
Integrating Formal Methods with Model-Driven

Engineering

Opeyemi O. Adesina

School of Electrical Engineering and Computer Science

University of Ottawa, Ottawa, Canada

oadesina@uottawa.ca

Abstract—This paper presents the initial exploration work and

proposal for our research to integrate formal methods with

model-driven engineering. An extensive literature exists with the

goal of facilitating the adoption of formal methods for

educational and industrial practices, yet its adoption for teaching

introductory software engineering courses and analyzing critical

software systems in the industry is poor. The goal of this research

is to provide an easy-to-use approach for using formal methods

for industrial and academic purposes. Our approach is based on

generating formal representations of static and dynamic

abstractions of software expressed in a textual language, called

Umple, which is derived from UML. To enrich the modeling

experience, we adopt a pattern-based approach to specify various

object-oriented and transition patterns. To maintain scalability of

the dynamic aspects, we adopted a compositional approach to

integrate hierarchical systems. To ensure correctness of our

approach, we have adopted simulation and rigorous test-driven

development methodologies. Current results have demonstrated

that the constraints and generated formal methods code

represent the patterns faithfully.

Index Terms—Formal Methods, Model-Driven Engineering,

Software Engineering, Model Checking, Scalability, Automated

Code Generation.

I. INTRODUCTION

As the complexity of real-world software systems grows

relentlessly higher, the risk of project and system failure

remains unabated. This phenomenon is domain independent,

as automotive [1], health [2], avionics [3] and business [4]

examples attest. Unfortunately, expecting human beings

developing such systems to prevent failures by detecting faults

is unreasonable unless the humans are supported by

sophisticated tools. Such tools must match increasing

complexity by increasing the use of abstractions with rigorous

mathematical underpinnings.

Tools enabling sound mathematical analysis of software,

collectively called formal methods, have been available for

decades. However, their uptake has been slow since they tend

to be too hard for all but the most accomplished computer

scientists to use, tend not to scale well, and tend to be

somewhat special-purpose. Another set of tools and techniques

in the field called Model-Driven Engineering (MDE), combats

complexity by allowing relatively easy specification and

generation of systems, bypassing the need for humans to

understand what is being generated.

The easiest-to-use modeling techniques tend not to be well

integrated with state of the art formal methods. This is the

issue we address in this paper. In particular, our objective is to

allow developers to employ the easy-to-use modeling

language technology Umple to generate systems, while

delegating to state-of-the-art formal methods to transparently

analyse such systems. In doing so, we hope to increase the

applicability of formal methods, and hence improve the

quality of software. We hope to make this technology so easy

to use that formal methods can even be used ‘behind the

scenes’ in introductory software development courses.

The rest of this paper is organized as follow. In Section II,

we present the problem we observed to limit adoption of

existing tools and motivation for this work. Section III is a

review of relevant related work with emphasis on their

similarities to and differences from our work. Section IV

presents our proposed solution to the central problem

addressed in this work. Section V is a summary of our initial

exploratory work on integrating formal methods with MDE

and results. We explicate the target contributions of this work

in Section VI. In Section VII, we state our plans to verify and

validate our work. Finally, we present the current status of this

research.

II. PROBLEM STATEMENT AND MOTIVATION

In spite of the attention and potential of formal methods to

guarantee bug-free software systems, its adoption for

industrial and teaching purposes is poor. Formal methods are

too difficult to use by ordinary developers, due to complexity,

scalability and tool diversity issues. As a result, formal

methods have low adoption levels.

Formal methods are used to some extent in the industries,

but not universally due to the above issues. Thus, by bridging

the gap, we can reduce the time to market and improve

software quality.

The following summarizes our top-level requirements of a

formal methods-enabling technology suitable for industrial

practices as a foundation to distinguish our work from existing

implementation solutions. Each numbered item becomes a

research question for our work, i.e. how do we accomplish the

item. An industrial-purpose formal methods-enabling tool

should facilitate: 1) fully automated verification; 2) unification

of languages for requirements specification; 3) analysis of

static and dynamic aspects of software; 4) analysis of bounded

and unbounded data-intensive systems. It should also, 5) be

free to use and be open to public modifications (i.e. open-

source); 6) support model analysis; 7) be domain-independent;

and 8) be actively developed.

mailto:oadesina@uottawa.ca

III. RELATED WORK

In the following we briefly overview work related to each

of the research questions outlined in the previous section and

background of the underlying technologies.

