
Multi-Perspective Modeling and Performance
Analysis of Software Product Lines

Matthias Kowal
TU Braunschweig, Germany

Email: m.kowal@tu-braunschweig.de

Abstract—Software system are typically available in a rich
set of variants nowadays to deal with differing customer or
environmental requirements and application contexts. Managing
such a software product line, gets even more difficult considering
multiple involved engineering disciplines and long lifetimes, as
typical for industrial systems of the automation domain. The
thesis tackles this system diversity by modeling interdisciplinary
system variability in both problem and solution space. Based on
these models, we analyze the impact on performance properties
during design time giving early feedback about the system
behavior. The solution space is based on a model-driven approach
with UML models, using notions of delta modeling to man-
age system variability and evolution enriched with information
needed to automatically derive and analyze a performance model.
Motivated by its widespread use in software engineering, we
consider feature models for the problem space that are ultimately
connected to the UML models. Our evaluation is based on a real-
world automation system representing a long-living and variant-
rich software system.

I. INTRODUCTION

Long-living software systems, as in the automation domain,
exist in many different variants at one point in time in order
to satisfy varying user requirements (anticipated variability in
space). Additionally, they evolve over time in order to adapt
to changing environmental conditions, such as functional,
technical or legal requirements (unanticipated variability in
time) [1]. Furthermore, several disciplines are involved during
their development with mechanical, electric and software engi-
neering. As a result, product-line engineering for such systems
is extremely complex. A product line is typically divided
into problem and solution space. The problem space captures
domain knowledge in an abstract way, e.g., using feature or
decision models. The solution space consists of concrete im-
plementation artifacts such as source code fragments or UML-
diagrams. Hence, we need an interdisciplinary variability
modeling concept on the problem space level spanning across
the three mentioned disciplines. For the solution space, we
need models with an appropriate level of abstraction to support
the individual developers following the separation of concerns
principle, so that, e.g., software architects and engineers can
focus on their specific task and unnecessary information stays
hidden. A fully integrated model-driven approach also calls for
the connection of both spaces to support developers as much as
possible and enable the generation of the configured variants in
the problem space with the respective solution space models.
In each part, we have to identify suitable methods to keep

the complexity as low as possible to achieve a high level of
usability.

We propose a twofold modeling approach managing prob-
lem and solution space as well as their mapping. Software
product lines are commonly modeled using feature models
in the problem space [2]. There is already a widespread
number of extensions to feature models available in literature,
e.g., dealing with different versions over time [3], view-based
abstractions [4] or even combining multiple product lines [5].
However, they all lack appropriate adaptations to deal with in-
terdisciplinary aspects, since they were originally designed for
software engineering and not mechanics and electronics [6].
Nonetheless, we plan to use them as a foundation for our
approach and extend them where it is necessary.

For the solution space, we propose a design-level model-
ing approach using three levels of abstraction containing a
workflow describing the path of a job through the system, an
architecture and the actual behavior. In addition, we provide
a mapping between individual elements of each perspective.
Variability and evolution is managed using delta modeling [7].
In delta modeling, we have a core model, which often is
the smallest possible variant of the system. The core can
be altered using the three basic operations of add, remove,
and modify. Deltas encapsulate these change operations and
therefore contain the required information to derive a specific
variant. However, the application of one or more deltas to
generate another variant of the system may lead to an ill-
formed system model. Hence, we have to validate that the
resulting variant is still consistent. In each space, we pursue
the established principle of separation of concerns to minimize
the complexity. The perspectives are realized with a subset of
UML in terms of diagrams with activity, architecture and state
charts.

Predicting the system behavior of software product lines
during design time, in terms of performance, is a crucial yet
complex task. An automation system representing a product
line typically has several non-functional requirements. For
instance, it must produce or transport a specific number of
items in a given amount of time. Feedback concerning these
requirements would be beneficial at an early stage to prevent
disadvantageous design decisions. However, the analysis of
each variant in isolation, which is called product-based per-
formance analysis [8], is inefficient due to the possible large
number of variants in product lines. We need appropriate
methods to overcome this aspect. Family-based approaches



allow a more efficient analysis of a complete product line [9].
We propose such a family-based analysis based on our solution
space models to provide early feedback giving developers the
chance to identify system bottlenecks during design time. As
performance properties, we consider throughput, utilization or
average queue length of the system.

