
Towards a User-Centered Design of Web Applications based on a Task Model

Marco Winckler1, Jean Vanderdonckt2
1LIIHS-IRIT Toulouse, 2Université catholique de Louvain

winckler@irit.fr, vanderdonckt@isys.ucl.ac.be

Abstract
Since more than a decade, several methods for

engineering and developing web applications have been
introduced and extensively used. Since these methods
often focus on data and related processes, their approach
to conceptual modeling of web applications is centered
on the notions of data, objects, functions, processes, and
services. In this paper, we show that these methods could
be expanded by modeling the user interface of such web
applications by adopting a user-centered approach based
on a task model. A task model represents the user’s
viewpoint on how to manipulate these data and trigger
these functions so as to reach the goal associated to the
task. Depending on the user, several different task models
could be elaborated and each task model may lead in turn
to different user interfaces for the same data and
processes, as opposed to a single user interface as
produced by traditional development methods. For this
purpose, a case study is presented that demonstrates how
a task can be modeled so as to represent the user’s
viewpoint in the user interface and to refine the dialog of
the application.

1. Introduction

The development of Web applications is known to be
as a complex activity due to many factors that need to be
considered simultaneously: the evolving nature of
applications, the multidisciplinary nature of development
team, the competitive points of views for the application,
the complexity and incompleteness of user requirements,
the tight schedules for delivering the Web application [1,
6, 13]. In particular, many currently existing Web
applications must follow predefined business logics and
complex transactional operations and services requiring
integration with distributed databases and legacy systems.
Notwithstanding, the early Web was born as a
hypertext/hypermedia system and it still preserves many
of its hypermedia influence. As a result of this hybrid
heritage, the development of many Web applications may
tend to prefer considering aspects typically addressed in
document management systems (e.g., information
architecture), software engineering (e.g., functional
architecture) [9].

To cope with this complexity, the Web Engineering
community has investigated and defined models and

notations intended to support the design activity of web
applications that surpass the capabilities and the aims and
goals of merely those found in document processing and
software engineering. Several models for the
development of Web applications have been proposed
and extensively used in the recent years such as the OO-H
method [8], the Object-Oriented Hypermedia Design
Method (OOHDM) [15] and WebML [3]. Such models
sometimes consist of an adaptation from previous work
on Hypermedia Systems, Object Oriented methodology
and Formal Methods. Those models which have been
influenced by Hypertext Systems and Object Oriented
methodology, propose solutions based on the concept
authoring-in-the-large; which means they provide abstract
models describing the overall classes of information
elements and navigation structures without much concern
for implementation details [7].

Most development methods existing for web
applications base their conceptual modeling on the
objects (or data) and their related methods, functions, or
services. The consequence of this hypothesis is that the
types of task that can be derived from these models
frequently adopt the traditional CRUD (Create, Read,
Update, Delete) pattern: tasks are limited to basic
operations on objects and their relationships. When some
methods go beyond this simple pattern, the dialog of the
resulting user interface is assuming a transactional
scheme: all data that are manipulated by the task are
supposed to be entered and all methods that are required
to accomplish the task should be triggered by the user.
But no order is assumed, thus resulting in a dialogue
where no contextual consideration is supported. For
instance, such methods cannot model fine-grained
dialogues such as: if the user selects this radio button,
activate dynamically this push button associated to that
service, enter information with this order that can
dynamically change according to the user’s preference,
dynamically change a form according to user’s reply,
display this window according to the previously done
operations. In other words, the dialog is often restricted to
navigation between pages and screens, not to fine dialog.

Work on “classical” interactive systems has shown the
central role played by task analysis for designing usable
and useful systems [2, 11]. Task models allow the
description of high-level user requirements in terms
activities that must be performed by the user and/or by the
system in order to reach some goal. The modeling

produced with task models leads to many different
implementations. One advantage of this is that we can
compare different design options prior to the
implementation, thus saving time.

Most of the user’s tasks over the Web concern the
navigation [6]. By navigation we understand here all
activity allowing users to move from a Web page to
another, which covers supplying information through
forms (identified as part of electronic procedure using a
database), following a navigation paths or freely
exploring the information space.

