

and one for theJournalsubclass ofPublication:

CONSTRUCT DISTINCT
{P}rdf:type{cm:Paper};

cm:created_by{M},
{Proc}rdf:type{cm:Journal};

cm:title{Title};
cm:link{URL};
cm:year{Year};
cm:jtitle{Published},

{P}cm:published_at{Proc}
FROM

{session:session}<session:resID>{M},
{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{form:AddPaper}<form:Iyear>{Year}

The queries create differentPublication types (subclasses)
with different attributes. The user of the application decides
what kind ofPublicationhe wants to add. This is facilitated
by two buttons (one for each subclass and executing the first
or the second query) that are automatically generated (dur-
ing the NT deployment process) and placed to theAddPa-
per form (see Figure 9). Note the simplification we made
here due to the lack of space. Both queries are applicable
for theMembertype ofResearcher(can be determined by
thecm:createdbyproperty appearing in the CONSTRUCT
clause). In a real example, every form button would execute
two optional queries depending on the type of last visited
Researcher(Contributoror Creator).

3.4 Major Problems in TCM to CM Mapping

We can highlight a few typical situations, where the map-
ping from the TCM to a CM is not as straightforward as
for instance the naming conflicts naturally solved by paired
path expressions explained in Section 3.3.3. In this section

we mention the conflicts and their possible solutions. This
descriptions are used as guidelines for developing the NT
deployment software (NT2AM Transformerin Figure 2).
Most of the possible situations have been discussed and
classified in [14]. Concretely we name:

• Data representation conflict: corresponding literal
properties in the TCM and a concrete CM have dif-
ferent data types. An example is the{Paper}year

property (StringandIntegertypes).

• Missing literal property conflict: a TCM concept at-
tribute does not have its counterpart in the CM. An ex-
ample would be the{tcm : Researcher}tcm : email

attribute.

• Concept-property and property-concept conflicts can
appear when a concept in the TCM is modeled as a
(literal) property in the CM and vice versa.

• A few cases of schema isomorphism conflicts:

– A TCM concept does not have its counterpart in
the CM. An example would be thetcm:Group
concept.

– A TCM concept literal property has only a
reversed counterpart in the CM. An example
is {tcm : Researcher}tcm : papers that
can be mapped to{cm : Member}cm :

created by−1 (or to {cm : Contributor}cm :

contributed by−1).

– A TCM literal property is mapped to (composed
of) multiple attributes in the CM. An example is
{tcm : Researcher}tcm : name that is mapped
into a concatenation of{cm : Person}cm :

fname and{cm :Person}cm :surname.

• Generalization conflicts where a TCM concept is
mapped into a CM concept with more specializa-
tions. An example of this would be the{tcm :

Paper}tcm : published at literal property that can
be mapped to{cm : Paper}cm : published as{cm :

Proceedings}cm : ctitle and to{cm : Paper}cm :

published as{cm :Journal}cm :jtitle

We do not mention other possible conflicts such as integrity
constraint conflicts that can arise when more sophisticated
constraints are imposed on the concepts and their properties.

3.4.1 Data Representation Conflicts

In this case the data types of the corresponding literal prop-
erties are not compatible. A simple type conversion is
made: concretely, the type of a conflicting TCM attribute
is transformed (possibly during the model transformation

8

since we can transform schemas) to the data type of the cor-
responding CM attribute. Applied to our example, the type
Integer of attribute{tcm : Paper}year at in the TAM is
changed toString in the resulting AM.

3.4.2 Missing Literal Property Conflict

In the case of such a conflict such a literal property (at-
tribute) is omitted in the resulting concrete AM. An example
is theemailattribute of theResearcher.Detailsin TAM that
does not appear in the resulting AM (see Figures 7 and 9).

3.4.3 Concept-property and property-concept conflicts

This conflict appears if a concept in the TCM is modeled
as a literal property in the CM or vice versa. An exam-
ple of the property-concept conflict is{tcm :Paper}tcm :

published at that is mapped to{cm : Paper}cm :

published as. This conflict is discussed in Section 3.4.5.

3.4.4 A TCM Concept Does not Have a Counterpart in
the CM

In this case theNT2AM Transformermust replace the miss-
ing concept with a single (virtual) constant concept, so all
its attributes are constants. For instance, the example pub-
lication CM is intended for a single research group, so the
group name will be replaced with a constant string. The re-
placement by a constant is needed due to the fact that some
top-level slices can be based on non-existing concepts. Dur-
ing the transformation process these slices are replaced by
constant slices.

3.4.5 Generalization Conflict

This problem typically occurs when the TCM concept has
specializations with a different property structure. An
example is the mapping of the{tcm : Paper}tcm :

published at attribute that can be mapped into{cm :

Paper}cm : published as{cm : Proceedings}cm : ctitle,
but also into{cm : Paper}cm : published as{cm :

Journal}cm : jtitle depending on the type of the publi-
cation (Proceedingsor Journal).

The solution to this problem needs to cover the following
two situations (as well as some other problems, but they
appear to be simpler):

• Transformation of slices for presentation purposes (i.e.
transformation of SELECT queries). In this case the
result should be the union of two queries containing
both path expressions.

• Transformation of data manipulation queries. For the
data consistency reasons the type of the manipulated
concept should be determined (especially when new

instances are created), despite the fact that there is no
notion of these specializations in the TCM. One of the
possible solutions is the automatic generation of a se-
lection input field allowing the user to choose the type
of concept to be created (according to existing concept
subclasses). In the example it would be a selection
between theProceedingsandJournal concepts when
adding a new publication.

