
Modeling Interactions between Web Applications and Third Party Systems

Nathalie Moreno and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Ḿalaga, Spain
{vergara,av}@lcc.uma.es

Abstract

Web-based applications are no longer isolated sys-
tems. Now they need to interoperate with external ser-
vice providers and legacy systems, which are available in a
wide range of different platforms, and may follow disparate
communication mechanisms. Modeling the interactions be-
tween these systems is not simple, and need to be properly
addressed within any model-driven development scenario.
Many of the existing Web Engineering proposals do not take
this fact into account, or address it in a very simplistic way.
In this work we use an MDA approach for encapsulating
the different interaction abstractions and mechanisms into a
separate platform-independent level, and show the transfor-
mations required to produce platform-specific models de-
pending on the particular details and interaction mecha-
nisms of each technology platform and middleware.

1 Introduction

As the demand and the number of available distributed
Web applications grows, so does the need to easily design,
deploy, maintain,integrateand interconnectsuch Web ap-
plications in heterogeneous environments. MDA [18, 5]
seems to be one of the most promising approaches for ad-
dressing these issues: it provides the right kinds of abstrac-
tions and mechanisms for improving the way applications
are integrated and interconnected nowadays.

A proper integration approach requires an structured and
efficient way to assist software architects and developers
achieve such integration not only at implementation level,
but also during all phases of the development process. In
this regard, any integration with legacy data and external
services at the PIM level requires modeling them, too (their
structural features, behavioral descriptions, etc.)—allowing
the manipulation of the external entities of such systems as
native elements of our models. Special care should be taken
in this case with the bridges that connect the system with
its external partners applications, for which transformations

are also needed, as mentioned in [11].
Although a priori there are no major problems with this

approach, we may face different kinds of incompatibility
issues when trying to integrate external pieces into the sys-
tem (e.g., external services or legacy applications). For in-
stance, the interface of the services required by our appli-
cation (as specified in one of the PIMs) may not match the
interface of the actual service, as provided by the external
service provider. There is no problem if these incompati-
bilities are explicit because they can be easily detected and
corrected—as it happens with signature incompatibilities,
for example. These situations can be treated with the use of
adaptors, wrappers, or any kind of adaptation techniques.

The major problem appears in the cases of implicit as-
sumptions on the interaction models and mechanisms fol-
lowed by clients and servers. Normally, these assumptions
are implicitly made by software developers with previous
knowledge about how the target platform(s) work. When-
ever all the application is generated from the initial PIMs us-
ing a single platform technology, and therefore all parts fol-
low the same interaction models and patterns, this problem
does not happen. However, when we need to work with ex-
ternal entities, the interactions models of each party should
be made explicit to be able to detect and resolve potential
inconsistencies and conflicts at design level.

This work presents an approach for modeling the com-
munication mechanisms between a Web application and its
related external systems, that makes explicit both the pro-
gramming abstractions through which the client and service
provider view the communication, and certain implementa-
tion choices about the selected target platform that generally
are implicit. This is specially relevant in those contexts in
which several platform technologies may be simultaneously
used.

In general, there is no standard way of describing imple-
mentation decisions such as concurrence, security or trans-
action aspects, in order to get computationally complete
PIMS, i.e., PIMs that contain all the information required
to produce real program code.

Several approaches that address this issue by identify-

ing these concerns at different levels of abstraction have ap-
peared recently. Almeida et al. [1, 2] introduce theabstract
platformconcept that defines characteristics that must have
proper mappings onto the set of concrete target platforms
that are considered for an MDA design process. Following
a different approach that uses a UML profile, Witthawaskul
and Johnson [22] define theunit of workconcept which can
be applied on a UML operation to support platform inde-
pendent transaction modeling. Likewise, our work follows
an approach based on marks (using a UML metamodel) that
guide both the PIM to PSM transformation, and the PSM to
the Implementation Model transformation too. They rep-
resent interaction model capabilities and services provided
by potential target platforms abstracted and specified in a
platform-independent way.

Another controversial issue is related to where imple-
mentation decisions are expected to appear: (i) directly in
the PIM; (ii) in the target platform model, or; (iii) in the
transformation model. The MDA community still struggles
to deal with this issue, as a quick look at the discussion hap-
pening in the MDA mailing lists clearly reveals.

The structure of this document is as follows. After this
introduction, Section 2 provides a brief description of the
interaction styles supported by technologies like CORBA,
Enterprise Java Beans, J2EE, Web Services or .NET. After
that, Section 3 derives a UML metamodel based on the ex-
isting similarities found among the previous interaction mo-
dels. Using this metamodel, Sections 4, 5 and 6 show how
to apply it in a service-oriented scenario. Finally, Section 7
draws some conclusions and outlines some further research
activities.

2 Interaction Models for Web Applications

Currently, Web applications need to interoperate with
third party systems (external portlets, Web services or
legacy applications) in a variety of ways—interaction
models—which reflect the heterogeneity of applications
built upon disparate implementation technologies such as
J2EE, CORBA or .NET. Generally, each middleware tech-
nology has its own interaction model, although traditional
client-server interaction patterns are likely to be common.