This paper argues that the use of task modeling can be
employed synergistically with navigation modeling to
improve the usability of Web applications designs. The
Section 2 describes a general method centered on user
tasks. Section 3 presents a case study for a Digital Library
which demonstrates our approach. Section 3.1 presents
the user roles for the application. Section 3.2 presents the
modeling of user users’ tasks by the means of the
ConcurTaskTree notation (CTT) [14]. Section 3.3
introduces the StateWebCharts notation (SWC) [18] and
presents the corresponding navigation models for the
digital library. Section 3.4 shows how to drive from
navigation models with SWC to the prototyping of the
digital library. Section 4 presents a discussion and related
work. Lately, Section 5 presents the conclusions.

2. A Method for Web User-Centered Design

We assume that the phase of requirements engineering
has been already started and designers have identified the
users’ profile, their informational needs as well as the
underlying data model. The method presented here does
not impose any particular notation. We used to describe
the user profile and informational requirements by textual
scenarios. The underlying data model is described by the
means of a UML class diagram. The approach for
modeling is made up by following these steps:
1) Identify the different roles performed by the user;
2) Create a task model for each role;
3) For each task model create an individual navigation

model;
4) Create relationships in the navigation model for any

further informational requirements;
The step one 1 is performed in the very early phases of

development when the target audience for the Web
application is set up. The tasks of each user role are
specified by the means of a task model at the step 2. In
the step 3 task models guide the process of navigation
modeling; in addition, designers can include relationships
to describe system behaviors as reaction to user
interaction, which is not described by task models. The
step 4 is made up by detailing the navigation in order to
include relationships based on informational requirements
(e.g. allow users to return to the main page of the Web

site whenever the page they are navigating). Additional
transitions and states can be included into the model to
represent single pages, external relationships, index,
guided tours or any other navigational requirements.

3. Case Study: Informal Description

Our case study is the digital library of theses for the
French Association on Computer-Human Interaction
(AFIHM1). The main aim with this Web application is
allowing users to navigate, search and update a digital
library of theses on the HCI field. The general idea
behind this Digital Library (DL) is to allow users to feed
the database with little effort and control by the AFIHM.
Since some users could create unexpected records (e.g.
supplying incomplete/inappropriate information,
mistakenly changing a record) the Web application
should support a kind of review process. This review
process is made up by a system administrator who
decides to give or not his authorization to publish a thesis
in the catalogue after have been notified by mail each
time a user submit his/her thesis. The informational and
functional requirements for the application can be
summarized as follows:
a) To provide searching and browsing facilities;
b) All visitors can create for free their own account
c) Only users having an account can submit and

download thesis from the DL;
d) To ease updating the catalogue’s contents by users;
e) To support a fast review process of thesis;
f) Allow users to navigate from the Digital Library to

the AFIHM’s Web site;
g) Notify users about the status of their submission (i.e.

accepted, refused, etc.).
Due to space restriction, only a portion of the task

models and navigation models produced for the case
study are presented below.

3.1 User Roles and Tasks
Table 1 presents the roles which have been identified

for the application (“everyone” and “system
administrator”) and their corresponding (allowed) tasks.
The role “everyone” corresponds to any Web site visitor,
which covers the profiles “Not logged in” and “registered
user”. The browsing and searching facilities of the
database are available to everyone but a user only can
submit or download a thesis in the electronic format if
s/he is logged into the system. The user role “system
administrator” refers to someone who is responsible for
supervising the submissions.

1 AFIHM is the French acronyms of “Association
Francophone d'Interaction Homme-Machine”. More
information available at: http://www.afihm.org/

Table 1. Target audience for the AFIHM’s theses Web site.