A. Overview of the Research Questions

RQ1: Supports for full automated verification - Amálio et

al. [5] and others (e.g. [5], [6]) integrated formal methods with

software analysis and constructions. However, the solutions

provided are based on theorem proving methods. Although

many theorem proving approaches claimed to be fully

automatic (e.g. Vampire [7]), but they traded expressiveness

for automation by relying on first-order logic notations. This

problem limits the class of problems solvable by these

solutions to arbitrary ones. On the other hand, higher-order

logic solutions demand user-guidance and invention of

lemmas in proofs search. We facilitated a fully automatic

verification by adopting model checking approach, though at

the expense of completeness (e.g. bounded verification in

Alloy).

RQ2: A unified language for requirement specification –

Cabot et al. [8] and others (e.g. [9]) adopted the Object

Constraint Language [10] for requirement specification. This

is similar to our work because Umple Constraint Language

(Umple-CL) will be developed to allow formal specification of

both dynamic and static aspects of software systems. We are

proposing Umple-CL to allow analysts and designers learn one

language that facilitates a forward engineering of software

systems.

RQ3: Analysis of static and dynamic aspects of software

systems – In [11] MDE was integrated with formal methods

approaches, but, solutions offered focus on the static aspects

of systems. On the other hand, in [12], [13] the dynamic

aspects of software was dealt with extensively. In [9], Alloy

was adopted for checking correctness of both aspects of

software. Alloy is a first-order logic language; hence only

trivial problems about the dynamic aspects of the system can

be solved. Our work addresses both aspects of software. We

adopted Alloy [14] for the analysis of static aspects and

nuXmv [15] for the dynamic aspects. Thus, system analysis

with our solution goes beyond trivial problems.

RQ4: Verification of bounded and unbounded data-

intensive systems – Dubrovin and Junttila [16] offered a

solution to analyze hierarchical state machines based on model

checking. Despite the attention accorded to the work, it lacks

the capability to verify data-intensive systems with unbounded

domains. We realized this scalability by relying on nuXmv for

the analysis of data-intensive systems.

RQ5: Open Source - Our goal is to develop an open-source

technology. A large amount of solutions (e.g. [17]–[19]) have

adequate successes in the industrial settings. For example,

Astrée [17] gained significant attention in certifying

correctness of Avionics systems [20]. However, it is not open-

source; hence inaccessible for use by students and

practitioners. Umple, as a formal methods-enabling tool will

be open-source.

RQ6: Support for Model Analysis - Many analysis tools is

program-based but not model-based. For example, JPF [21] is

a “push-button” solution to analyze Java sources and object

programs. Other tools in this category include [17], [22], [23].

Umple is derived from the Unified Modeling Language; hence

the inputs to our tool are models as opposed to programs.

RQ7: Domain-Independent Tools – Analysis challenges cut

across diverse domains (e.g. automotive [1], health [2],

avionics [3], etc.). Hence, tools should be domain-

independent. Static analysis tools (i.e. abstract interpretation-

based) offer domain-specific solutions to achieve precision.

For example, Astrée is tailored to the domain of avionics to

minimize false positives and negatives. Our solution will be

applicable to problems irrespective of their domains.

RQ8: Active Development – Our notion of active

development refers to the last time the project received source

code contributions or research publications. This is important

because some projects (e.g. academic) suffer improvement

often times as the project term completes or research student

graduates. For example, the Symbolic Analysis Laboratory

(SAL) [24] lacks active development. SAL is preferable to

nuXmv because it is an open-source technology with

capability to analyze unbounded types. Its lack of active

development led us to choosing nuXmv as a back-end analysis

engine for state machine systems (free but not open-source).

Thus, we considered our work superior to tools relying on

SAL for the purpose of analysis (e.g. Bandera [25]).

