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I. PROBLEM 

Models used for software development represent mostly the 

functional properties of the software, without modeling the 

platforms on which the software will run. However, from a 

performance modeling perspective, the information about the 

underlying platform infrastructure (e.g., middleware, operating 

system, hardware, networks) on which the software will be 

deployed is essential for the analysis of software performance 

(e.g., System response time, Throughput). This issue was 

identified by Woodside et al. [1] and the authors called these 

added performance model elements performance completions. 

A key completion for a distributed application is its 

middleware [2, 3]. 

 Many previous studies have shown that platforms play a 

key role in software performance. Just to mention a few, in 

Juric et al. [5] and Gómez-Martínez et al. [6], the response time 

of message transmission is compared for various middleware 

(e.g., RMI, RMI-SSL, SOAP), and it is shown that the response 

times can vary as much as 14%, depending on the middleware 

used. In Faisal et al. [4] the impact of network latency on the 

performance of software deployed across multiple clouds is 

investigated, showing that deploying an application to a more 

powerful cloud may cause performance degradation rather than 

gain if the communication overhead is too high. Therefore, it is 

very important for the performance modelers to have a 

systematic method for building performance models for the 

platform infrastructure, and especially for the various features 

presented within a middleware. This gives them the 

opportunity to rapidly build performance models for changing 

circumstances and to reuse existing middleware models. 

The objective of the proposed research is “to develop a 

systematic, flexible framework that enables model 

completions for a wide range of middleware for software 

performance models”. The goal of such modeling is to predict 

how an application software would do in terms of performance 

if deployed to different middleware platforms with various 

features. The proposed framework is flexible because it offers a 

mechanism to model a wide range of middleware and their 

features.  Also, the size of the produced models are flexible as 

the framework allows the modeler to choose desired level of 

modeling details.  

II. RELATED WORK 

Four lines of related research on performance completions 

have been found. Wu et al. [8] propose a subsystem modeling 

approach in the context of LQN, which has variability only in 

parameters, but not in structure. Verdickt  [9] in line two took 

the approach of manually modeling CORBA middleware in 

UML, weaving it to application software model, and then 

manually transforming the middleware-aware software model 

from UML to LQN. This approach has automation only in one 

step (i.e., weaving middleware model to software model), and 

even this is done only for CORBA (i.e., not middleware in 

general). The third line of research is a component-based 

modeling approach in the context of Palladio Component 

Model (PCM) [10]. Happe et. al. [11] proposed pattern-based 

performance completions for Message Oriented Middleware 

(MOM); Becker [12] proposed coupled transformations to 

compose completions into both generated code and a 

performance model; Strittmatter et al. [13] used feature models 

and completions to build a particular communication 

infrastructure from an abstract connector model; Kapova [14] 

introduced variability in the model transformation process 

(rather than just in the model instances). The fourth line of 

research is based on Aspect Oriented Modeling (AOM). Alhaj 

et al. [15] proposed an approach to transform platform 

independent-model to platform-dependent model in the context 

of a model transformation chain that generates queueing-based 

performance models from UML design models of service-

oriented applications. The Reusable Aspect Model (RAM) 

proposed by Keinzle et al. [16] can be used to model 

middleware variability of functional requirements, whereas this 

research aims to model the variability of non-functional 

requirements for performance prediction. 

The present work is different in two important ways from 

its predecessors. First, it considers pure performance model 

completions, not completions as components as in the first and 

third research lines. A model completion is both more general 

and simpler than a component or connector completion. The 

second difference is that (unlike the second, third and fourth 

research lines) the completion is defined and composed at the 

performance model level, not in the software specification. 

This is often simpler because the performance model is at a 

more abstract level than a design model (e.g., PCM or UML). 



These differences give two advantages. First, the resulting 

performance model is smaller and simpler. Second, design 

details may be confidential or simply unavailable, and for such 

cases a performance model may be constructed as a “black 

box” for the middleware, then composed using the methods 

proposed here. 

III. PROPOSED SOLUTION 

The various models that take part in the proposed 

framework are shown in Figure 1. The Base Middleware 

Model (BMM) is the simplest possible middleware, which is in 

reality a single call. The commonality and variability in 

different middleware features are identified and modeled as 

feature models. These feature models are realized in Feature 

Realization Models (FRM).  Which features to be composed to 

the BMM are described in a Feature Composition Descriptor 

(FCD) and given as input to the “Compose Feature” module of 

the Middleware Composition Engine (MCE) to produce 

feature-aware Specialized Middleware Model (SMM). The 

SMM is calibrated to obtain its service time under various 

workload.  