The essence of this thesis is to provide a scalable modeling
approach covering variability and evolution in both problem
and solution space across several disciplines while providing
efficient performance analyses techniques for product lines.
Research Questions. In detail, the thesis is supposed to
answer the following research questions:

RQ1: How can we reuse and adapt existing feature model
extensions to deal with an interdisciplinary product line?

RQ2: Can we sufficiently capture variability and evolution
of a real-world automation system in our models while main-
taining low complexity and high consistency?

RQ3: To what extent is our family-based performance
analysis superior compared to existing techniques in terms of
runtime?

II. RELATED WORK

Most feature modeling approaches consider one large model
specifying the variability of a complete product line [10].
This is not feasible considering multiple disciplines, since
each domain solely needs to focus on their specific features
and everything else would be unnecessary information. Addi-
tionally, one large model is hard to visualize, maintain, and
analyze taking evolution into account. Different views onto
the feature model or the combination of two or more features
models, one for each domain, as in multi software product
lines possible, may solve some of the existing problems [4],
[5]. There are numerous more feature model extensions and
similar approaches available. As for now, it is an open question
which methods can be applied to an interdisciplinary product
line.

Considering the solution space, we face the same prob-
lems with multiple disciplines such as software architects
or engineers. Hence, it is a common approach to follow
the principle of separation of concerns during development.
For instance, this is done in the SPES project in which an
embedded system is developed with model-driven engineering
and multiple viewpoints [11] or as in [12]. Our approach is
quite similar, but also includes a variability modeling concept
with delta modeling. Delta modeling is part of the trans-
formational variability modeling concepts as is the Common
Variability Language [13]. Comparing both approaches yields
no significant benefit for either one, e.g. both are language
independent. We argue that both emerged in parallel and
we decided to use delta modeling. Other concepts are of
annotative or compositional nature. The former tend to have
unmanageable large models [14], while the latter can only add
functionality making removals impossible [15]. The removal
of functionality can be compensated by selecting an appropri-
ate variant as starting point which is incrementally extended
through addition afterwards. In delta modeling this starting

point can be freely selected across all variants providing more
flexibility.

Consistency checking for UML models with variability is
not yet largely considered. A brief survey of consistency
checking techniques can be found in [16]. Some of the existing
techniques have to be further investigated in terms of appli-
cability to product lines [17]. Other approaches already detect
inconsistencies with variability [18], yet a mapping to our
general delta modeling concept has to be done. Additionally,
we aim at fixing the detected inconsistencies. A few of the
available techniques in literature already include methods for
fixing UML models in single software systems [19]. However,
approaches for repairing product lines are still in the early
stages. A first research result in this direction can be found
in [20]. We plan to build upon this foundational work.

The proposed family-based performance analysis is related
to a model checking approach of software product lines in
which annotated UML sequence diagrams are used [21]. This
ultimately leads to a symbolic expression similar to ours. How-
ever, we consider performance properties such as throughput
and do not focus energy related parameters. Another approach
translates UML-annotated software product line designs to
layered queueing networks and analyzes them in a product-
based way [22]. Although this network-type is more expressive
than ours, an efficient family-based analysis is not available.

III. INTEGRATED MODELING AND EFFICIENT
PERFORMANCE ANALYSIS

This section is divided into three parts and each part
represents a different contribution of the thesis. First, we
explain the interdisciplinary modeling of a product line in the
problem space. Second, we extend the approach to solution
space models. Third, a family-based performance analysis
technique is introduced. The overall approach is exemplarily
shown in Fig. 1.

The first contribution: Interdisciplinary Modeling of Variabil-
ity in the Problem Space

First contribution considers the interdisciplinary modeling
approach (cf. top-left corner of Fig. 1). We devise problem
space variability modeling concepts for long-living software
product lines involving multiple disciplines, as typical in the
automation domain. Classical feature models [23], [2] lack
expressiveness to deal with interdisciplinary systems. Hence,
we develop a problem space variability modeling concept
capable to capture interdisciplinary variability dealing with
the following limitations of existing approaches (as recently
identified in [6]): (i) complex dependencies and relations
between discipline-specific entities, (ii) several levels of granu-
larity (from actuators to complete software components), and
(iii) inclusion of multiple views for the individual domains
(mechanics, electronics and software).