B. Background of the Underlying Technologies

The technologies we will discuss are Umple [26], Alloy

[14] and nuXmv [15].

Umple is a model-oriented programming technology for the

development of software systems. It supports the model-code

duality principle by representing software models, not only as

diagrams but also as text [26]. Umple allows developers to

model static and dynamic views of software and automatically

generates code in languages like Java, C++, Ruby, PHP from

the model. Umple achieves this by providing constructs and

environments to express a rich subset of Unified Modeling

Language (UML) [27], such as classes, state machines, and

composite structure models. It was explicitly designed to be

easy to use while generating high-quality code. People used to

UML diagrams can draw them in Umple (or can import them

into Umple from other UML tools), but those who are used to

textual coding can also use Umple.

Alloy [14] is a first-order logic language for expressing

software abstractions, as well as simulating and checking

requirements of software. Alloy provides syntax for

expressing transitive closure, universal and existential

quantifications, predicates, functions, relations, invariance,

multiplicities, inheritance, and so on. With these, Alloy is

suitable for representing object models, simple and

complicated constraints, and operations manipulating the

structures dynamically. Analysis with Alloy is fully automatic

with instant feedback from its SAT-based analyzer. It adopts

the bounded model checking (BMC) as a means of maintaining

decidability. Thus, Alloy is sound but incomplete.

Fig. 1. Architecture for the analysis of Umple models.

Alloy analyzer is capable of discovering inconsistencies via

simulations, and counterexamples by checking assertions.

nuXmv is a new symbolic model checking tool for the

verification of fair finite- and infinite-state synchronous

systems [15]. It extended NuSMV [28], a state-of-the-art

model checker for the specification and verification of finite

state systems. nuXmv adopted the basic verification

techniques of NuSMV and extends its native language with

unbounded integer and real types for the specification of

infinite domains. For the verification of the newly supported

domains, it integrates Satisfiability Modulo Theory (SMT

[29]) algorithms. It has been applied in the academic and

industrial contexts [30], [31]. Among model checking tools,

results show that nuXmv is highly competitive [15].

IV. THE PROPOSED SOLUTION

Fig. 1 presents the proposed system from design to result

examination phases. Readers should note that we assume the

starting point is a syntactically correct static or dynamic aspect

of software expressed in Umple (i.e. model and requirement).

To maintain scalability of the dynamic aspects, we adopted a

compositional approach to integrate hierarchical structures.

We cleanly separated concerns (e.g. composite and concurrent

states) and systematically (e.g. attribute access and shared

variable) integrate each component of the hierarchical

structure as opposed to the traditional flattening. This was

proposed by [16]; but extended and implemented as an

internal representation of Umple.

A. Model Preprocessing

The first phase of processing involves the extraction of

requirement from the input Umple model. Aspect Separator

sub-process analyzes the residual model (exclusive of

requirements) to determine its kind. The residual model in this

context can either be a state machine model or a class model

or both. Suppose the residual model contains a state machine,

the sub-process extracts the state machine and passes it to

Global Variables System Generator sub-process to initiate the

generation of its SMV code. On the other hand, suppose the

residual model contains a class model, this is being extracted

and passed to the model analyzer to initiate the generation of

its Alloy code.

B. Formal Specification of State Machines

In this section, we discuss the components of the presented

architecture responsible the specification of state machines.

The Global Variables System Generator sub-process generates

a transition system with only a variable declaration section.

The purpose of the transition system is to allow declaration

and accessibility of global variables (e.g. events enumeration

variable, guard variable(s), etc.) as an entity from any point

within the specification. The Coordinator System Generator

sub-process creates a transition system (containing all

sections) for the parent (or coordinating) state machine.

Composite State Handler sub-process creates a new transition

system for composite states. The transition system (all sections

inclusive) is semantically equivalent to a state machine

corresponding to the state. Its variable declaration section

defines a state variable which enumerates the set of its sub-

states and a ‘null’ value (to disable transition system before

entry or after exit). In its assign section, the state variable is

initialized to ‘null’.