A Web application may require to communicate with
a great variety of systems in different address spaces and
running on heterogeneous platforms—which use different
communication abstractions and interaction models. Here
we will briefly describe the interaction styles of the most
commonly used technologies, which are able to connect ap-
plications implemented using heterogeneous technologies.

2.1 Calling Service Provider for a Web Applica-
tion

Currently, three main technologies support communica-
tion between modules of disparate systems, hiding plat-
form and language specific details: CORBA, Enterprise
Java Beans, J2EE and Web Services and .NET.

CORBA Service Provider. To request a CORBA service
provider, the client may follow two approaches [8, 16, 20]:
(i) a static invocation method or (ii) a dynamic invocation
method. For the former, the client has to acquire at compile-
time an object reference to the CORBA object. Then, this
reference is used to initialize a proxy object that represents
the remote object in the client’s address space. For gener-
ating the proxy implementation, an IDL specification of the
CORBA object is required and compiled into the client pro-
gram. IDL specifications can define both synchronous (re-
quest/reply) operations and asynchronous (one-way) mes-
sages.

For dynamic invocations there is no information about
the types and interface specifications of the required
CORBA service. The client can look this information up by
querying an Interface Repository (a service that provides
IDL definitions at run-time). In consequence, a client re-
quest consists of operations for setting the name and pa-
rameters of the request and retrieving the returned values
or an exception at run-time. Once the client has acquired
a valid remote object reference to the CORBA server ob-
ject, it can call the server object’s methods as if the server
object resided in the client’s address space. The mapping
of the object name to its implementation is handled by the
Implementation Repository.

Enterprise Java Beans/J2EE Provider. For a client to
call a business method, it needs to go via an EJB object
(a generated Java class based on the Component Interface).
This means that a client never accesses an enterprise bean
directly [4, 21]. In this regard, the client has in first place
to call a factory object (which is the EJB Home Object) to
either locate an existing EJB object or create a new EJB
object. Once it is generated during compile or deployment
time, EJB objects act as bridges between the client and the
bean instances [19].

There are several types of EJBs:session beans, entity
beans and message-driven beans. The two former kinds of
beans provide their interfaces to allow remote clients to in-
voke them. However, message-driven beans do no make
public their interfaces. On the contrary, a message-driven
bean listens for messages that are sent usingJava Message
Serviceand processes them anonymously (asynchronous in-
vocations) [10].

An XML file describes how an Enterprise Java Bean
should be assembled and deployed, its name, and other ex-
ternal dependencies of the bean.

Java/RMI. This mechanism is tied to the Java program-
ming language and virtual machines [9]. RMI allows to
invoke operations on Java objects. The client should con-
tact first an RMI registry, and request the name of the ser-
vice. RMI URLs identify services, including the hostname
on which the service is located, and the logical name of the
service. Then, the registry will point the client to the direc-
tion of the service it wants to call. The mapping of Object
Name to its Implementation is handled by the RMI Registry.

RMI generates proxies and stubs from Java interface def-
initions. Furthermore, RMI uses Java’s capabilities for dy-
namic linking to load the classes of parameters or returned
objects over the network, allowing clients or servers to re-
ceive objects of classes unknown at compile time.

Web Services & .NET Provider. In order for a client to
be able to consume a Web service, the client should know
where the Web service resides and how to invoke its meth-
ods (that is, how to serialize the call to the Web service and
how to deserialize received messages from the Web ser-
vice). This information is provided by the WSDL speci-
fication of the Web service [23]—an XML document that
specifies the data types of the messages, the protocols that
are accepted, the Web service’s endpoint, and the bindings.

Since notions involved in creating the SOAP message to
send to the Web service, making the actual HTTP request,
deserializing the HTTP response, etc. could be complex,
they are abstracted using a proxy class. A proxy class is
a class that encapsulates the complexity of calling a Web
service and exposes this complexity through a simplified
interface [12]. From the client application’s perspective,
the Web service is simply a local component—the client
doesn’t have to worry about the specifics of how to serialize
a SOAP message, or how to make an HTTP request.

3 Modeling interactions

3.1 Interactions

The basic interaction model works according to the
three-step process shown in Figure 1, being different
interaction models supported by combinations of this
configuration—mainly combinations of the second and
third steps.

Step 1. A service provider publishes a description of their
services in a publicly accessible registry.

Service

requester

Service

provider

Service

Registry

Bind

PublishFind

Figure 1. Basic Interaction Model

Step 2. A service requestor discovers those services by
querying the registry and binds to the selected service.
(Note that we will call the service requester aclient)

Step 3. Client interacts with service provider.

According to Figure 1, an interaction between two end-
points can be defined in terms of:

• The set of messages accepted by the service provider
(Provided Interface)

• The set of messages required by the client (Required
Interface)

• A protocol that defines the partial order between the
exchanged messages.