We apply existing feature model extensions to the automa-
tion system product line. A possible extension is the usage
of different views onto the feature model based on individual
domains. Furthermore, the principle of multi software product



Software Design Performance AnalysisAutomatic generation

BackannotationProblem Space Solution Space

Sp
a

ce

Time

Workflow

Architecture

Behavior

Root

F1 F2

F4 F5

¬F1 ᴧ F4 
 F3 → F5 

Consistency
F3

Time

ODE

Perf.
Index QoS

Fig. 1. The envisioned software contribution

lines can be applied to solve the granularity limitation, which
basically means having separate feature models for each
domain. In addition, extended cross-tree constraints are avail-
able in multi software product lines to capture the complex
dependencies.

Additionally, we must as well address evolution extending
the previously developed variability modeling concept with
feature versioning which is required for the case study. We
base our approach on Hyper Feature Models (HFMs) [3] which
is devised in prior work. HFMs capture feature versions and
allow reasoning about dependencies of features in different
versions. As HFMs are also originally not designed to handle
interdisciplinary models, we adapt HFMs suitably to integrate
them with the previously mentioned interdisciplinary concepts.
A closer look to traceability approaches across several models
may also be beneficial here [24].

We can safely assume that during system development with
the described interconnected modeling approach, errors are a
steady companion for the developers. Hence, we have to devise
analyses techniques for reasoning about consistency to provide
a correct and reliable design [6]. We analyze the feature model
for anomalies such as dead features meaning features that can
never be part a any variant due to constraints. In addition,
we have to ensure that the derivable set of product variants is
valid, an essential prerequisite for the configuration of software
systems. As we also consider the evolution of the feature
model itself, all analyses have to work incrementally in order
to allow for efficient re-analyses after evolutionary changes.
For evaluation purposes, we strive for a close cooperation
with automation engineers of the TU Munich, since they are
the domain experts for such systems and can give qualitative
feedback about the feasibility of our concepts.

Preliminary Results: This contribution is the main task
for the remaining time of the thesis. The developed results
should answer RQ1 using an explorative study. A first result
about challenges here is given in [25].

The second contribution: Multi-Perspective Modeling of Vari-
ability and Performance in the Solution Space

Second contribution is all about solution space models
(cf. top-left corner of Fig. 1). The solution space is divided
into three perspectives following separation of concerns and
therefore minimizing the complexity for individual develop-
ers: workflow, architecture, and behavior each represented
by a different UML model with activity, block-based, and
state chart diagrams. The workflow describes the path of

a workpiece throughout the system (e.g., a bottle on an
assembly line), while the architecture presumes the system
structure and the behavior provides the actual implementation.
In addition, elements can be mapped between the different
perspectives. We equipped each perspective with the delta
modeling approach to capture variability and evolution by the
same means. Since deltas can be applied to each perspective
in isolation, we provide a meta structure which we call
interdelta containing information about the required deltas to
derive a valid system variant. In order to map features to the
solution space, we define higher-order deltas operating on the
previously mentioned meta structure for connecting problem
and solution space models.

A system in development is under constant change where
each modeling perspective may evolve independently, but con-
sistency between different perspectives, e.g., activities mapped
to suitable components in the architecture, must be maintained.
For instance, an inconsistency is an architectural component
without a connection to any state chart. Hence, we need to
develop a concept for incremental consistency checking to
support the developer when evolving a system within the
multi-perspective modeling approach. Again incrementality
is key here, as it minimizes the verification time as only
changed parts and parts possibly affected by the changes need
to be considered. As a conceptual idea for the incremental
consistency checking approach, we use previous work on
incrementally type checking of delta-oriented product lines
in Java and adapt it to our specific needs [26]. Considering
tooling the Epsilon framework, which includes the Epsilon
Validation Language, may be a promising candidate for an
appropriate solution.