The activation of a composite state is accomplished by

transition leading to it. Suppose the state is a concurrent state,

the specification is delegated to Concurrent State Handler sub-

process. It ensures no transition system is generated for the

state but a transition system is generated for each of its sub-

state. For each transition system generated for the sub-states,

their state variables enumerate the state name, other sub-states

The activation of all sub-states of a concurrent state is

accomplished by transition leading to it. Head Constructor

sub-process constructs the header of every transition system

created for the input state machine models. For every

transition system, instances of all transition systems created

(including transition system for global variables) will be

passed as arguments to each transition system (except the

transition system under construction). Within the transition

part of every transition system with a nested state, the creation

of a nuXmv specification for the composite state and a

transition whose next state is the initial state of the composite

state is delegated to System Initializer sub-process. The

System Categorizer sub-process analyzes the input state

machine to determine if it has a composite or concurrent state

or is a simple state machine. Suppose the input state machine

has a composite state, the Composite State Handler sub-

process is invoked; but if the state machine has a concurrent

state then Concurrent State Handler sub-process is invoked.

However, if the state machine is a simple state machine (i.e.

none of its states are nested) then the generation terminates.

The Composition Analyzer sub-process determines

termination for a state machine with a composite or a

concurrent state. Suppose a composite or concurrent state has

a nested child state then control is transferred to System

Categorizer sub-process. In this case, the processing proceeds

recursively until a termination is reached. For both simple and

hierarchical transition systems generated, our engine generates

a ‘main’ for the instantiation and execution of the resulting

transition system(s); just as the ‘main’ program is the entry

point of execution of systems developed for programming

languages that inherit notions facilitated by C-programming.

C. Formal Specification of Class Models

The analysis of static class models begins with the model

analyzer. This component is responsible for the analysis of

models to discover various design patterns characterizing the

model. These patterns are to be used by the model and

constraint to produce a semantically equivalent formal

specification of the discovered patterns. The model generator

is tailored to associate relevant code to patterns discovered by

the analyzer. Similarly, the constraint generator is tailored to

associate relevant constraint for each pattern discovered. The

outputs of both generators are combined to form the formal

representation of the input class model.

Generally, the equivalent specification for the requirement

of the model under analysis (MUA) is generated by a

translator. Therefore the model generated (Alloy model and

nuXmv transition system(s)) and its requirements are fed into

the target analysis engines (Alloy analyzer and nuXmv engine

respectively). The result of analysis is either an example or a

counterexample depending on the analyst’s intent or the model

expressed. This will be translated to appropriate structures

(e.g. class diagrams) to facilitate easy understanding by the

analyst. For code generation, we adopted template and meta-

modeling approaches. We defined a meta-model for the target

languages and a set of templates for cases under consideration

(e.g. pattern constraints, transition systems, etc.).

V. PRELIMINARY WORK

The current status of this work has been facilitated by the

following research activities:

 a systematic review of existing implementations;

 the design of meta-models for the formal languages;

 an incremental development of constraints for some object-

oriented patterns;

 the design of test cases for various modeling patterns; an

exploration of representation schemes, particularly, the

encoding of composite and concurrent state machines;

 the implementation of prototype code generators for static

and dynamic aspects of software; and simulation of

constraints for static aspects and behavioral properties for

dynamic aspects of example systems.

Results obtained demonstrated the correctness of our code

generators; adequacy of the structural constraints; weaknesses

of the initial encoding and strengths of the current encoding.

For example, our initial strategy enumerates all states of

hierarchical system as elements of a variable as an approach to

manage the state space. The limitation of this style was

exposed when we applied it to concurrent systems, because a

variable cannot assume more than one state in a time unit.

VI. EXPECTED CONTRIBUTIONS

This general goal requires solving various sub-problems,

each of which is a distinct contribution. The expected

contributions are the following:

 A scalable symbolic encoding of state machine systems

that combines data-/control-intensive aspects of software

systems.

 A concrete pattern-based approach to the formal

specification of class models.

 Transformation tools from Umple (and hence from UML)

to nuXmv and Alloy and back to Umple.

 Improvements to model analysis.

 Understanding of limits of Umple, nuXmv, and Alloy.

 Extensions to Umple.

