
A Flexible Approach for Adding Middleware

Completions to Software Performance Models

Adnan Faisal

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

faisal@sce.carleton.ca

I. PROBLEM

Models used for software development represent mostly the

functional properties of the software, without modeling the

platforms on which the software will run. However, from a

performance modeling perspective, the information about the

underlying platform infrastructure (e.g., middleware, operating

system, hardware, networks) on which the software will be

deployed is essential for the analysis of software performance

(e.g., System response time, Throughput). This issue was

identified by Woodside et al. [1] and the authors called these

added performance model elements performance completions.

A key completion for a distributed application is its

middleware [2, 3].

 Many previous studies have shown that platforms play a

key role in software performance. Just to mention a few, in

Juric et al. [5] and Gómez-Martínez et al. [6], the response time

of message transmission is compared for various middleware

(e.g., RMI, RMI-SSL, SOAP), and it is shown that the response

times can vary as much as 14%, depending on the middleware

used. In Faisal et al. [4] the impact of network latency on the

performance of software deployed across multiple clouds is

investigated, showing that deploying an application to a more

powerful cloud may cause performance degradation rather than

gain if the communication overhead is too high. Therefore, it is

very important for the performance modelers to have a

systematic method for building performance models for the

platform infrastructure, and especially for the various features

presented within a middleware. This gives them the

opportunity to rapidly build performance models for changing

circumstances and to reuse existing middleware models.

The objective of the proposed research is “to develop a

systematic, flexible framework that enables model

completions for a wide range of middleware for software

performance models”. The goal of such modeling is to predict

how an application software would do in terms of performance

if deployed to different middleware platforms with various

features. The proposed framework is flexible because it offers a

mechanism to model a wide range of middleware and their

features. Also, the size of the produced models are flexible as

the framework allows the modeler to choose desired level of

modeling details.

II. RELATED WORK

Four lines of related research on performance completions

have been found. Wu et al. [8] propose a subsystem modeling

approach in the context of LQN, which has variability only in

parameters, but not in structure. Verdickt [9] in line two took

the approach of manually modeling CORBA middleware in

UML, weaving it to application software model, and then

manually transforming the middleware-aware software model

from UML to LQN. This approach has automation only in one

step (i.e., weaving middleware model to software model), and

even this is done only for CORBA (i.e., not middleware in

general). The third line of research is a component-based

modeling approach in the context of Palladio Component

Model (PCM) [10]. Happe et. al. [11] proposed pattern-based

performance completions for Message Oriented Middleware

(MOM); Becker [12] proposed coupled transformations to

compose completions into both generated code and a

performance model; Strittmatter et al. [13] used feature models

and completions to build a particular communication

infrastructure from an abstract connector model; Kapova [14]

introduced variability in the model transformation process

(rather than just in the model instances). The fourth line of

research is based on Aspect Oriented Modeling (AOM). Alhaj

et al. [15] proposed an approach to transform platform

independent-model to platform-dependent model in the context

of a model transformation chain that generates queueing-based

performance models from UML design models of service-

oriented applications. The Reusable Aspect Model (RAM)

proposed by Keinzle et al. [16] can be used to model

middleware variability of functional requirements, whereas this

research aims to model the variability of non-functional

requirements for performance prediction.

The present work is different in two important ways from

its predecessors. First, it considers pure performance model

completions, not completions as components as in the first and

third research lines. A model completion is both more general

and simpler than a component or connector completion. The

second difference is that (unlike the second, third and fourth

research lines) the completion is defined and composed at the

performance model level, not in the software specification.

This is often simpler because the performance model is at a

more abstract level than a design model (e.g., PCM or UML).

These differences give two advantages. First, the resulting

performance model is smaller and simpler. Second, design

details may be confidential or simply unavailable, and for such

cases a performance model may be constructed as a “black

box” for the middleware, then composed using the methods

proposed here.