• The programming abstractions through which the
client and server view the protocol (the client-side and
server-side programming interfaces). This is impor-
tant, because these programming abstractions encap-
sulate the agreement between both parties on: the data
format, the mechanism for transforming and recon-
structing object state into this format, the transport pro-
tocol, etc.

Most approaches focus just on the first three points.
However, the fourth is not explicitly stated or modeled any-
where; instead, it is usually implicitly assumed by both the
client and the server, and therefore hard-wired into their mo-
dels, transformation rules, and code. This is neither flex-
ible, nor provides the platform-independence required in a
true MDA approach. Besides, these assumptions are usually
separately made, which may cause contradictory assump-
tions. Thus, being able to express this kind of information—
particulary the last point—in a Platform-Independent way
is a step forward to achieve abstracts models established in
more details that allow code-generation MDA tools to ob-
tain really implementations.

3.2 Identifying Model Elements and their Rela-
tionships

UML Base Element Stereotype

Port ¿ServerPortÀ
Port ¿ClientPortÀ
Port ¿StubClientÀ
Port ¿ProxyClientÀ
Port ¿DynamicClientÀ
Interface ¿InterfaceSignatureÀ
Interface ¿ProvidedInterfaceÀ
Interface ¿RequiredInterfaceÀ
Assembly Adaptor ¿InteractionÀ

Table 1. Summary of the stereotypes used

In our proposal we have tried to use as much as possible
existing UML elements, in particular UML 2.0 elements be-
cause they provide some useful architectural concepts and
mechanisms for our purposes. Table 1 shows a summary of
the profile we have defined for representing these concepts.
In particular, we consider each system as a UML 2.0Com-
ponent, which represents “a modular part of a system that
encapsulates its contents, designs as well as implementa-
tions features, without losing the ability to describe deploy-
ment information and being replaceable within its environ-
ment” [17].

Componentinteractions are carried out through a layer
of abstraction that allows clients to instantiate and access to
the methods of the external services provider. In this sense,
we can define one or morePortsthrough which acomponent
invokes and receives method calls.

Since each endpoint can act as either aprovider or a
client in each of the Web interactions in which it plays a
role, we have modeled causality by aPort stereotyped as
ClientPortor ServerPort.

The interaction between aServerPortand aClientPort
falls into one of the following categories:

• Synchronous invocation. TheClientPort invokes a re-
mote procedure and blocks until a response or an ex-
ception is received from theServerPort.

• Asynchronous invocation. TheClientPort invokes a
remote procedure and continues processing without
waiting for a return, although the returned value will
be received in any moment.

• One-way invocation. TheClientPort invokes a remote
procedure but does not block or wait to receive a return
since it will not receive a return value.

In a first approach we will consider that eachPort is asso-
ciated with only oneInterface. More precisely, aClientPort
is associated with aRequiredInterfaceand aServerPortis
associated with aProvidedInterface. A ProvidedInterface

specifies public operations that are remotely available. On
the other hand,RequiredInterfacescomplementProvided-
Interfaceand describe the features that make up a system
that depends on in order to implement its functionality.

Similar to Interfaces, Ports describe how aSystemin-
teracts with its environment, but is different in thatInter-
facescontain just syntactic information about methods pro-
vided by aSystemandPortsencapsulate the required busi-
ness logic that allows aRequirerto interact with aProvider,
tying that business logic with a concrete “implementation
choice”. Note that in many cases some implementation
choices will only be supported by certain target platforms.

EachPort has associated aProtocol that defines the par-
tial order in which the objects expect their methods to be
called, and the order in which they should invoke other ob-
ject’s methods.Port’s Protocolsshow a global perspective
over its constituent external applications protocol descrip-
tions. For simplicity we have supposed that eachPort is
associated with only oneInterface, and hencePort’s proto-
colswill be coincide withInterface’s protocols.

ServerPort’s Protocolcan be given inside text files as
BPEL4WS or WS-CDL specifications, for example. On the
other hand,ClientPorts interfaces can be augmented with
behavioral descriptions based onprotocol state machines
that define usage constraints among features of the asso-
ciated interface.

Many aspects of theClientPort are determined by the
external system the client connects to. In consequence, the
ClientPortcan be classified into three main categories based
on the third party system that they can interact with:

(i) Stub Clientsare never required to be downloaded or
distributed to clients and they are specific for a cer-
tain protocol, transport option and server requirer (ac-
corded at compile time). The client must obtain a refer-
ence to theStubbefore using it, which represents an in-
stance of the server provider. In order to obtain it, both
the remote interface and its implementation have to
be available so the client relies on an implementation-
specific class.

(ii) Proxy Clients, asStub Clients, refer to static invoca-
tion of server provider methods. They are not portable
across implementations either—in this case, the code
for theProxy Clientis created during runtime, but the
reference to the interface specification of the external
provider is obtained at compile-time.

(iii) Dynamic Clientscan access a service discovering its
interface description dynamically. In the same way,
they can invoke server provider methods at runtime.
This implies an extra work at runtime to fetch and pro-
cess the server interface.