 Use in practice – Case studies.

VII. PLAN FOR EVALUATION AND VALIDATION

To ensure correctness of our system, we will adopt the

following strategies for verification purposes. These are

simulations and test-driven development. To this point, we

have adopted these approaches and obtained promising results

for the tasks.. In the final thesis, we will explore various

approaches as other practical challenges unfold.

We will develop case studies in various domains (e.g.

automotive) to validate our approach. The case studies will be

made of models and their respective correctness requirements.

We will apply our system to generate the formal specifications

of the system. Finally, we will verify the correctness of each

system against its requirements by invoking our back-end

analysis engines.

VIII. CURRENT STATUS

As of the writing of this paper we have selected the tools,

prototyped the generation of nuXmv and Alloy from Umple,

and explored a variety of examples. We faced many

challenges in reaching this stage, most notably working out

how best to represent Umple semantics in the selected formal

languages in a modular way. Overcoming these challenges has

led to some of the additional contributions of this work.

Between now and the time of the thesis submission, we

expect to continue to refine our formal-methods generation

capability, validate our approach on a wide variety of

examples, and make some corrections to Umple as our work

uncovers them.. These activities will be guided by the

following timeline:

TABLE 1. TIMELINE FOR RESEARCH COMPLETION

MONTHS ACTIVITIES

August 2015 – March

2016

Systematic refinement of formal-

methods code generation capability.

April 2016 – July 2016 Validation with variety of case

studies.

August 2016 Submission of thesis.

IX. ACKNOWLEDGMENT

I would like to thank Shoham Ben David for her insightful

contribution in this research. Similarly, I would like to

specially acknowledge the supervisory roles of Timothy

Lethbridge and Stéphane Somé.

X. REFERENCES

[1] J. Schauffele, T. Zurawka, and S. Germany, Automotive

Software Engineering. 2005.

[2] N. G. Leveson and C. S. Turner, “An Investigation of the

Therac-25 Accidents,” Computer (Long. Beach. Calif)., vol.

26, no. 7, pp. 18–41, 1993.

[3] J. Souyris and D. Delmas, “Experimental assessment of

Astree on safety-critical avionics software,” in Proceedings

of the 26th international conference on Computer Safety,

Reliability, and Security, 2007, pp. 479–490.

[4] P. Codd, “Top 10 Software Failures Of 2011.” [Online].

Available: http://www.businesscomputingworld.co.uk/top-

10-software-failures-of-2011/. [Accessed: 02-Apr-2015].

[5] W. Ahrendt, B. Beckert, and D. Bruns, “The key platform

for verification and analysis of Java programs,” Verif. Softw.

Theor. Tools, Exp. (VSTTE 2014), pp. 1–16, 2014.

[6] H. Z. H. Zhu, I. Bayley, L. S. L. Shan, and R. Amphlett,

“Tool Support for Design Pattern Recognition at Model

Level,” in 33rd Annual IEEE International Computer

Software and Applications Conference, 2009, vol. 1, pp. 1–

6.

[7] A. Riazanov and A. Voronkov, “The design and

implementation of Vampire,” AI Commun. - CASC, vol. 15,

no. 2, pp. 91–110, 2002.

[8] J. Cabot, R. Clarisó, and D. Riera, “UMLtoCSP: A tool for

the formal verification of UML/OCL models using

constraint programming,” ASE’07 - 2007 ACM/IEEE Int.

Conf. Autom. Softw. Eng., pp. 547–548, 2007.

[9] B. Bordbar and K. Anastasakis, “UML2ALLOY: A tool for

lightweight modelling of discrete event systems.,”

Guimarães, N., Isaías, P. IADIS Int. Conf. Appl. Comput.

2005, no. 1999, pp. 209–216, 2005.

[10] Omg, “OMG Unified Modeling Language: Version 2.5,”

vol. 05, no. September, p. 786, 2013.

[11] M. Balaban and A. Maraee, “Finite Satisfiability of UML

Class Diagrams with Constrained Class Hierarchy,” ACM

Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 24:1–24:42,

2013.