Role User Profile Pre-
conditions

(allowed) Tasks

Not logged in none Query (Search Digital Library)
Create an account
Log into the system

Everyone

Registered
user

Logged in Query (Search Digital Library)
Download thesis
Update account information
Submit a thesis to the

catalogue
System
administrator

Have access
rights
Full control

over the
catalogue

Logged in Review submissions

3.2 Modeling User Tasks for the Digital Library
with the CTT Notation
We start by modeling individual the tasks without in-
between dependencies such as “Query” and “Log into the
system”. Fig.1 presents these tasks by using the CTT
notation [14]. In CTT, tasks are organized in a hierarchy;
for example in Fig. 1.a, the task “Query” is accomplished
when its subtasks “Provide Keyword” and “Show result”
have been completed. The relationships between tasks are
based on LOTOS operators such as enabling (operator
>>), enabling with information passing (operator []>>),
task interruption (operation [>), etc. CTT notation allows
modeling 4 types of tasks: abstract task, user tasks,
application task and interactive task. The Abstract tasks in
CTT are tasks which require compound tasks such as
“Query” (Fig.1.a) and “Log into the system” (Fig.1.b).

User tasks are entirely performed by the user without
interacting with the system (not used in this case study
example). Interactive tasks are performed by the user with
the system such as tasks “Provide Keyword” (Fig.1.a) and
“Provide identification” (Fig.1.b). Application tasks
describe actions performed by the system without user
intervention, for instance “Show result” (Fig.1.a) and
“Validate User Identification” (Fig.1.b). In the sequence,
we designer can create more complex relationships
between tasks. For example, Fig. 2 shows a complete task
modeling for download a thesis form the Digital Library.

a) CTT model for the task “Query”

b) CTT model for the task “Log into the system”

Fig. 1. CTT models of individual tasks without in-between
dependencies.

Fig. 2. CTT modeling for a download a thesis from the Digital Library.

Reuse of tasks

It worth noting in Fig. 2 the reuse of tasks “Log into the
system” and “Query”. The relationship (|=|) means that
these tasks can be performed in any order. The system
only performs the task “Send the file” after s/he has
searched the digital library and get logged in the system
can. In this modeling, the task “Query” is iterative
(represented by the symbol *). To allow the interruption
of this iteration the user can perform the task “Request
download”. The task “Log out” was added to allow the
users to exit the application at any time. The operator
“[>” indicates the interruption of the task.
By exploiting to the task model above it is possible to
perform several scenarios (see Table 2). The scenarios
presented in Table 2 are used to evaluate all alternative
sequences for the task “download a thesis from the digital
library”. The scenarios below do not impose any
particular implementation that means user tasks can be
better understood without to have to planning how to
support them by the system. This kind of analysis is made
possible because user tasks are considered from the point
of view of the users need for the application and not how
to represent the user activity with a particular system.

Table 2. Some possible scenarios for the task “download a thesis
from the digital library”.

 Scenario 1 Scenario 2 Scenario 3

Se
qu

en
ce

 o
f t

as
k

ex
ec

ut
io

n

Provide Identification
Validate User
Identification
Provide Keyword
Show result
Request download
Download

Provide Keyword
Show result
Provide Identification
Validate User
Identification
Request download
Download

Provide Keyword
Show result
Provide Keyword
Show result
log out

3.3 Modeling the Navigation for the Digital
Library with the SWC Notation
As described in previous section, some tasks require users
to provide a keyword for querying a database or to
provide their identification for getting access to private
documents. In these cases, navigation models must
represent what happens if the user identification fails or if
the database records do not match to the keyword. These
issues are better represented by navigation models than
task models.
For navigation modeling we have proposed the StateWeb-
Charts notation (SWC) [18]. SWC is a formalism based
on StateCharts [10], which has been extensively used to
model complex/reactive systems. StateCharts can be
defined as a set of the states, transitions, events,
conditions and variables and their inter-relations. In
SWC, states are abstractions of containers for objects
(graphic or executable objects). For Web applications
such containers are usually (but not only) HTML pages.