The next step is to compose the SMM to an application 

software model that does not contain a middleware model. This 

software model is called Base Software Model (BSM). The 

“Compose Middleware” module of the MCE takes BSM, SMM 

and MCD (Middleware Composition Descriptor) as input to 

produce middleware-aware Specialized Software Model 

(SSM).    

The performance models can come from any model-

creation process, but in this research they are assumed to come 

from a Domain Specific Language (DSL) targeted for 

performance modeling called Layered Queuing Network 

(LQN) [7]. The LQN models can be executed (both 

analytically and by simulation) to obtain different performance 

metrics such as response time, throughput, utilization etc.  

 

 
Fig. 1. Overview of the Proposed Framework  

The LQN models are capable of representing the software 

components and their deployment, in order to capture inter-

component communications, and to analyze resource 

interactions between layers of the application. Figure 2 shows 

an LQN model for a distributed weather application 

(WeatherApp). This is a two layer application where weather 

stations located in various parts of the city send data to a 

central weather center for data collection and analysis. For the 

purpose of brevity, only two weather stations are shown in this 

model. 

Each concurrent entity (called a task) is represented by two 

or more attached rectangles. The rightmost rectangle shows 

task name and a parameter for its thread-pool multiplicity (e.g., 

{10}, default value = 1). It has attached rectangles to the left 

that represent its operations, called entries and labeled with the 

host (CPU) demand for one invocation of the entry (e.g., 

[$msg*ws1]) and think time (e.g., (Z1)). Each task has a host 

processor drawn as an oval, with a multiplicity (e.g., {32}, 

default value = 1) which can represent multiple cores. A call 

from one entry to another is represented by an arrow labeled 

with the average number of calls (default value=1). 

 
Fig. 2. LQN model of WeatherApp 

IV. PRELIMINARY WORK 

By carefully observing the popular commercial middleware 

products (e.g., RMI, Servlet, SPRING, JMS, Web Services), it 

can be seen that in every middleware the caller and callee must 

do some marshal/wrapper operation to send and receive 

messages respectively. This can be seen as a Mandatory 

Feature for every middleware. But, there are many other 

operations (e.g., NameService, Encryption, 

ContainerOperations) that may or may not be present in a 

middleware. We call such operations as Optional Features. A 

minimum middleware is modeled using BMM, and its 

mandatory and optional features are modeled using feature 

models and their realizations.  

A. Base Middleware Model (BMM) 

The BMM contains the minimum number of (i.e., two) 

tasks and hosts needed to carry out a call in distributed 

communication. These two tasks represent the caller and the 

callee. The double bar(||) before the name of a model element 

tells that this element is a placeholder and it is going to be 

replaced by the corresponding client or servant element in the 

composed model. The BMM (and also the realization models 

that are introduced later) have the following properties: mean 

number of calls for each call, network latency, multiplicities of 

tasks and hosts, and call-type (i.e., blocking or non-blocking). 

Their default values are 1, 0, 1 and blocking respectively. 

These default values can be modified in the FCD. 

 
Fig. 3. Base Middleware Model (BMM) 



B. Feature Model 

The available roles of a middleware are represented using a 

base feature model (whose root element is 

MiddlewareFeatures) and a number of sub-feature models. The 

base feature model has one mandatory feature called Wrapper. 

This feature essentially models the marshalling operation. All 

other features (e.g., Compression, Encryption, Broker) are 

optional features.  

There are some features (e.g. Broker, ServiceManager) that 

have their own sub-feature models. A feature with sub-features 

is shown in thick borders in a feature diagram. A sub-feature 

can have further sub-features nested within one another. The 

MiddlewareFeatures are shown in Figure 4. In Figure 5, Broker 

and ServiceManager features are shown in thick border, 

indicating they may contain further sub-features. 

 
Fig 4. Base feature model 

 
Fig. 5. Sub-feature models of ServiceManager and Broker 

C. Feature Realization 

Since the BMM is modeled in LQN, the features have to be 

also realized in LQN. A feature can be realized in two different 

ways: Property-Modifying Realization (PMR) and Structure-

Modifying Realization (SMR). PMRs do not modify the 

structure of the BMM, rather they only update model properties 

(e.g., service demand, call-type etc.). PMRs keep the model 

compact and are useful when the modeling the concurrency of 

a feature is not essential. For example, the PMR of encryption 

feature is as follows:  
Encryption.demand = $ENCRYPT+$msg*$encrypt 

The service demand in a realization (as shown in the 

equation above and also in Figure 6) has two parts: a constant 

part represented in UPPERCASE letters (e.g., $ENCRYPT) 

and a variable part represented in camelCase letters (e.g., 

$encrypt) multiplied by the message size ($msg). 

