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Abstract—Safety-critical Cyber-Physical Systems (CPS) are
growing increasingly more distributed, autonomous, and embed-
ded in our society. CPS engineering relies on modeling methods
from different fields. Such methods are difficult to combine due
to their complexity and heterogeneity. Inconsistencies between
models and analyses can lead to implicit design errors, which
lead to critical CPS failures. Existing approaches to CPS model
integration fall short in terms of their flexibility, effectiveness, and
formal guarantees. To overcome these limitations and achieve
better integration, I propose an integration approach based
on architectural views and analysis contracts. To enable my
approach I develop a model-view consistency support framework,
an analysis contracts framework, and a verification method for
multi-model integration properties. I claim that my approach is
feasible, more effective, and more cost-efficient than the existing
ones. I plan to validate my claims on realistic industrial academic
case studies of CPS modeling.

I. PROBLEM: MODELING METHODS INTEGRATION

Modern software systems are growing increasingly more
distributed, autonomous, and embedded in physical world.
Such systems are important in science and technology because
they offer socioeconomic benefits beyond classic embedded
systems. For instance, self-driving cars promise dramatic re-
ductions in the accident rate [1]. I will call systems with these
characteristics Cyber-Physical Systems (CPS) because they
are software-controlled and interact with complex physical
world, although other names such as autonomous robotics and
mechatronics are often used to describe such systems as well.

Safety-critical CPS are difficult but important to engineer
correctly. To tackle complex analog and digital processes, CPS
design and quality assurance rely on model-driven engineering
from various engineering fields, such as artificial intelligence,
control theory, and mechatronics. This diversity of methods
leads to complex and heterogeneous engineering processes that
are hard to combine for one system’s design. For example, at
least six distinct models of computation may need to co-exist
in a single system model [2].

Ad hoc integration between diverse modeling methods may
lead to miscommunication and inconsistencies, which turn
into design errors and ultimately system failures [3]. I will
refer to such critical lack of integration as the Problem of
Modeling Methods Integration (MMI). Although partial solu-
tions to the MMI problem exist, CPS community has not yet
developed general, effective, and practical ways to integrate

CPS modeling and design methods [4]. As a result, safety-
critical CPS are prone to implicit errors that take a substantial
amount of time, effort, and funds to discover and fix. For
example, in the General Motors ignition switch recall case it
took years to discover an unexpected interaction between the
mechanical and electrical designs of the ignition switch that
lead to failures, loss of lives, and expensive recalls [5].

Some aspects of the integration problem have been suc-
cessfully addressed in related research (see next section for
details). However, several important integration issues have
not yet been adequately addressed. One of them is the in-
formality of relations between models and their integration-
level representations (such as views). This relationship may
be straightforward to establish and maintain for component-
based models such as Simulink1 and Verilog2. However, some
CPS models do not have syntactic support for component, or
their components are significantly different from the traditional
object-oriented modularization. For example, it is difficult
to componentize hybrid programs [6] which formally are
sequences of non-deterministic discrete jumps and continuous
evolutions. One way to deal with the absence of model
structure is to rely on the engineer’s judgment and insight
to maintain the relationship to a view. However, this is effort-
intensive and error-prone.

Another aspect of the problem is that system designs un-
dergo constant change. It is increasingly common to use auto-
mated tools and algorithms to analyze models and derive their
updated versions. I call such tools and algorithms analyses.
Analyses are based on theories from specific engineering and
scientific domains. For example, in the domain of processor
scheduling one finds thread-to-processor allocation via bin-
packing and processor frequency scaling [7] to derive an opti-
mal architecture of a real-time system. Some analyses change
models: frequency scaling adjusts the frequency property of
processor components. For such analyses, it is impractical to
re-establish consistency after every change: for every change
many global properties may need to be re-verified before
another change is executed. Besides, analyses often make
implicit assumptions about the system or its environment, and
it is important to verify these assumptions.