III. PROPOSED SOLUTION

The various models that take part in the proposed

framework are shown in Figure 1. The Base Middleware

Model (BMM) is the simplest possible middleware, which is in

reality a single call. The commonality and variability in

different middleware features are identified and modeled as

feature models. These feature models are realized in Feature

Realization Models (FRM). Which features to be composed to

the BMM are described in a Feature Composition Descriptor

(FCD) and given as input to the “Compose Feature” module of

the Middleware Composition Engine (MCE) to produce

feature-aware Specialized Middleware Model (SMM). The

SMM is calibrated to obtain its service time under various

workload.

The next step is to compose the SMM to an application

software model that does not contain a middleware model. This

software model is called Base Software Model (BSM). The

“Compose Middleware” module of the MCE takes BSM, SMM

and MCD (Middleware Composition Descriptor) as input to

produce middleware-aware Specialized Software Model

(SSM).

The performance models can come from any model-

creation process, but in this research they are assumed to come

from a Domain Specific Language (DSL) targeted for

performance modeling called Layered Queuing Network

(LQN) [7]. The LQN models can be executed (both

analytically and by simulation) to obtain different performance

metrics such as response time, throughput, utilization etc.

Fig. 1. Overview of the Proposed Framework

The LQN models are capable of representing the software

components and their deployment, in order to capture inter-

component communications, and to analyze resource

interactions between layers of the application. Figure 2 shows

an LQN model for a distributed weather application

(WeatherApp). This is a two layer application where weather

stations located in various parts of the city send data to a

central weather center for data collection and analysis. For the

purpose of brevity, only two weather stations are shown in this

model.

Each concurrent entity (called a task) is represented by two

or more attached rectangles. The rightmost rectangle shows

task name and a parameter for its thread-pool multiplicity (e.g.,

{10}, default value = 1). It has attached rectangles to the left

that represent its operations, called entries and labeled with the

host (CPU) demand for one invocation of the entry (e.g.,

[$msg*ws1]) and think time (e.g., (Z1)). Each task has a host

processor drawn as an oval, with a multiplicity (e.g., {32},

default value = 1) which can represent multiple cores. A call

from one entry to another is represented by an arrow labeled

with the average number of calls (default value=1).

Fig. 2. LQN model of WeatherApp

IV. PRELIMINARY WORK

By carefully observing the popular commercial middleware

products (e.g., RMI, Servlet, SPRING, JMS, Web Services), it

can be seen that in every middleware the caller and callee must

do some marshal/wrapper operation to send and receive

messages respectively. This can be seen as a Mandatory

Feature for every middleware. But, there are many other

operations (e.g., NameService, Encryption,

ContainerOperations) that may or may not be present in a

middleware. We call such operations as Optional Features. A

minimum middleware is modeled using BMM, and its

mandatory and optional features are modeled using feature

models and their realizations.

A. Base Middleware Model (BMM)

The BMM contains the minimum number of (i.e., two)

tasks and hosts needed to carry out a call in distributed

communication. These two tasks represent the caller and the

callee. The double bar(||) before the name of a model element

tells that this element is a placeholder and it is going to be

replaced by the corresponding client or servant element in the

composed model. The BMM (and also the realization models

that are introduced later) have the following properties: mean

number of calls for each call, network latency, multiplicities of

tasks and hosts, and call-type (i.e., blocking or non-blocking).

Their default values are 1, 0, 1 and blocking respectively.

These default values can be modified in the FCD.

Fig. 3. Base Middleware Model (BMM)

B. Feature Model

The available roles of a middleware are represented using a

base feature model (whose root element is

MiddlewareFeatures) and a number of sub-feature models. The

base feature model has one mandatory feature called Wrapper.

This feature essentially models the marshalling operation. All

other features (e.g., Compression, Encryption, Broker) are

optional features.

There are some features (e.g. Broker, ServiceManager) that

have their own sub-feature models. A feature with sub-features

is shown in thick borders in a feature diagram. A sub-feature

can have further sub-features nested within one another. The

MiddlewareFeatures are shown in Figure 4. In Figure 5, Broker

and ServiceManager features are shown in thick border,

indicating they may contain further sub-features.