At this point, a benefit of usingPorts is that the con-
straints and requirements on the communications between
applications can be modeled without forcing software de-
velopers to take into account the platform specific notions
in their designs. In this way, the designs can be reused to
be run on different platforms (hence following the platform-
independence philosophy dictated by MDA).

The kind of Client Port to be used is important, and
strongly influences the kinds of client-side artifacts that
need to be generated at development-time. BothStuband
proxyclients require the complete interface specification of
the external services. That is, the client does not need to dis-
cover the required service but instead it has, at development-
time, to know the external system’s details (location, con-
figuration file, WSDL or IDL URL, namespace, etc.). In
contrast,Dynamic Clientsmust dynamically discover and
invoke an external system without any prior knowledge of
its details (signature of the remote procedure or the name
of the service). For aDynamic Client, there is no coupling
between the service interface and the client. This makes the
client code easy to modify if the external systems specifica-
tions change.

On the other hand, one of the most significant differ-
ences betweenStub ClientsandProxy Clientsis how exter-
nal functionality is invoked. For the former, the client-side
programming interface is embedded inside the client busi-
ness logic. On the contrary, forProxy ClientandDynamic
Client, the client-side code is packaged apart from the client
application.

Please note that the selection of thesePortsonly affects
the client side. From the server perspective, it only receives
and returns messages which are identical for all client types.

3.3 Adaptors

In case there is a strong requirement of using an exter-
nal service provider (e.g., forStub Clients), the software
designer can specify what should be done if the behav-
ior/specification of both parties is incompatible. Since we
have available the interface of the required external systems
(provided interfaces), we can carry out static checking for
comparing them and determining whether they fulfil our re-
quirements (required interfaces).

If not, the designer can decide at designing-time to im-
plement an intermediate business logic (adaptors) that con-
forms to a given interface or consume a required exter-
nal system.Adaptorsmediates between theClientPortand
ServerPortinteractions, resolvingservice providerandser-
vice requesterdifferences at interface and protocol levels.

4 Example: The Travel Agency

In order to illustrate the use of interaction patterns in the
definition of Platform Independent and Platform Specific
Models, let us consider a Travel Agency service that sells
vacation packages to its customers. The packages include
flights, hotel rooms, car rentals, and combinations of these.
External service providers include transportation companies
(airlines, hotels and car rentals) and financial organizations
(credit companies and banks).

To book a vacation package, the customer will pro-
vide details about his preferred dates, destinations, and ac-
commodation options to the Travel Agency System (TAS).
Based on this information, the TAS will request its service
providers for offers that fulfill the user’s requirements, and
then will present the list of offers to the customer. At this
point, the customer may either select one of the offered
packages, reject them all and quit, or refine his requirements
and start the process again. If the customer selects one of
the packages, the TAS will book the individual services to
the corresponding transportation companies, and charge the
customer.

The straightforward application of MDA to develop a
system is based on the following steps:

Step 1 Create class diagram (PIM) describing object
model.

Step 2 Mark PIM elements with stereotypes.

Step 3 Customize the marked PIM with annotations.

Step 4 Specify the target platform.

Step 5 Generate a PSM.

In general, the MDA software development process be-
comes an iterative model transformation process where
each step transforms one (or more) PIM of the system at
one level into one (or more) PSM at the next level until a
final implementation model is reached (see Figure2). Here,
an implementation model is just another PSM, which pro-
vides all the information needed to construct a system and
to put it into operation).

Note that, we will calltechnology platformto the last
platform (i.e., the one that provides the executable PSM, or
implementation). The intermediate platforms that transform
PIMs into PSMs that will be used as PIMs in the next step
are considered asabstract platforms.

Given that an element of the PIM may be marked several
times with marks that come from different metamodels, it
will be transformed according to each of the mappings. The
semantic of the resulting marked element is given by the
gathered features through the MDA model transformation
process.

Marked

PIM

PIM

Marks

Annotations

Mappings

PSM

Annotated

PIM

*

Figure 2. The PIM to PSM iterative process

In our approach we need to go though two main phases.
Firstly, we need to identify the system scope and bound-
aries, i.e, which services will be provided by our system,
and which ones will be externally required. The result of
this phase is a high-level architectural view of the services
and components of our global system. In the second phase,
we need to determine the concrete platforms and communi-
cation mechanisms between our application and the external
systems identified previously.

5 Identifying the scope and boundaries of our
system

In our previous work [15], we presented a model-based
framework that allows the high-level integration of Web ap-
plications with third party systems aligned with the MDA
principles. It enables the manipulation of the external enti-
ties and systems as native elements of our models.

At design level, software developers are able to spec-

ify/mark: the system elements that require code generation;
the system elements that will be remotely accessed using its
provided interface specifications and implementations; the
system elements that need to interact with others; and the
system properties that are used for identifying them. All this
is done in this first phase in a platform-independent man-
ner, i.e., independently from the communication asbtrac-
tions and mechanisms used, and the platforms in which our
system and the external services are implemented. These
details will be added in the second phase.