3.4.6 A TCM Concept Property Has Only a Reversed
CM Counterpart

This situation occurs when a TCM property does not have a
directly matching counterpart in the CM, but there is a CM
property with inverse semantics. There is no direct illustra-
tion of this in the example, but{tcm : Researcher}tcm :

papers can be mapped to the union of the inversions of
{cm : Paper}cm : created by and {cm : Paper}cm :

contributed by.

3.4.7 A TCM Literal Property is Mapped to a Con-
catenation of Multiple CM Literal Properties

This is a case when an attribute is mapped to a concate-
nation of multiple literal properties. An example is the
concatenation of{cm : Person}cm : fname and {cm :

Person}cm : surname for the{tcm : Researcher}tcm :

name. The solution is to replace one TAM slice attribute in
the TAM by several attributes in the resulting AM.

4 Implementation

The usefulness of the approach described in this text re-
lies to a large extent on the availability of tools supporting
the design and automated deployment of NTs. The most es-
sential tool is theNT2AM Transformer(Figure 2) that trans-
forms an NT specification to a concrete Hera AM or a part
of it using the mapping to a concrete domain CM. This tool
is a single Java application that reuses some classes from
the Hera Mediator [16] for the processing of articulations.

A design support tool for the graphical specification of
mappings (articulations) is currently under development,
and uses part of the functionality of the EROS RDFS Ex-
plorer [15] that provides an interface for building SeRQL
queries, and thus also supports the building of path expres-
sions, which are the essential part of articulations. It will
allow rapid and easy specification of needed articulations.
The main window of the tool is shown in Figure 10. The NT
graphical design tools are based on existing Hera CM and
AM Builders (for the construction of the TCM and TAM)
that are also used for the regular (graphical) design of Hera
applications (i.e. without using an NT). These tools are be-
ing updated for specification of the NT interfaces.

9

Figure 10. The main window of the mapping
tool

5 Conclusion

In this paper we have shown the principles of building
NT specifications that are portable over domains. These
principles use existing expertise of modelling techniques
and data integration. In the implementation we exploit soft-
ware packages we have already developed, for instance the
Hera Mediator and the EROS RDFS explorer. Although we
chose a concrete (Hera) method for demonstrating the ap-
proach, we believe that the idea of mapping from a TCM
to a concrete CM is rather universal. The advantage of
our method compared to some other approaches lies in the
possibility of precise specification of the navigation struc-
ture and the data manipulation within an NT that is sub-
sequently automatically transformed to appropriate speci-
fication matching a concrete domain. Thus, this approach
and its implementation will facilitate the reuse of naviga-
tion primitives in web engineering.

References

[1] Openrdf, the serql query language, rev. 1.1.http://www.
openrdf.org/doc/users/ch06.html .

[2] D. Brickley and R. V. Guha. Rdf vocabulary description lan-
guage 1.0: Rdf schema.W3C Recommandation 10 February
2004.

[3] S. Ceri, P. Fraternalli, A. Bongio, M. Brambilla, S. Comai,
and M. Matera.Designing Data-Intensive Web Applications.
Morgan Kaufmann Publishers Inc., 2003.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, MA, 1995.

[5] J. Gomez and C. Cachero. Oo-h method: Extending uml to
model web interfaces.Idea Group Publishing, pages 144–
173, 2003.

[6] G. Houben, F. Frasincar, P. Barna, and R. Vdovjak. Mod-
eling user input and hypermedia dynamics in hera. InIn-
ternational Conference on Web Engineering (ICWE 2004),
Munich, Germany, 2004.

[7] N. Koch, A. Kraus, and R. Hennicker. The authoring process
of the uml-based web engineering approach. InProceedings
of The First International Workshop of Web-Oriented Soft-
ware Technology, 2001.

[8] F. Mannola and E. Miller. Rdf primer.W3C Recommanda-
tion 10 February 2004.

[9] J. Miller J., Mukerji. Mda guide version 1.0.1.OMG, June
2003.

[10] O. Pastor, J. Fons, and V. Pelechano. Oows: A method
to develop web applications from web-oriented conceptual
models. InProceedings of International Workshop on Web
Oriented Software Technology (IWWOST), 2003.

[11] G. Rossi, F. Lyardet, and D. Schwabe. Patterns for e-
commerce applications. InProceedings of Europlop 2000,
2000.

[12] K. Sattler, S. Conrad, and G. Saake. Interactive example-
driven integration and reconciliation for accessing database
federations.Inf. Syst., 28(5):393–414, 2003.

[13] D. Schwabe, G. Rossi, L. Esmeraldo, and F. Lyardet. Engi-
neering web applications for reuse.IEEE Multimedia, pages
2–12, Spring 2001.

[14] A. Sheth and V. Kashyap. So far (schematically) yet so near
(semantically). InProceedings of the IFIP WG 2.6 Database
Semantics Conference on Interoperable Database Systems
(DS-5). North-Holland, 1993.

[15] R. Vdovjak, P. Barna, and G. J. Houben. Eros: A user inter-
face for the semantic web. In7th World Multiconference on
Systemics, Cybernetics and Informatics, 2003.

[16] R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna. En-
gineering semantic web information systems in hera.Jour-
nal of Web Engineering (JWE), Rinton Press, 2(1-2):3–26,
2002.

10