[12] K. Zurowska and J. Dingel, “Symbolic execution of UML-

RT State Machines,” in Proceedings of the 27th Annual

ACM Symposium on Applied Computing - SAC ’12, 2012, p.

1292.

[13] M. Bakera, T. Margaria, C. D. Renner, and B. Steffen,

“Tool-supported enhancement of diagnosis in model-driven

verification,” Innov. Syst. Softw. Eng., vol. 5, no. 3, pp. 211–

228, 2009.

[14] D. Jackson, Software Abstractions. Massachussets: The MIT

Press, 2012.

[15] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,

A. Micheli, S. Mover, M. Roveri, and S. Tonetta, “The

NUXMV Symbolic Model Checker,” in 26th International

Conference on Computer Aided Verification, 2014, pp. 334–

342.

[16] J. Dubrovin and T. Junttila, “Symbolic model checking of

hierarchical UML state machines,” in 8th International

Conference on Application of Concurrency to System

Design, 2008, pp. 108–117.

[17] P. Cousot, R. Cousot, J. Feret, A. Miné, and X. Rival, “The

Astrée Static Analyzer,” 2015. [Online]. Available:

http://www.astree.ens.fr/. [Accessed: 06-Jun-2015].

[18] J. Ivers, “Overview of ComFoRT : A Model Checking

Reasoning Framework,” 2004.

[19] T. Ball, V. Levin, and S. K. Rajamani, “A decade of

software model checking with SLAM,” Commun. ACM, vol.

54, pp. 68–76, 2011.

[20] O. Bouissou, E. Conquet, and P. Cousot, “Space software

validation using abstract interpretation,” in Proc. of the Int.

Space System Engineering Conf., Data Systems in Aerospace

(DASIA 2009), 2009, no. 1, pp. 1–7.

[21] K. Havelund and T. Pressburger, “Model checking JAVA

programs using JAVA PathFinder,” Int. J. Softw. Tools

Technol. Transf., vol. 2, pp. 366–381, 2000.

[22] P. Chalin, J. Kiniry, G. Leavens, and E. Poll, “Beyond

assertions: Advanced specification and verification with

JML and ESC/Java2,” Form. methods components objects,

vol. 4111, pp. 342–363, 2006.

[23] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav,

“SATABS: SAT-based Predicate Abstraction for ANSI-C,”

in Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2005), 2005, vol. 3440, pp. 570–574.

[24] L. de Moura, S. Owre, and N. Shankar, “The SAL language

manual,” Comput. Sci. Lab., SRI Int., Menlo …, vol. 02, no.

650, pp. 1–39, 2003.

[25] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.

Pasareanu, R. Robby, and H. Z. H. Zheng, “Bandera:

extracting finite-state models from Java source code,” in

Proceedings of the 2000 International Conference on

Software Engineering. ICSE 2000 the New Millennium,

2000, pp. 439–448.

[26] O. Badreddin and T. C. Lethbridge, “A manifestation of

model-code duality: facilitating the representation of state

machines in the umple model-oriented programming

language,” 2012.

[27] J. Rambaugh, I. Jacobson, and G. Booch, Advanced Praise

for The Unified Modeling Language Reference Manual ,

Second Edition, 2nd ed. Toronto: Addison-Wesley, 2004.

[28] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M.

Pistore, M. Roveri, R. Sebastiani, and A. Tacchella,

“NuSMV 2 : An OpenSource Tool for Symbolic Model

Checking,” pp. 359–364, 2002.

[29] L. De Moura and N. Bjørner, “Satisfiability modulo theories:

An appetizer,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

5902 LNCS, pp. 23–36, 2009.

[30] A. Cimatti, R. Corvino, A. Lazzaro, I. Narasamdya, T.

Rizzo, M. Roveri, A. Sanseviero, and A. Tchaltsev, “Formal

verification and validation of ERTMS industrial railway

train spacing system,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

vol. 7358 LNCS, pp. 378–393, 2012.

[31] A. Cimatti, S. Mover, and S. Tonetta, “SMT-based scenario

verification for hybrid systems,” Form. Methods Syst. Des.,

vol. 42, no. 1, pp. 46–66, 2013.