Fig 4. Base feature model

Fig. 5. Sub-feature models of ServiceManager and Broker

C. Feature Realization

Since the BMM is modeled in LQN, the features have to be

also realized in LQN. A feature can be realized in two different

ways: Property-Modifying Realization (PMR) and Structure-

Modifying Realization (SMR). PMRs do not modify the

structure of the BMM, rather they only update model properties

(e.g., service demand, call-type etc.). PMRs keep the model

compact and are useful when the modeling the concurrency of

a feature is not essential. For example, the PMR of encryption

feature is as follows:
Encryption.demand = $ENCRYPT+$msg*$encrypt

The service demand in a realization (as shown in the

equation above and also in Figure 6) has two parts: a constant

part represented in UPPERCASE letters (e.g., $ENCRYPT)

and a variable part represented in camelCase letters (e.g.,

$encrypt) multiplied by the message size ($msg).

The other type of realization, namely SMR, carry more

information than PMR. SMRs increase the size of the model by

adding tasks and hosts, but they allow to model concurrency.

Figure 6 shows the SMR of encryption feature. SMRs of many

other features such as compression and wrapper would also

take the same structure, but only the service demand

parameters would change (e.g., for compression it would be

$compress and $COMPRESS instead of $encrypt and

$ENCRYPT). The single bar(|) before the name of a model

element tells that this element is going to stay in the composed

model.

A feature can be implemented as either PMR, SMR or both

and kept in the model library. The appropriate realization is

invoked from the library as required by the performance

modeller.

Fig. 6. Structure-modifying realization of encryption feature

D. Realization Composition

The BMM is specialized by composing the realizations of

the required features to it. For every feature, the following

information needs to be provided for its realization

composition. (Note that, each of this information has an

associated switch to identify it in FCD. Below, the switches are

written in parentheses after the name of the information.)

 Realization type (-t): can be either PMR or SMR.

 Realization destination (-d): tells where a realization to

be composed. The destination can be either a call’s client,

call’s servant, both to call’s client and servant (which is

default), or to a call itself where the feature (e.g. broker)

neither adds operations to the client nor to the servant.

 Realization host (-h): can be either self, bound or single.

Self means the realization tasks are deployed at their own

separate hosts. Bound (which is the default value for SMR)

means the realization task is deployed to its destination

tasks host. Whereas, ‘single’ can be used only when the

realization destination is ‘both’ but both of the realization

tasks share a single host. Note that, PMRs are always of

‘bound’ type.

 Realization properties (-p): These are optional list of

property parameters to be passed to customize the

realization. These properties include call-type (blocking or

non-blocking), mean number of calls, multiplicity of

realization task and its host etc. This point is not further

discussed here due to the lack of space.

Sometimes the order of realization composition to the

BMM may affect the performance overhead. Therefore, a

default “order value” is assigned to every realization,

causing the realizations to have a “partial ordering” among

themselves. Also, the ordering for the recipient of a call is

reverse than the ordering for the source of a call. For

example, compression realization has a lower order value

than encryption realization. Therefore, if a BMM is to be

composed with both encryption and compression

realizations, then for the source of the call the Middleware

Composition Engine (MCE) would compose the

compression realization first, then encryption realization.

But for the recipient, the encryption realization would be

composed first, and then the compression realization. This

is logical because the recipient has to decrypt the message

first before uncompressing it.

Note that, one must use SMR if one is interested to

keep the ordering of operation in one’s model, because

PMRs do not preserve concurrency. Also note that the

default partial ordering can be overridden using realization

properties.

E. Obtaining Specialized Middleware Model

The list of realizations to be applied to the BMM are

described in a text file called Feature Composition Descriptor

(FCD). The MCE reads the FCD and composes the FRMs to

the BMM, producing Specialized Middleware Model (SMM).

The first line of the FCD contains the name of the base model

(in this case BMM), followed by a colon (:) and source and

destination entries (between a “greater than” sign) that form the

call to be updated. Then the type of the call is mentioned after –

c switch. The subsequent lines of the FCD file describes the

features to be composed. Each of these lines begin with the

name of the feature to be applied, followed by composition

information separated by switches. If the source model is

BMM, then one of the features must be the Wrapper feature

since it is a mandatory feature. The last line of the description

block contains the –o switch followed by the name of the

output model. Below is an example of an FCD

BMM:c>s –c block

Wrapper –t struct –d both –h bound

Compression –t value –d both

Encryption –t struct –d both –h single

SMM –o “SMM1”

When this FCD is given as input to the MCE, the SMM

shown in Figure 7 is produced. MCE carries out the

composition process respecting the partial ordering of the

features. The produced SMM is the model that is calibrated and

is going to be composed to the BSM.