1mathworks.com/products/simulink
2verilog.com



Finally, some multi-model consistency properties and an-
alytic assumptions need to be expressed not only in terms
of architectural elements (like components and connectors),
but also in domain-specific terms that are not defined in
the architecture. Often such terms are too semantically low-
level, and fully defining them in architectural views would be
impractical because one would have to “import” the full se-
mantics of the model, thus defeating the purpose of integration
abstractions. As the next section describes, current integration
approaches lack a way to express model-specific terms without
fully bringing the model semantics to the architectural level.

II. RELATED WORK

CPS engineering combines various modeling methods to
address systemic properties like safety, stability, schedulability,
efficiency, security, and others. A modeling method is a cohe-
sive set of formalisms, algorithms, and processes to represent,
design, and analyze a system towards satisfaction of certain
properties. Much recent work on CPS modeling has focused
on formalisms and models. The related work can be split into
two categories: individual CPS modeling methods that I build
upon and try to incorporate into my approach, and CPS model
integration approaches that can be seen as alternative solutions
to the MMI problem.

A. Modeling Methods for Cyber-Physical Systems
Modeling methods for CPS differ depending on the scien-

tific field from which they originate. Since CPS engineering
revolves around the boundary between discrete digital and
continuous physical worlds, one of the most important charac-
teristics of modeling methods is their treatment of potentially
continuous phenomena, such as time and space. At one end
of this spectrum are classic software engineering models
like statecharts and process algebras [8]. These have support
for composability and automated verification. However, their
treatment of continuous phenomena is often too limited for
CPS.

At the other end of the spectrum are models that include
continuities, like differential and difference equations [6] and
engineering tools like Simulink [9]. Although these models
are well-suited for traditional control settings, it is increas-
ingly difficult to apply such models to complex autonomous
systems. For instance, it is challenging to analyze behavioral
planning in signal-flow control models. The field of hybrid
systems aims to reconcile discrete and continuous system
dynamics. A common model is a hybrid automaton [10] that
combines continuous evolutions along differential equations
with discrete state jumps. Although this field has enjoyed
success in symbolic and numeric computation for analysis of
hybrid models, these models are notoriously complex, have
limited scalability, and lack typical modularity mechanisms
[11], which makes them difficult to combine with common
software and systems engineering methods.

B. Integration Approaches
Currently there are two major ways of addressing the MMI

problem. One is to create a single language or formal system

with universal semantics that would hopefully serve as a lingua
franca of all CPS modeling methods. Such solutions often lead
to complex descriptions and an state space explosion, thus
not scaling properly for large systems. The second way is to
preserve the diversity and heterogeneity of models through
model integration. I will review several such frameworks in
the remainder of this section.

Software and systems engineering have a long heritage in
compositional methods, some of which are being adapted to
CPS. One strand of research uses component contracts for
composition [12]: each component has an interface with a
formal contract. This approach works well for distributed
development of systems, but is often not appropriate for cross-
cutting qualities like safety and security, since these qualities
would need to be propagated to almost every component in-
terface, leading to scalability issues. Another way to compose
system parts is by unifying components through their behavior
relations [13]. This is practical when behaviors are known and
can be easily specified, which, however, is not always the case
for complex systems. My work takes the ideas of contract-
based reasoning to a novel level of model-based analyses.

Ptolemy II [14] is an environment for simulation of diverse
models of computation like state machines, timed automata,
and differential equations. Unfortunately, simulation does not
provide strong theoretical guarantees like verification would,
and not every CPS model has an explicit computation model.
OpenMETA [15] is a platform based on formal logical se-
mantic integration through metamodels. Despite its strong
theoretical guarantees there is little guidance for models that
do not have explicit metamodels. Another limitation is that
metamodel integration does not directly support verification
of changes to models. My research overcomes the limitations
of these platforms.

A promising set of architectural approaches to the MMI
problem focuses on choosing appropriate views for each CPS
formalism using annotated graphs as an underlying formalism
[16]. Flexibility of graph annotations enables customization for
each model and a variety of possible consistency verification
methods [17]. However, the architectural approach currently
has several limitations. First, model-view relations are infor-
mal and require substantial manual effort to create and update
throughout the engineering process. Another limitation is that
consistency is fragile due to frequent algorithmic changes to
models. Finally, consistency properties have limited expres-
siveness confined solely to the architectural level, incapable
of expressing richer properties.