States in SWC are represented according to their function
in the modeling. States can be static, dynamic, transient or
external. Static states represent static content while
dynamic states represent pages generated dynamically by
the system. Transient states describe a non-deterministic
behavior in the state machine; they are needed when a
single transition cannot determine the next state for the
state machine. External states represent external modules
for the application of external Web sites. In a similar way,
a SWC transition explicitly represents the agent activating
it. Transitions whose event is triggered by a user are
graphically drawn as continuous arrows while transitions
triggered by system or completion events are drawn as
dashed arrows. Each individual Web page is considered a
container for objects and each container is associated to a
state. Links and interactive objects causing transition are
represented by events. The operational semantic for a
SWC is: current states and their content are visible to the
users while non-current states are hidden. Users can only
navigate outgoing relationships (represented by the means
of transitions) from current states. When a user selects a
transition the system leaves the source state which
becomes inactive letting the target state to be the next
active state in the configuration. SWC also provides the
pseudo-states as those found in StateCharts (i.e. shallow
history, deep history, end state and initial state). More
details about SWC can be found in [18].
In order to exemplify the elements of the SWC notation,
Fig. 3 presents the SWC modeling for doing a query over
the digital library and logging into the system which
correspond to the tasks “Query” and “Log into the
system” presented by Fig.1.a and Fig.1.b, respectively.

a) Navigation model for the task “Query”

b) Navigation model for the task “Log into the system”

Fig. 3. SWC modeling to log into the system (a) and query (b).

In Fig. 3.b, the states “provide identification” and
“validate user identification” correspond to the subtasks
in Fig.1.b. The state “validate user identification” is a
transient state which does have a visual representation to
the user. This state is associate to dynamic state “Try
again” which is dynamically generated and presented to
the user if the login fails. Otherwise, the transient state
present the welcome page represented by the static state
“Welcome”. We can observe that these states correspond
to the subtasks in Fig1.b but they also include new states
(i.e. “Try again” and “Welcome”) and transitions (i.e.
“Error”, “Show logged in” and “Repost(mail,pwd)”
which are required to describe the behavior of the
application in response to user tasks.
The Fig. 4 shows the complete navigation model for
download a thesis from the Digital Library including the
support for the tasks “Log into the system” and “Query”
(the digital library). Similar to the previous examples, this
SWC modeling includes transitions that complete the
description of the system’s behavior. In addition, it
features some transitions supporting content-based
navigation such as “return from auth.”, “get logged in“,
“return from search DL”, “start search digital library” and
“Search DL”. Notice that these transitions link static
states such as “home” and “welcome” which correspond
to static documents. When linking up states by the means
of transitions we can create all the navigation required by

the users whether it concerns content-based navigation or
navigation required to follows a specific procedure.
3.4 Prototyping the Web Application
The edition, simulation and prototyping of SWC models
are supported by the tool SWCEditor [17] (see Fig 5).
After we have verified that the navigation built with SWC
holds in our requirements we can start by creating the
Web pages that correspond to the SWC model. The Web
pages were built using a visual environment independent
from SWCEditor since, at the present, it does not
integrate a Web page editor. Once we have prototyped
each individual Web page for the application, we returned
to SWCEditor and we associated each state to a Web
page. Each state visible at the user presentation is
associated to a Web page which includes the content and
the graphical presentation for the objects. The SWCEditor
supports the simultaneous simulation of SWC models and
the execution of the corresponding Web pages. Fig. 6
provides a view at glance of this process. The navigation
modeling for the digital library of AFIHM is presented at
left highlighting the current state in the simulation (i.e.
the state “home”). At right, Fig 6 presents the
corresponding implementation of the home page. We also
can observe at left of Fig 6 a dialog window showing a
list of transitions going out from the state “home”. These
transitions are translated to links at the home page. The
arrow links indicates this translation.

Fig. 4. SWC modeling to log into the system (a) and query (b).

Fig. 6. Prototyping the Digital Library for the theses of the AFIHM.

Fig. 5. SWCEditor: edition of the model “Download paper from DL Library”.