The other type of realization, namely SMR, carry more 

information than PMR. SMRs increase the size of the model by 

adding tasks and hosts, but they allow to model concurrency. 

Figure 6 shows the SMR of encryption feature. SMRs of many 

other features such as compression and wrapper would also 

take the same structure, but only the service demand 

parameters would change (e.g., for compression it would be 

$compress and $COMPRESS instead of $encrypt and 

$ENCRYPT). The single bar(|) before the name of a model 

element tells that this element is going to stay in the composed 

model. 

A feature can be implemented as either PMR, SMR or both 

and kept in the model library. The appropriate realization is 

invoked from the library as required by the performance 

modeller.  

 
Fig. 6. Structure-modifying realization of encryption feature 

D. Realization Composition 

The BMM is specialized by composing the realizations of 

the required features to it. For every feature, the following 

information needs to be provided for its realization 

composition.  (Note that, each of this information has an 

associated switch to identify it in FCD. Below, the switches are 

written in parentheses after the name of the information.) 

 Realization type (-t): can be either PMR or SMR. 

 Realization destination (-d): tells where a realization to 

be composed. The destination can be either a call’s client, 

call’s servant, both to call’s client and servant (which is 

default), or to a call itself where the feature (e.g. broker) 

neither adds operations to the client nor to the servant.  

 Realization host (-h): can be either self, bound or single. 

Self means the realization tasks are deployed at their own 

separate hosts. Bound (which is the default value for SMR) 

means the realization task is deployed to its destination 

tasks host. Whereas, ‘single’ can be used only when the 

realization destination is ‘both’ but both of the realization 

tasks share a single host. Note that, PMRs are always of 

‘bound’ type. 

 Realization properties (-p): These are optional list of 

property parameters to be passed to customize the 

realization. These properties include call-type (blocking or 

non-blocking), mean number of calls, multiplicity of 

realization task and its host etc. This point is not further 

discussed here due to the lack of space. 

Sometimes the order of realization composition to the 

BMM may affect the performance overhead. Therefore, a 

default “order value” is assigned to every realization, 

causing the realizations to have a “partial ordering” among 

themselves. Also, the ordering for the recipient of a call is 

reverse than the ordering for the source of a call. For 

example, compression realization has a lower order value 

than encryption realization. Therefore, if a BMM is to be 

composed with both encryption and compression 

realizations, then for the source of the call the Middleware 

Composition Engine (MCE) would compose the 

compression realization first, then encryption realization. 

But for the recipient, the encryption realization would be 

composed first, and then the compression realization. This 

is logical because the recipient has to decrypt the message 

first before uncompressing it.  

Note that, one must use SMR if one is interested to 

keep the ordering of operation in one’s model, because 

PMRs do not preserve concurrency. Also note that the 



default partial ordering can be overridden using realization 

properties.  

E. Obtaining Specialized Middleware Model 

The list of realizations to be applied to the BMM are 

described in a text file called Feature Composition Descriptor 

(FCD). The MCE reads the FCD and composes the FRMs to 

the BMM, producing Specialized Middleware Model (SMM). 

The first line of the FCD contains the name of the base model 

(in this case BMM), followed by a colon (:) and source and 

destination entries (between a “greater than” sign) that form the 

call to be updated. Then the type of the call is mentioned after –

c switch. The subsequent lines of the FCD file describes the 

features to be composed. Each of these lines begin with the 

name of the feature to be applied, followed by composition 

information separated by switches. If the source model is 

BMM, then one of the features must be the Wrapper feature 

since it is a mandatory feature. The last line of the description 

block contains the –o switch followed by the name of the 

output model. Below is an example of an FCD  
 

BMM:c>s –c block 

Wrapper –t struct –d  both –h bound 

Compression –t value –d both 

Encryption –t struct –d both –h single  

SMM –o “SMM1” 

 

When this FCD is given as input to the MCE, the SMM 

shown in Figure 7 is produced. MCE carries out the 

composition process respecting the partial ordering of the 

features. The produced SMM is the model that is calibrated and 

is going to be composed to the BSM. 