We want to provide the developer not only with the knowl-
edge of existing errors (consistency checking), but devise a
concept for repair operations as well. Similar to IDE func-
tionality for repair operations in programming languages, e.g.
adding the import statement for a used function, we want
to provide repair operations for our models. For instance, a
component in the architecture has to be connected to a state
chart in the behavior perspective. If there is no such behavior,
a repair operation is to create a default state chart, if the
developer complies with the suggestion. The possible cases
for inconsistencies have to be explored and fixing operations
for these cases have to be provided.

Overall we have models for both problem and solution space
with feature and UML models. Each concept must ensure a
certain level of consistency in isolation as well as in between



both sides resulting in three points that require consistency
concepts.

Preliminary Results: As a first result, we already have
developed the design-level solution space modeling approach
based on UML diagrams [27], [28]. In addition, we can
manage variability and evolution with delta modeling [27],
[28], [29]. Finally, we enriched the workflow perspective with
non-functional performance properties such as arrival and
service rates at the nodes and probabilities at the transitions.
This is a prerequisite for the third contribution and allows
us to do a performance analysis of the system and predict
measures such as utilization, throughput and average queue
lengths. As before, this also includes the full delta modeling
support to vary performance properties between variants [27],
[30]. The implementation is designed as an Eclipse plugin
using XText and EMF for the individual domain-specific
languages (DSLs) for the modeling perspectives. In total,
we have three DSLs for the perspectives and an additional
one for the combining meta-structure. Although, the textual
editor has comfort functions such as auto-completion, syntax
highlighting and basic syntactic consistency checks, we started
to develop concepts for graphical delta modeling editors using
the Graphical Editing Framework (GEF) for each perspective.
We were able to answer RQ2 as explored in three different
publications [27], [28], [29]. Method of evaluation was the real
world automation system located at the AIS chair of the TU
Munich. However, the consistency concept including repair
operations is still an open point in this contribution.

The third contribution: Efficient Performance Analysis.

Third part of the contribution is a scalable performance
analysis of the complete product line. The analysis is based
on the previously described solution space models, especially
the workflow. The workflow is interpreted as a continuous-
time Markov chain that underlies a Jackson-type queueing
network [31]. Fig. 1 implies an automatic generation of such
performance models. A product-based analysis is straightfor-
ward possible by solving the following equation for γ

(I − PT )γ = λ, (1)

where I is the identity matrix, P is the adjacency matrix and
λ are the arrival rates. We can easily compute the throughput,
utilization, average queue length or response time of the
system based on the solution [31]. However, for systems
with a large variant space such as product lines, it is not
efficient to compute the solution for each variant in isolation
which is necessary since we cannot reuse any numerical
results [32]. We propose a family-based analysis to overcome
this disadvantage and analyze the full product line at once.
Again, we benefit from the delta modeling principle for our
efficient analysis. We create a super-variant, also called 150%-
model, based on the core and all deltas so that the full
variability is concentrated in exactly one model. Each value
that is changed by a delta is represented by a symbol and
not a concrete value as in the product-based analysis. Again,
we can create the system of equations as in (1), but solve

it symbolically in our family-based approach. As a result,
we get a large symbolic expression in which we just have
to plug-in the values for a specific variant to calculate the
performance properties. The symbolic solving has to be done
once for the complete product line and not for each variant
over and over again. The gathered information about possible
system bottlenecks can influence modeling decisions at design
time again and we achieve a round-trip engineering concept
as depicted in Fig. 1. However, the underlying Jackson-type
queueing networks are quite limiting in terms of service time
distribution and supported model elements which is why we
extended this work to Coxian-distributed networks [33].

Preliminary Results: Main contribution here is the pro-
posed family-based performance analysis in [30]. Numerical
experiments demonstrated the superiority of the approach
against a product-based solution, especially in the case of
large-scale networks with high degree of variability. The
experiment shows speed-ups of up to 2000%. The analysis
is also evaluated with the automation case study [27]. An
extension to Coxian-distributed networks is also available [33].
However, the numerical results are not as good as before due to
more complex formulae. A product-based performance analy-
sis works for the workflow in our Eclipse plugin. The family-
based analysis is realized in Matlab. Each part of the tooling
was evaluated and applied to the automation case study. This
includes an actual code generation for an automation control
software [27]. As a result, RQ3 is successfully answered.