In the first place we need to create the PIM of the system,
which in our case is shown in Figure 3. It is focused just
on the operation of the system, while hiding the rest of the
details (software architecture, distribution, system bound-
aries, communication protocols, implementation platforms,
etc.). This solution is specified in terms of UML pack-
ages and their interconnections in a platform independent
way, where no implementation decisions have been explic-
itly specified (what greatly simplifies the application PIM
making it reusable across different target platform environ-
ments).

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv

+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list

+reserve_travel(travel_sel : Travel_Inf) : Reserv

+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

Bank

+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv

+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list

+reserve_room(room_sel : Room_inf) : Reserv

+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

Figure 3. The TAS PIM

As previously mentioned, any integration to legacy data
and services may require that the interfaces to those ele-
ments are also modeled. The kind of information that is
available from them will allow us to check whether they
match our requirements or not, as described by the system
model [14]. More precisely, this information should be able
to allow us to:

(a) model the component or legacy system (e.g., by de-
scribing its structure, behavior, and choreography);

(b) check whether it matches the system requirements

(this is also known as thegap analysisproblem [7]);

(c) evaluate the changes and adaptation effort required to
make it match the system requirements (i.e., evaluate
thedistancebetween the models of the “required” and
the “actual” services, see e.g., [13]); and

(d) ideally, provide the specification of an adaptor that re-
solves these possible mismatches and differences (see
e.g., [6]).

Although the integration of third party systems with a
Web application should be address at three levels of ab-
stractions (e.g., at presentation, business process and data
level) [15], for the sake of simplicity in this paper we will
only consider the process level.

Once the high-level PIM is identified, we need to iden-
tify the system scope and boundaries, and then build a
model of the system with this information. That tar-
get model (PSM) will be built by transforming the orig-
inal PIM using marks. To identify the elements in
the TAS PIM that should be transformed in a particular
way, we will use the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ. An ¿ExternalSystemÀ defines
any other external system interacting with the system under
consideration. In the same way, an¿ExternalAssociationÀ
defines an interaction between the system under deployment
and an¿ExternalSystemÀ.

Implicitly, each type of model element in the PIM is
only suitable for certain marks, which indicate what type
of model element will be generated in the PSM.

Marks are not a part of the platform independent model
although they appear on the marked PIM (see Figure 4).

<<ExternalSystem>>

Bank

+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

<<ExternalSystem>>

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv

+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

<<InternalSystem>>

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list

+reserve_travel(travel_sel : Travel_Inf) : Reserv

+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

<<ExternalSystem>>

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list

+reserve_room(room_sel : Room_inf) : Reserv

+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

<<ExternalSystem>>

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv

+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

Figure 4. The marked TAS PIM

Note that the marked PIM is, by definition tech-
nology independent. In consequence, the prefix “Ex-
ternal” used by the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ in Figure 4 does not imply any im-
plementation decisions. Instead, it is only used to limit the
system scope that has to be development.

Once we have the marked PIM, we need to transform it
into a PSM that can be translated into a target implemen-
tation code. As “platform” we will use here the UML 2.0
constructs and infrastructure for describing software archi-
tectures, because what we want to build in this phase is the
software architectural description (i.e., model) of the sys-
tem. This transformation will be guided by the following
mapping rules:

• Packages transformation. Each UML package is
mapped to a UML¿ComponentÀ initialized with the
same of its corresponding UML package.

• Classes transformation. The UML class stereo-
typed as¿InternalSystemÀ or¿ExternalSystemÀ is
mapped to a UML¿ClassÀ holding the same char-
acteristics as its original (name, attributes and opera-
tions).

• Associations transformation.For each UML associa-
tion stereotyped as¿ExternalAssociationÀ two com-
ponent ports will be generated, each one as Associa-
tion ends of that relationship. Ports will be associated
to the UML¿ComponentÀ derived in previous step.
Its behavior is defined in terms of an interface associ-
ated with that port, which specifies the nature of the in-
teractions that may occur over that port. Thus, the port
interface’s name is given the value of the UML class
name from which it derives and its operations corre-
spond to its UML class operations.

• Association’s ends transformation. For the end-
point of an ¿ExternalAssociationÀ stereotyped as
¿InternalSystemÀ a usage dependency from the
port to the interface is generated, showing how the
¿InternalSystemÀ provide a set of services.

For the endpoint of an¿ExternalAssociationÀ stereo-
typed as¿ExternalSystemÀ an implementation de-
pendency from the port to the interface is generated,
showing how the¿ExternalSystemÀ require a set of
services.

• Finally, an assembly connector is defined from a re-
quired Interface to a provided Interface.

Applying these mapping rules on the PIM in Figure 4,
we obtain the PSM shown in Figure 5.