A powerful property of FCD is that, the performance 

modeler is not limited to apply features only to the BMM. 

Rather, any SMR (such as broker) can be referred as the base 

model in the FCD, and then the subfeatures of that feature can 

be composed to obtain specialized submodels to be further 

composed to the BMM.  

 
Fig. 7. Specialized Middleware Model (SMM1). 

F. Obtaining Specialized Software Model 

One or more SMMs are composed to the BMM to obtain a 

Specialized Software Model (SSM). The description of what 

middleware to be composed at what calls of the BSM is 

described in a text file called Middleware Composition 

Descriptor (MCD). It is possible that many (or even all) of the 

calls of a BSM use the same middleware. For all those calls, 

the middleware of choice should be preferably mentioned only 

once in the MCD. In order to achieve this advantage, the 

concept of callgroup is introduced, that simply identify a set of 

calls by a single name. 

The MCD file starts with the name of the BSM, followed by 

the –o switch and the name of the SSM. The rest of the file can 

be divided into two blocks: callgroup and middleware 

descriptions. For example, consider the following MCD which 

describes that the WeatherApp BSM presented in Figure 2 

should be composed with the Specialized Middleware Model 

SMM1 shown in Fig. 7.  
 

weatherApp –o weatherAppSpecialized 

callgroup ws_wc 

WS1 > wCenter 

WS2 > wCenter 

middleware 

ws_wc SMM1 –s Servant_Encryption 

 

On the second line of this MCD, a callgroup named ws_wc is 

declared, which has two calls described in the next two lines. 

Then the middleware section begins. Here only one 

middleware (SMM1) is applied to one callgroup (ws_wc). The 

switch –s tells MCE that the task Servant_Encryption is a 

shared task, meaning it should be created only once and all the 

calls in the group should share it. The resultant SSM is shown 

in Figure 8. 

 
Fig. 8. Specialized Software Model (weatherApp+SMM1) 

 

Note that there is only one task (SMM1_Serv_En) that 

handles encryptions at the server side instead of two tasks. This 

happened due to the use of the –s switch in the MCD.  

V. EXPECTED CONTRIBUTIONS 

The main contribution of this research is a flexible, reusable 

approach to represent the performance impact of a large range 

of middleware, including many optional features. This is 

achieved through the following contributions to knowledge:  

 Modeling the commonality and variability that is present 

in various middleware.  This is done by means of the 

following sub-contributions: a) proposing a BMM and 



identifying its properties so that it can be adapted to a large 

range of middleware, b) identifying and grouping the 

middleware features and presenting them in feature models 

and sub-feature models. 

 Solving the frequently occurring modeling problem of 

“state explosion” by proposing two kinds (SMR and PMR) 

of realizations for a middleware feature. 

 Developing syntax for describing the choice of features 

and choice of middleware in the forms of FCD and MCD 

respectively. 

 Describing a process to calibrate the SMM to obtain its 

service time under various workload. 

 Developing algorithms for MCE so that it can compose 

BMM with FRM to obtain SMM, and BSM with SMM to 

obtain SSM. 

This work also has the following practical contributions: 

 Tool support for storing the BMM and FRMs in a model 

library. 

 Tool support to automatically obtain SMM and SSM from 

the required input models.  

 Calibrating SMMs, and validating the calibrations and the 

generated models by comparing their performance metrics 

with those of the software applications running on a test-

bed.  

VI. PLAN FOR EVALUATION AND VALIDATION  

The proposed framework is verified by observing whether 

the MCE can construct composed models with desired 

properties and level of details. Validation is done in two 

phases. First, in order to validate that a large range of 

middleware can be modeled, we will compose an application 

software with various types of middleware (e.g.,  Web 

Services, Servlet, Spring) and compare the performance 

metrics of the composed application with SSMs generated by 

our framework. Second, in order to validate the modeling of 

various features, we will choose a middleware  and calibrate 

(i.e., get service time) it under various workloads. Then an 

application software will be composed with that middleware in 

which different set of calls will use different features.  The 

SSM will be validated by comparing its performance metrics 

with those of the actual system.   

VII. CURRENT STATUS 

The author has developed a framework to model the 

performance completions of large array of middleware and 

their features. At present, a tool is being developed in Java to 

automate the entire process of LQN model composition. For 

the purpose validation, experiments are being run on a test-bed 

and compared to those generated by the models.. The author 

expects to complete this research in one year. 
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