A powerful property of FCD is that, the performance

modeler is not limited to apply features only to the BMM.

Rather, any SMR (such as broker) can be referred as the base

model in the FCD, and then the subfeatures of that feature can

be composed to obtain specialized submodels to be further

composed to the BMM.

Fig. 7. Specialized Middleware Model (SMM1).

F. Obtaining Specialized Software Model

One or more SMMs are composed to the BMM to obtain a

Specialized Software Model (SSM). The description of what

middleware to be composed at what calls of the BSM is

described in a text file called Middleware Composition

Descriptor (MCD). It is possible that many (or even all) of the

calls of a BSM use the same middleware. For all those calls,

the middleware of choice should be preferably mentioned only

once in the MCD. In order to achieve this advantage, the

concept of callgroup is introduced, that simply identify a set of

calls by a single name.

The MCD file starts with the name of the BSM, followed by

the –o switch and the name of the SSM. The rest of the file can

be divided into two blocks: callgroup and middleware

descriptions. For example, consider the following MCD which

describes that the WeatherApp BSM presented in Figure 2

should be composed with the Specialized Middleware Model

SMM1 shown in Fig. 7.

weatherApp –o weatherAppSpecialized

callgroup ws_wc

WS1 > wCenter

WS2 > wCenter

middleware

ws_wc SMM1 –s Servant_Encryption

On the second line of this MCD, a callgroup named ws_wc is

declared, which has two calls described in the next two lines.

Then the middleware section begins. Here only one

middleware (SMM1) is applied to one callgroup (ws_wc). The

switch –s tells MCE that the task Servant_Encryption is a

shared task, meaning it should be created only once and all the

calls in the group should share it. The resultant SSM is shown

in Figure 8.

Fig. 8. Specialized Software Model (weatherApp+SMM1)

Note that there is only one task (SMM1_Serv_En) that

handles encryptions at the server side instead of two tasks. This

happened due to the use of the –s switch in the MCD.

V. EXPECTED CONTRIBUTIONS

The main contribution of this research is a flexible, reusable

approach to represent the performance impact of a large range

of middleware, including many optional features. This is

achieved through the following contributions to knowledge:

 Modeling the commonality and variability that is present

in various middleware. This is done by means of the

following sub-contributions: a) proposing a BMM and

identifying its properties so that it can be adapted to a large

range of middleware, b) identifying and grouping the

middleware features and presenting them in feature models

and sub-feature models.

 Solving the frequently occurring modeling problem of

“state explosion” by proposing two kinds (SMR and PMR)

of realizations for a middleware feature.

 Developing syntax for describing the choice of features

and choice of middleware in the forms of FCD and MCD

respectively.

 Describing a process to calibrate the SMM to obtain its

service time under various workload.

 Developing algorithms for MCE so that it can compose

BMM with FRM to obtain SMM, and BSM with SMM to

obtain SSM.

This work also has the following practical contributions:

 Tool support for storing the BMM and FRMs in a model

library.

 Tool support to automatically obtain SMM and SSM from

the required input models.

 Calibrating SMMs, and validating the calibrations and the

generated models by comparing their performance metrics

with those of the software applications running on a test-

bed.

VI. PLAN FOR EVALUATION AND VALIDATION

The proposed framework is verified by observing whether

the MCE can construct composed models with desired

properties and level of details. Validation is done in two

phases. First, in order to validate that a large range of

middleware can be modeled, we will compose an application

software with various types of middleware (e.g., Web

Services, Servlet, Spring) and compare the performance

metrics of the composed application with SSMs generated by

our framework. Second, in order to validate the modeling of

various features, we will choose a middleware and calibrate

(i.e., get service time) it under various workloads. Then an

application software will be composed with that middleware in

which different set of calls will use different features. The

SSM will be validated by comparing its performance metrics

with those of the actual system.