As previously mentioned, the MDA software develop-
ment process is an iterative model transformation process

Travel_Ag

Travel_Ag

+cancel_travel(...) : Ack_cancel

+reserve_travel(...) : Reserv

+find_travel(...) : Travel_list

+pay_travel(...) : Ack_pay

Hotel

Hotel

+cancel_room(...) : Ack_cancel

+reserve_room(...) : Reserv

+find_room(...) : Room_list

+pay_room(...) : Ack_pay

Car_Hire

Car_Hire

+cancel_car(...) : Ack_cancel

+reserve_car(...) : Reserv

+pay_car(...) : Ack_pay

+find_car(...) : Car_list

Air_Line

Air_Line

+cancel_flight(...) : Ack_cancel

+reserve_flight(...) : Reserv

+pay_flight(...) : Ack_pay

+find_flight(...) : Fly_list

Bank

Bank

+make_payment(...) : Ack_pay

Figure 5. The PSM after applying the MDA transformation

whereby a PIM is transformed into a PSM, which in turn
becomes the PIM for the next transformation—until a final
PSM (the systemimplementation) is reached. What counts
as a platform depends on the level of abstraction, and the
kind of system being developed.

6 A Platform Specific Interaction-Model

Once we have the (UML 2.0) architectural description
of the system, that identifies its scope and interactions with
external services, the next phase focuses on the specifica-
tion of such external interactions using the particular plat-
forms and communication mechanisms of the required ser-
vices. By adopting an MDA transformation process based
on marks and annotations, we have to define the marks and
transformations required.

Basically the information that the transformation process
has to generate from the marked PIM is: the communica-
tion mechanisms between theComponents; how the com-
munications will be carried out; and the information that
describes the architecture of the Web application. There-
fore, the model shown in Figure 5 have to be marked again
to specify that information.

Once we have applied previous transformation rules on
the PIM, the resulting PSM is also platform-independent.
We will mark them with decisions which are considered
and taken in the context of a specific implementation design
based on the concepts discussed in Section 3:

• Ports that specify services provided by external entities
are stereotyped as¿ServerPortsÀ

• Ports that specify required services are stereotyped as
¿ClientPortsÀ.

• Finally, assembly adaptors connecting interfaces have
been stereotyped as¿InteractionsÀ.

The resulting model is shown in Figure 6.

Now it is the time to include information about the tech-
nologies used to interact with the external services.

In the particular case of the Travel Agency System, we
are going to make use of external service providers which
include transportation companies (airlines, hotels and car
rentals) and financial organizations (credit companies and
banks). For illustration purposes we have selected different
technologies for each external service. More precisely:

• A CORBA implementation of the Hotel Service. As
previously mentioned, to participate in an interaction
with a CORBA server application, the client (that is,
our Travel Agency Service) must be able to get an ob-
ject reference for a CORBA object and invoke opera-
tions on the object. To accomplish this, the client need
information about references to the environmental ob-
jects that provide services for the CORBA application
we plan to use and the IDL specification for imple-
menting a stub-style invocation. Figure 7 shows how
this information is specified using notes associated to
its corresponding stereotypes.

• Another CORBA implementation of the CarHire Ser-
vice. In this case, we plan to implement a dynamic
interaction pattern so the IDL file will be looked up
into an Interface Repository where it must be stored.
In that sense, no IDL file has to be provided by the
external server provider.

The exact steps taken to access the Interface Reposi-
tory depend on whether the client is seeking informa-
tion about a specific object, or browsing the Interface
Repository to find an interface. In both cases, before
a dynamic client can browse the Interface Repository,
it needs to obtain the object reference of the Interface
Repository to start the search. Once the client has the
object reference, it can navigate the Interface Reposi-
tory, starting at the root.

• The two others external services are supposed to be
available as external Web services. Their respec-

Travel_Ag

Travel_Ag

+cancel_travel(...) : Ack_cancel

+reserve_travel(...) : Reserv

+find_travel(...) : Travel_list

+pay_travel(...) : Ack_pay

<<StubClient>>

<<DynamicClient>><<StubClient>>

<<ProxyClient>>

Car_Hire

Car_Hire

+cancel_car(...) : Ack_cancel

+reserve_car(...) : Reserv

+pay_car(...) : Ack_pay

+find_car(...) : Car_list

<<ServerPort>>

Hotel

Hotel

+cancel_room(...) : Ack_cancel

+reserve_room(...) : Reserv

+find_room(...) : Room_list

+pay_room(...) : Ack_pay

<<ServerPort>>

Air_Line

Air_Line

+cancel_flight(...) : Ack_cancel

+reserve_flight(...) : Reserv

+pay_flight(...) : Ack_pay

+find_flight(...) : Fly_list

<<ServerPort>>

Bank

Bank

+make_payment(...) : Ack_pay

<<ServerPort>>

<<Interaction>>
<<Interaction>>

<<Interaction>><<Interaction>>

Figure 6. Marked PIM

Travel_Ag

Travel_Ag

+cancel_travel(...) : Ack_cancel

+reserve_travel(...) : Reserv

+find_travel(...) : Travel_list

+pay_travel(...) : Ack_pay

<<StubClient>>

<<DynamicClient>><<StubClient>>

<<ProxyClient>>

Car_Hire

Car_Hire

+cancel_car(...) : Ack_cancel

+reserve_car(...) : Reserv

+pay_car(...) : Ack_pay

+find_car(...) : Car_list

<<ServerPort>>

Hotel

Hotel

+cancel_room(...) : Ack_cancel

+reserve_room(...) : Reserv

+find_room(...) : Room_list

+pay_room(...) : Ack_pay

<<ServerPort>>

Air_Line

Air_Line

+cancel_flight(...) : Ack_cancel

+reserve_flight(...) : Reserv

+pay_flight(...) : Ack_pay

+find_flight(...) : Fly_list

<<ServerPort>>

Bank

Bank

+make_payment(...) : Ack_pay

<<ServerPort>>

type= WSDL_Interface

file= http://.../AIR_LINE.wsdl

 <<ServerPort>>

domain = ...