III. PROPOSED SOLUTION: MULTI-LEVEL
ARCHITECTURAL AND ANALYTIC APPROACH

My research aims to improve the state-of-the-art in CPS
modeling method integration by employing a multi-level ap-
proach to the MMI problem. One abstraction is architectural
views that represent model aspects that are relevant for inte-
gration. The other level is the analysis level that considers
algorithms that change models and infer information from



them. Combining these two levels leads to a holistic and
effective treatment of CPS modeling integration issues.

The overall scheme of my approach is shown in Fig. 1.
Consider two heterogeneous models to be integrated. The
models are not completely independent, and there exists some
relationship between them (the cloud). However, this relation-
ship is often too complex to express or verify directly. In-
stead, I create architectural view abstractions with integration-
relevant information for each model. The views need to be
general enough to accommodate different formalisms and CPS
application domains.

Fig. 1: The multi-level architectural and analytic approach.

To support systematic change of models I introduce analyses
as part of the conceptual framework. Analyses read and change
views, which propagate the changes to models. Analyses often
make assumptions that must be satisfied for the analysis to
be correct. For instance, frequency scaling is only applica-
ble if the system is deadline-monotonic [7]. If an analysis’
assumptions are not satisfied, this analysis may produce an
incorrect result, and therefore should not be executed. Since
some analyses modify the same set of views, input-output
dependencies arise and have to be properly resolved.

A. View Level

The view level is used to mediate complex interaction
between analyses and models. A key to this mediation is
creating and maintaining two kinds of relations: view-view
and model-view. The former is more straightforward because
views are specified in architecture description languages that
have generally homogeneous structure of components and
connectors. Therefore this relationship can be maintained
using a number of well-established techniques such as model
transformation [18] or synchronization [19].

Model-view relations, on the other hand, require a more spe-
cial link between architectural descriptions and potentially less
structured models. I employ partial transformations and anno-
tations to overcome this problem. Mechanisms to establish

and update model-view relations have to be customized to the
particular formalism in order to be effective. I take advantage
of the flexibility of architectural styles – custom vocabularies
of architectural elements – to support customization and tailor
transformation algorithms.

Another function of the view level is establishing con-
sistency between models through their views. This is done
using consistency rules, which take form of constraints over
multiple views and can be verified with constraint solving,
for example SMT [7]. Properties that contain model-specific
terms (e.g., the current charge of a battery cell) require more
sophisticated verification methods such as model checking or
theorem proving.

B. Analysis Level

The analysis level automates sound execution of model-
based analyses, which depends on sound ordering and satis-
faction of assumptions and guarantees. To facilitate soundness
checking I designed the language of analysis contracts. Every
analysis is accompanied by its contract C that specifies inputs
I , outputs O, assumptions A, and guarantees G of the analysis,
in short C ≡ (I,O,A,G).

Sound analysis ordering is one where all analyses go in
order of their dependencies. For example, if analysis A1

depends on analysis A2, then A2 should be executed before
A1. A sound sequence of analyses is built by creating an anal-
ysis dependency graph and selecting any topological ordering
that ends with the desired analysis. The only exception for
this method is when there are cyclical dependencies, which
requires more sophisticated methods of dependency resolution.

To summarize, my approach promises more effective and
less expensive CPS modeling method integration. The next
section presents preliminary evidence to supports that claim.

IV. PRELIMINARY WORK

Here I describe two significant results: architectural views
for hybrid programs and the analysis contracts framework.

A. Architectural View for Hybrid Programs

The hybrid program (HP) modeling and proving method,
based on hybrid programs and differential dynamic logic (dL)
[6], is particularly difficult to integrate with other modeling
methods, in part due to HP expressiveness and lack of lan-
guage support for modularity. Each hybrid program contains
fragments of various concerns that are highly intertwined
with each other, leading to poor modularity and possibility
of compositional errors [11].