VII. CURRENT STATUS

The author has developed a framework to model the

performance completions of large array of middleware and

their features. At present, a tool is being developed in Java to

automate the entire process of LQN model composition. For

the purpose validation, experiments are being run on a test-bed

and compared to those generated by the models.. The author

expects to complete this research in one year.

ACKNOWLEDGMENT

This research was funded by the Natural Sciences and

Engineering Research Council of Canada through its Strategic

Network SAVI (Smart Applications on Virtual Infrastructure)

and its Discovery Grant programs. The author thanks his co-

supervisors, Prof. Murray Woodside and Prof. Dorina Petriu,

for their continuous support and invaluable feedback.

REFERENCES

[1] M. Woodside, D.B. Petriu, K. H. Siddiqui, “Performance-related

Completions for Software Specifications”, Proc. 24th Int. Conf.

on Software Engineering , Orlando, May 2002.

[2] G. Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed

Systems Concepts and Design, 5th Edition, Pearson Ed. 2012.

[3] A. Faisal, D. C. Petriu, M. Woodside, “A Systematic Approach

for Composing General Middleware Completions to

Performance Models”, in Computer Performance Engineering

(Proc. European Performance Engineering Workshop EPEW14,

Florence Sept. 2014), LNCS vol. 8721, Springer, pp 30-44.

[4] A. Faisal, D. C. Petriu, M. Woodside, Network latency impact

on performance of software deployed across multiple clouds,

Proc CASCON 2013, pp 216-229, Nov 2013.

[5] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, M. Hericko,

“Comparison of performance of Web services, WS-Security,

RMI, and RMI-SSL”, Journal of Systems and Software, n. 79,

pp. 689-700, 2006

[6] E. Gómez-Martínez, J. Merseguer “Impact of SOAP

Implementations on the Performance of a Web Service-Based

Application”, Proc ISPA Workshops, pp. 884-896, 2006.

[7] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi,

“Enhanced Modeling and Solution of Layered Queueing

Networks”, IEEE Trans. on Software Eng. v. 35, n. 2, pp. 148-

161, 2009

[8] X. Wu., M. Woodside, “Performance Modeling for Software

Components,” Proc. 4th Int. Workshop on Software and

Performance, Redwood Shores, Calif., Jan 2004, pp. 290-301.

[9] T. Verdickt, Performance Analysis of Distributed Systems Based

on Architectural System Models, PhD Thesis, Dept. of Inf.

Technology, Universiteit Gent, Belgium, 2007.

[10] S. Becker, H. Koziolek, R. Reussner, “Model-based

Performance Prediction with the Palladio Component Model”,

Proc. 6th Int. Workshop on Software and Performance, pp. 56–

67, 2007.

[11] J. Happe, H. Friedrich, S. Becker, R. H. Reussner,“A pattern-

based performance completion for Message-oriented

Middleware”, Proc. 7th Int. Workshop on Software and

Performance, pp. 165-176, 2008.

[12] S. Becker, “Coupled model transformations”, Proc. 7th Int.

Workshop on Software and Performance, pp. 165-176, 2008.

[13] M. Strittmatter, L. Happe, “Compositional performance

abstractions of software connectors” Proc. 3rd International

Conf. on Performance Engineering, pp. 275-278, 2013.

[14] L. Kapova, Configurable Software Performance Completions

through Higher-Order Model Transformations, PhD Thesis,

Karlsruhe Institute of Technology, 2011.

[15] M. Alhaj, D.C. Petriu, "Using Aspects for Platform-Independent

to Platform-Dependent Model Transformations", International

Journal of Electrical and Computer Systems, Vol. 1, Issue 1,

pp.35-48, 2012.

[16] J. Kienzle, W. A. Abed, F. Fleurey, J. Jézéquel, J. Klein,

“Aspect-Oriented Design with Reusable Aspect Models”,

Transactions on Aspect-Oriented Software Development, vol. 7,

pp. 279 – 327, 2010.