namespace = http://bla.bla.com

protocol_FILE =...

 <<Interaction>>

invocation_type= Asynchronous

 <<DynamicClient>>

domain = ..

namespace=http://bla.bla.com

protocol_FILE =...

 <<ServerPort>>

namespace=http://bla.bla.com

protocol_FILE =...

host_port= //trixie:3500

 <<ServerPort>>

namespace=http://bla.bla.com

protocol_FILE =...

host_port= //airline:3500

implementation_FILE=

 <<ProxyClient>>

namespace=http://bla.bla.com

protocol_FILE =...

 <<StubClient>>

namespace=http://bla.bla.com

protocol_FILE = ...

 <<StubClient>>

namespace=http://bla.bla.com

protocol_FILE =...

type= WSDL_Interface

file= http://.../BANK.wsdl type= CORBA_Interface

file= http://.../HOTEL.idl

 <<ServerPort>>

namespace=http://bank.com

portName = bank

protocol_FILE =...

host_port= //bank:3500

type= CORBA_Interface

 <<Interaction>>

type= Asynchronous

 <<Interaction>>

type= Asynchronous

 <<Interaction>>

type= Asynchronous

<<Interaction>>

<<Interaction>>
<<Interaction>>

<<Interaction>>

Figure 7. The Annotated TAS PIM

tive WSDL interface descriptions are required as il-
lustrated Figure 7. Additionally, the code for the in-
teraction with the Airline Web service relies on an
implementation-specific class since it use an stub-
style. This means that its implementation should be
also available.

At this point, we also need to decide on the implementa-
tion technologies and platforms of our own system. Imagine
that we decide to implement the Travel Agency using Java
and Web Services technologies.

In this case we could use the transformation rules of any
of the existing approaches for converting our marked and
annotated PIM (in Fig. 7) to the corresponding PSM (shown
in Fig. 8). For instance, we could follow the approach by
Bezivin et al. [3], and then proceed according to the follow-
ing steps:

1. Code the service endpoint interface and its implemen-

tation class. A service endpoint interface declares the
methods that a remote client may invoke on the ser-
vice. In this regard, each UML class is mapped to
a ¿JavaClassÀ initialized with the same character-
istics of its corresponding UML class. Based on it, the
¿JavaInterfaceÀ is also derived.

2. Build, generate, and package the files required by
the service. In this sense, each UML class is also
mapped to a¿WSDL SpecificationsÀ: ¿WSDL
typesÀ, ¿WSDL operationsÀ, ¿WSDL bindingsÀ
and¿WSDL servicesÀ.

3. Deploy the service. Four deployment files are
required: web.xml, jaxrpc-ri.xml, config-wsdl and
config-interface. In this sense, the¿JavaClassÀ is
mapped to a¿JWSDPweb.xmlÀ, ¿JWSDPjaxrpc-
ri.xmlÀ,¿JWSDPconfig-wsdlÀ and¿JWSDPconfig-
interfaceÀ files.

<<JavaInterface>>

Int_Travel_Ag

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list

+reserve_travel(travel_sel : Travel_Inf) : Reserv

+pay_travel(pay_inf : Pay_Inf) : Ack_pay

<<JavaClass>>

Travel_Ag

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list

+reserve_travel(travel_sel : Travel_Inf) : Reserv

+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

<<JWSDP_config-interface>>

Travel_Ag_config-interface

<<JWSDP_config-wsdl>>

Travel_Ag_config-wsdl

<<JWSDP_jaxrpc-ri>>

Travel_Ag_jaxrpc-ri

<<JavaClass>>

Travel_Ag_interfaceHelper

<<JavaClass>>

Travel_Ag_interfaceHolder

<<JavaClass>>

Travel_Ag_interfaceStub

<<WSDL>>

Tra vel_Ag_wsdl

<<UDDI>>

Travel_Ag_uddi

<<JWSDP_web>>

Travel_Ag_web

Figure 8. PSM

4. Generate client-side abstractions for consuming exter-
nal services. For the CORBA services, we will add:
the client stubs for each interface (interfaceStub.java),
the CORBA helper class (interfaceHelper.java) and the
CORBA holder class (interfaceHolder.java) that de-
scribe everything it is needed to use the client stub
from the Java programming language. For the rest of
the services, no more classes are generated. On the
contrary, the code is embedded in the¿JavaClassÀ
implementation.