To conclude this section, we can safely assume that the
solution space concept is mostly finished except for advanced
consistency checks and repair operations. It is similar for the
performance analysis part. Main focus for the remaining thesis
time lies on interdisciplinary concepts and the connection of
problem and solution space models.

IV. EVALUATION AND STATUS

The following section reflects present and future achieve-
ments in a condensed form. In addition, we provide more
details about the evaluation methods.
A. Expected Contributions

We expect the following contributions:
• Application of feature modeling to product lines contain-

ing hardware and software.
• Management of variability, evolution and consistency in

the solution space.
• Performance analysis techniques for product lines.

B. Case Study
The proposed contributions are evaluated using a real-world

automation system called the Pick and Place Unit (PPU)
which is provided by the AIS chair of the TU Munich and
exists in 15 different variants [34]. For the first contribution,
we conduct an explorative study based on the PPU. Second
contribution includes modeling and analyzing the complete
PPU product line with our solution space models. Since
the PPU is still a lab demonstrator, we have to conduct
larger experiments for the third contribution concerning the



performance analysis part to investigate the behavior in large-
scale product lines. Finally, we want to empirically compare
our textual DSL modeling concept against the graphical one to
validate the superiority of visual delta modeling e.g. in terms
of speed and understandability. A lab experiment with students
is planned in the future.
C. Current Status

Currently six publications have emerged during this thesis
tackling solution space models and the performance analysis.
Thus, answering RQ3 completely [30], [33], RQ2 in many
parts [27], [28], [29] except the advanced consistency and re-
pair operation concepts and RQ1 is still at the beginning [25].

The time line for completion is as follows:

7/1/2015 7/31/2017

12/2015

Interdisciplinary Modeling Concept 
for the Problem Space

9/2016

Start writing Thesis

7/2017

Written Thesis finished

4/2016

Consistency Concept
1/2017

Connection of Problem 
and Solution Space

Fig. 2. Timeline for the remaining duration of the thesis

V. CONCLUSION

We have presented a twofold modeling approach for both
problem and solution space in product lines. The abstract
domain knowledge is captured with common feature models.
However, the challenge of multiple involved disciplines de-
mands several feature model extensions for which we explore
the applicability to an automation system or provide neces-
sary adaptations. The concrete system is modeled with three
different perspectives. Each perspective allows variability and
evolution through delta modeling. Both spaces are equipped
with analyses techniques and a consistency concept. The
feature modeling includes an analysis to detect anomalies and
validate the set of derivable variants. The UML models are
enriched with performance annotations to deduce a separate
performance model. This model can be analyzed with either
a product- or family-based performance analysis to provide
feedback about, e.g., bottlenecks. The complete approach is
evaluated using the PPU as a long-living product line.

ACKNOWLEDGMENT

The PhD thesis is supervised by Ina Schaefer and partially
supported by the DFG (German Research Foundation) under
the Priority Programme SPP1593: Design For Future —
Managed Software Evolution. The author would like to thank
Thomas Thüm and Ina Schaefer for valuable feedback.

REFERENCES

[1] S. Braun, C. Bartelt, M. Obermeier, A. Rausch, and B. Vogel-Heuser,
“Requirements on evolution management of product lines in automation
engineering,” in Int. Conf. Math. Modelling, Vienna, Austria, 2012.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and S. P. A., “
Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Carnegie
Mellon University, Tech. Rep., 1990.

[3] C. Seidl, I. Schaefer, and U. Aßmann, “Integrated management of
variability in space and time in software families,” in SPLC ’14.

[4] A. Hubaux, T. T. Tun, and P. Heymans, “Separation of Concerns in
Feature Diagram Languages: A Systematic Survey,” ACM Computing
Surveys, vol. 45, no. 4, pp. 51:1–51:23, Aug. 2013.

[5] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A Survey of Variability Modeling in Industrial
Practice,” in VaMoS. New York, NY, USA: ACM, 2013, pp. 7:1–7:8.

[6] S. Feldmann, C. Legat, and B. Vogel-Heuser, “Engineering support in
the machine and plant manufacturing domain through interdisciplinary
product lines: An applicability analysis,” in INCOM’15, 2015.

[7] I. Schaefer, “Variability modelling for model-driven development of
software product lines,” in VaMoS, 2010, pp. 85–92.

[8] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation.
Princeton University Press, 2009.