4 Discussion and Related Work
When designing Web applications, we have to pay
attention to the users’ tasks and to the users’ mental
model about the information space in order to help users
to navigate efficiently the application. The efficiency of
Data-driven approaches is limited to the navigation one
can extend from an underlying database. The main
problem of such as an approach is that the underlying
database does not necessarily (and quite often doesn’t)
represent the user mental model for the Web application.
Even though task modeling is widely considered as
helpful activity which let design to analyze the user
activity without influence of technological constraints, the
actual use of task models for the design of Web
applications is underestimated mainly because current
approaches for the design do not provide any guidance on
how to integrate task models into the design process.
We assume that tasks models are not suitable for
representing part of the system because the way users
have access to information is part of the system
specification not part of the user task [19]. Keep task
models independent from system models allows the
analysis of user needs for tasks and the transformation of
such as models according to the modality and any other
implementation constraints. For example, a task model
should not inform how many pages a user must visit to
accomplish a task because the number of the pages is on
the system domain which can adapt the number of pages
in the presentation dynamically according to parameters
such as the device employed, the preferred modality for
user interaction (graphic, sound/voice, etc), and so on.
Thus both task models and system models (in the case of
the Web navigation models) must be employed
synergistically to produce appropriated User-Centered
Designs.
As discussed in the first section, most development
methods existing for web applications base their
conceptual modeling on the objects (or data) and their
related methods, functions, or services, and they derive
tasks from the traditional CRUD (Create, Read, Update,
Delete) pattern: tasks are limited to basic operations on
objects and their relationships. When some methods go
beyond this simple pattern, the dialog of the resulting user
interface is assuming a transactional scheme: all data that
are manipulated by the task are supposed to be entered
and all methods that are required to accomplish the task
should be triggered by the user. These development
methods focus on the designer's point of view about the
content and the navigation of the web application.
Moreover, when the user’s perspective is taken into
account it is often introduced very informally. When
dealing with large web application this informal process
reaches its limits and often leads to usability failures.
Inappropriate navigation design of applications as one of
the main sources of usability problems related to the

navigation [4]. The hypertext interconnections in Web
applications can be extremely complex and designers
could benefit from tools and guidelines to support and
assist them. Tauscher and Greenberg [16] describe some
patterns of navigation but their results don’t explain
which tasks are engaged while these patterns are used.
These studies try to describe user tasks at a high and
generic (activity) level but don’t provide any information
about how task modeling could be performed or how a
task model can be exploited within the development
process of a web application.
Only a few works have been addressed the problem of
model user tasks for the Web Design. The WSDM
method [5] tackles many usability concerns and user
requirements which are quite often neglected by other
methods. However WSDM don’t provide a way to model
and analyze user tasks without having to take into account
the system model. SOHDM approach [12] relies upon
scenarios to guide all the design activities concerning the
development of Web applications but it does not take into
account non-functional aspects that are relevant for a
user-centered design process. As mentioned before, both
content-based and task-based navigation should be
supported by navigation modeling methods.

5 Conclusions

This work has presented a Task-Centered Approach for
navigation modeling. Our aim is to demonstrate how to
describe user requirements by the means of task models
and scenarios and how to transform them into
navigational paths. For this purposes we have employed
the CTT notation [16] to represent user tasks because it
enable us to explicitly represent the tasks that are
performed by the user, by the application and those which
are interactive (i.e. require both system and user
intervention). For navigation modeling we have employed
the SWC notation [18] because it provides non-
ambiguous descriptions for the navigation and it
explicitly where user and system act changing the state of
the application. Both notation presented are supported by
tools which facilitate the edition and simulation of
models.
The precise modeling of user tasks provides a deeper
understanding about the user needs for the application.
The mapping of task models to navigation models allows
designers to explore many possible solutions for the
implementations.
The role of navigation models is to create appropriate
views of information space (by grouping entities from an
underlying data model or a document database) and
provide navigable relationships in-between according to
the users’ needs. Since task models are high-level
description of the user activity they are not suitable to

represent all aspect concerning the navigation over Web
applications. For this reason the mapping between task
models and navigation models is required to complete the
design.
The use of formal description techniques, such as SWC,
provides a clear and non ambiguous description of the
navigation supporting user tasks by the system. In
addition, the appropriate tool support can alleviate the
effort of modeling and support rapid prototyping, as
shown in section 3.4. Even thought we wish do not
discuss in this paper the verification of the SWC model,
we can just mention that some tools exist to support the
simulation and verification of properties of the model that
can be assimilated as usability problems (e.g. deep
navigation paths, dead links, and so on).