The PSM obtained, shown in Figure 8, includes all the
details required to build the final implementation.

7 Conclusions and Future Works

In this paper we have discussed some of the (many) prob-
lems that may happen when integrating Web-based appli-
cations with external systems. In particular, we have con-
centrated on the interaction issues due to potential incom-
patibilities between clients and servers of different imple-
mentation platforms and middlewares. Our main contribu-
tion is to make such interaction models and mechanisms
explicit, so incompatibilities can be detected, and bridges
or adapters can be easily built. Besides, we have done it
according to the MDA principles, encapsulating those inter-
action concepts and mechanisms in a platform-independent
manner, and then providing transformation rules to the dif-
ferent implementations available of these concepts in most
commonly used platforms and middelwares.

Now that the interaction issues are solved at this level,
we plan to move forward, trying to address two other major
issues. First, the (semi-)automatic derivation of adaptors in
case incompatibilities are detected at this level. And sec-
ond, move up one level of abstraction, and study how to
model systems so potential mismatches that may happen at
the behavioral semantic or contract (e.g., QoS) level can be
detected.

References

[1] J. P. Almeida, R. Dijkman, M. van Sinderen, and L. F. Pires.
On the notion of abstract platform in mda development. In
The 8th International IEEE Enterprise Distributed Object
Computing Conference, pages 253–263, Monterey, Califor-
nia, USA, Sept. 2004. IEEE Computer Society.

[2] J. P. Almeida, R. Dijkman, M. van Sinderen, and L. F. Pires.
Platform-independent modeling in mda: Supporting abstract
platforms. InProceedings of Model Driven Architecture:
Foundations and Applications (MDAFA 2004), pages 217–
231, June 2004.

[3] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Ap-
plying MDA approach to B2B applications: A road map.
Workshop on Model Driven Development (WMDD 2004) at
ECOOP 2004, Oslo, Norway, Springer-Verlag, LNCS, 3344,
2004.

[4] D. Blevins. Overview of the enterprise javabeans component
model. InComponent-Based Software Engineering: Putting
the Pieces Together, pages 589–606. Addison-Wesley, 2001.

[5] A. W. Brown. Model driven architecture: Principles and
practice.Software System Model, 3:314–327, 2004.

[6] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foun-
dations for compensations in flow composition languages.
SIGPLAN Not., 40(1):209–220, 2005.

[7] J. Cheesman and J. Daniels.UML components: a simple
process for specifying component-based software. Addison-
Wesley Longman Publishing, Boston, MA, USA, 2000.

[8] M. Henning and S. Vinoski.Advanced CORBA Program-
ming with C++. Addison-Wesley, 1999.

[9] JavaRMI. Remote Method Invocation. Sun Microsystems,
2004. http://java.sun.com /j2se /1.4.2 /docs /guide /rmi /spec
/rmiTOC.html.

[10] Juan.bla bla, volume 3. p, p edition, p 2005.
[11] A. Kleppe, J. Warmer, and W. Bast.MDA Explained.

The Model Driven Architecture: Practice and Promise.
Addison-Wesley, Apr. 2003.

[12] Microsoft Corporation. .NET Web Page, 2004.
http://www.microsoft.com/net/.

[13] R. Mili, J. Desharnais, M. Frappier, and A. Mili. Semantic
distance between specifications.Theoretical Comput. Sci.,
247:257–276, Sept. 2000.

[14] N. Moreno and A. Vallecillo. What to we do with re-use in
MDA? Second European Workshop on Model Driven Archi-
tecture (EWMDA-2), Sept. 2004. Canterbury, Kent.

[15] N. Moreno and A. Vallecillo. A model-based approach for
integrating third party systems with web applications.Fifth
International Conference on Web Engineering (ICWE2005),
July 2005. Sydney, Australia.

[16] Object Management Group. CORBA 3.0 -
IDL Syntax and Semantics Chapter, 2002.
http://www.omg.org/docs/formal/02-06-39.pdf.

[17] Object Management Group.UML 2.0 Superstructure Spec-
ification, 2003. http://www.omg.org/cgi-bin/doc?ptc/03-08-
02.pdf.

[18] OMG. Model Driven Architecture. A Technical Perspec-
tive. Object Management Group, Jan. 2001. OMG docu-
ment ab/2001-01-01.

[19] OpenEnterpriseX.Just Enough Enterprise Java Beans Con-
cepts, 2004. http://www.OpenEnterpriseX.org.

[20] J. Siegel.CORBA 3. Fundamentals and Programming. John
Wiley & Sons. OMG Press, 2000.

[21] Sun Microsystems. The J2EE 1.4 Tutorial, June 2004.
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

[22] W. Witthawaskul and R. Johnson. Transaction support using
unit of work modeling in the context of MDA. Available
from http://weerasak.com/Unitf, Mar. 2005.

[23] Web Services Description Language (WSDL) 1.1, 2001.
http://www.w3.org/TR/wsdl.