[9] A. von Rhein, S. Apel, C. Kästner, T. Thüm, and I. Schaefer, “The PLA
model: on the combination of product-line analyses,” in VaMoS, 2013.

[10] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature diagrams: A
survey and a formal semantics,” in RE’06.

[11] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, Model-Based Engi-
neering of Embedded Systems. Springer, 2012.

[12] J. Kienzle, W. Al Abed, and J. Klein, “Aspect-oriented multi-view
modeling,” in AOSD’09.

[13] O. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svend-
sen, “Adding standardized variability to domain specific languages,” in
SPLC, 2008, pp. 139–148.

[14] C. Kästner and S. Apel, “Integrating compositional and annotative
approaches for product line engineering,” in McGPLE, 2008.

[15] C. Klein, C. Prehofer, and B. Rumpe, “Feature specification and re-
finement with state transition diagrams,” in 4th IEEE WS on Feature
Interactions in Telecommunications Networks. IOS Press, 1997.

[16] M. Usman, A. Nadeem, T. hoon Kim, and E. suk Cho, “A survey of
consistency checking techniques for uml models,” in ASEA 2008.

[17] A. Egyed, “Instant consistency checking for the uml,” in ICSE ’06.
[18] R. E. Lopez-Herrejon and A. Egyed, “Detecting inconsistencies in multi-

view models with variability,” in ECMFA’10.
[19] A. Egyed, “Fixing inconsistencies in uml design models,” in ICSE’07.
[20] R. E. Lopez-Herrejon and A. Egyed, “Towards fixing inconsistencies in

models with variability,” in VaMoS’12.
[21] C. Ghezzi and A. M. Sharifloo, “Verifying non-functional properties of

software product lines: Towards an efficient approach using parametric
model checking,” in SPLC, 2011, pp. 170–174.

[22] R. Tawhid and D. C. Petriu, “Automatic derivation of a product perfor-
mance model from a software product line model,” in SPLC, 2011.

[23] K. Czarnecki and E. Ulrich, Generative Programming: Methods, Tools,
and Applications: Methods, Techniques and Applications. Addison-
WesleyLongman, 2005.

[24] I. Galvao and A. Goknil, “Survey of traceability approaches in model-
driven engineering,” in EDOC, 2007.

[25] B. Vogel-Heuser, J. Folmer, M. Kowal, I. Schaefer, S. Lity, A. Fay,
W. Lamersdorf, T. Kehrer, M. Tichy, and B. Beckert, “Selected chal-
lenges of software evolution for automated production systems,” in
Industrial Informatics, 2015.

[26] L. Bettini, F. Damiani, and I. Schaefer, “Compositional type checking
of delta-oriented software product lines,” Acta Informatica, 2013.

[27] M. Kowal, C. Prehofer, I. Schaefer, and M. Tribastone, “Model-based
development and performance analysis for evolving manufacturing sys-
tems,” at - Automatisierungstechnik, vol. 62, pp. 794–802, 2014.

[28] M. Kowal, C. Legat, D. Lorefice, C. Prehofer, I. Schaefer, and B. Vogel-
Heuser, “Delta Modeling for Variant-rich and Evolving Manufacturing
Systems,” in MoSEMInA, 2014.

[29] B. Vogel-Heuser, J. Mund, M. Kowal, C. Legat, J. Folmer, S. Teufl,
and I. Schaefer, “Towards interdisciplinary variability modeling for
automated production systems,” in Industrial Informatics, 2015.

[30] M. Kowal, I. Schaefer, and M. Tribastone, “Family-Based Performance
Analysis of Variant-Rich Software Systems,” in FASE, 2014.

[31] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing networks
and Markov chains: modeling and performance evaluation with com-
puter science applications. Wiley, 2005.

[32] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A Classifi-
cation and Survey of Analysis Strategies for Software Product Lines,”
ACM Computing Surveys, vol. 47, no. 1, pp. 6:1–6:45, Jun. 2014.

[33] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer, “Scaling
Size and Parameter Spaces in Variability-aware Software Performance
Models,” in ASE, 2015.

[34] C. Legat, J. Folmer, and B. Vogel-Heuser, “Evolution in industrial plant
automation: A case study,” in IECON, 2013.