Acknowledgments
This work is partially supported by the project SPIDER
Web (Capes/Cofecub n. 399/02).

References

[1] Balasubramanian, V., Bashian, A. Document

management and Web technologies: Alice marries
the Mad Hatter, Communications of the ACM 41(7),
pp. 107-115 (1998)

[2] Benyon, D. Task Analysis and System Design: the
Discipline of Data. Interacting with Computers, 4(1),
pp. 102-123 (1992).

[3] Ceri, S., Fraternali, P., Bongio, A. Web Modeling
Language (WebML): a Modeling Language for
Designing Web Sites. WWW9 Conference (2000)

[4] Cockburn, A., Jones, S. "Which way now? Analysing
and easing inadequacies in WWW navigation,"
International Journal of Human Computer Studies pp.
105-129, 1996.

[5] De Troyer, O., Leune, C. J. WSDM: A User
Centered Design Method for Web Sites. 7th
International World Wide Web Conference (1998).

[6] Fleming, J. Web Navigation: Designing the User
Experience. O'Reilly & Associates Press. (1998)

[7] Garzotto, F., Paolini, P., Schwabe, D. HDM—a
model-based approach to hypertext application
design. ACM Transactions on Information Systems
(TOIS) vol. 11, no. 1, pp. 1-26, (1993)

[8] Gómez, C.C. J., Pastor, O. Extending an Object-
Oriented Conceptual Modelling Approach to Web
Application Design. CAiSE'2000 pp. 79-93, (2000)

[9] Gu, A., Henderson-Sellers, B., Lowe, D. Web
Modelling Languages: The Gap Between
Requirements and Current Exemplars. 8th Australian
World Wide Web Conference (AusWeb'2002) 2002.

[10] Harel, D. StateCharts: A Visual Formalism for
Complex Systems. Science of Computer
Programming vol. 8, no. 3, pp. 231-274 (1987)

[11] Johnson, P. Human-Computer Interaction:
Psychology, Task Analysis and Software
Engineering, Mc-Graw Hill, Maidenhead, UK, 1992

[12] Lee, H., Lee, C., Yoo, C. A scenario-based object-
oriented hypermedia design methodology. Elsevier
Information & Management no. 36, pp. 121-138
(1999)

[13] Murugesan, S., Deshpande, Y. Web Engineering:
Managing Diversity and Complexity of Web
Application Development. LNCS 2016. Springer-
Verlag, Berlin, p. 355 (2001)

[14] Paterno, F., Mancinii, C., Meniconi, S.
ConcurTaskTrees: a Diagrammatic Notations for
Specifying Task Models, In Proceedings of IFIF T13
Conference INTERACT 97, Sydney,
Chapman&Hall. (1997) pp. 362-69

[15] Schwabe, D., Rossi, G. Building Hypermedia
Applications as Navigational Views of information
Models. 28th Hawaii International Conference on
System Sciences pp. 231-240 (1995)

[16] Tauscher, L., Greenberg, S. How people revisit web
pages: empirical findings and implications for the
design of history systems. Int. J. Human–Computer
Studies vol. 47, pp. 97-137 (1997)

[17] Winckler, M., Barboni, E., Farenc, C., Palanque, P.
SWCEditor: a Model-Based Tool for Interactive
Modelling of Web Navigation. ACM Computer-
Aided Design of User Interfaces (CADUI'2004),
Funchal, PT. (2004)

[18] Winckler, M., Palanque, P. StateWebCharts: a
Formal Description Technique Dedicated to
Navigation Modelling of Web Applications.
International Workshop on Design, Specification and
Verification of Interactive Systems (DSVIS'2003),
Funchal, PT. (2003).

[19] Palanque, P.; Bastide, R.; Winckler, M. Automatic
Generation of Interactive Systems: Why A Task
Model is not Enough. 10th International Conference
on Human-Computer Interaction – HCI
International’2003, Héraklion, Greece, June 2003.