To incorporate hybrid programs into my approach, I defined
how architectural elements can be transformed into hybrid
programs. That enabled high-level design and reasoning about
HPs and at the same time eliminated manual effort of model-
view consistency maintenance. A foundational abstraction
for HP is an architectural view that contains actors HPA,
composers CPR, and connectors HPC . I defined an algorithm
to transform a view into a single HP via transformation
functions of CPR and HPC . Given a view, it is possible to



reuse its parts and express its properties in dL, thus the level
of abstraction is elevated to components and systems from
individual statements. I have also defined an analysis to check
whether a view has a proper compositional structure, e.g.,
whether an actor violates the laws of causality by manipulating
variables of another actor outside existing connectors.

This work on architectural abstractions for hybrid programs,
implemented as a plugin to AcmeStudio [20], demonstrated
feasibility and auxiliary benefits of automated support for
model-view relationships.

B. Analysis Contracts Framework

This work investigated theoretical and practical aspects of
using analysis contracts for integration [7]. Theoretical goals
were designing a syntax and semantics for contracts and creat-
ing algorithms that ensure sound execution of analyses. Prac-
tical goals included application for existing domains beyond
the original thread scheduling and creation of an extensible
framework for analysis execution and contract verification.

To reach the theoretical goal I defined the syntax of anal-
ysis contracts and described their semantics over verification
domains – collections of sets and functions that describe the
essential elements of a technical domain. Towards the practical
goal I designed and implemented the ACTIVE tool [21] 3 that
supports execution of analyses in the OSATE2 architectural
environment 4 for AADL.

This research showed that analysis contracts are suitable
for detection and prevention of integration errors in several
domains: threads scheduling, battery scheduling [7], sensor
trustworthiness, reliability, and control [22]. This work demon-
strated the improvements in effectiveness and cost-efficiency
in my approach to CPS modeling method integration.

V. EXPECTED CONTRIBUTIONS

If successful, the proposed research will make the following
contributions to the theory of model-driven engineering and
cyber-physical systems:

• A formal description of the model-view consistency
mechanism and algorithms for its continuous update.

• A language for analysis contract specification and algo-
rithms to support sound execution of analyses. These al-
gorithms include resolution of analytic data dependencies
and analysis contract verification.

• A language for expressing model-specific consistency
properties and analytic assumptions.

If successful, the proposed research will make the following
contributions to the practice of model-driven engineering and
cyber-physical systems:

• Implementation of the model-view formalism for Acme
in the AcmeStudio architectural environment.

• Implementation of the analysis contracts approach for
AADL in the OSATE2 architectural environment.

3Available at github.com/bisc/active
4wiki.sei.cmu.edu/aadl/index.php/Osate 2

• Implementation of the property language for AADL in
the OSATE2 architectural environment.

• A case study of integrating modeling methods in a
realistic industrial or academic CPS project.

Depending on the available time and resources, a number
of optional contributions can be made:

• A library of reusable CPS analyses, their contracts, and
view consistency rules;

• An instantiation of the model-view mechanism for an-
other representative CPS formalism like mechanical 3D
CAD models or Simulink;

• Theoretical analysis of the property specification method
in terms of its expressiveness and soundness.

VI. PLAN FOR THESIS EVALUATION AND VALIDATION

Below I make research claims about feasibility, correctness,
effectiveness, and generality of my approach to CPS modeling
method integration.

Feasibility: it is be possible to implement my approach in
a tool environment that integrates CPS models. I.e., the tool
should be capable of integrating representative CPS models
and integration abstractions by specifying and verifying in-
tegration consistency. I plan to validate feasibility by imple-
menting the approach in a software tool.

Correctness: verification procedures for the analysis con-
tracts and integration properties are sound. That requires
demonstrating that the algorithms theoretically achieve their
goals of detecting and preventing inconsistencies in models.

Effectiveness: my approach semi-automatically detects and
prevents modeling method integration errors that would other-
wise be missed. I plan to validate effectiveness of the approach
by applying it to collections of models for several systems and
showing that it can detect errors that would otherwise have not
been made explicit.

Generality: my approach applies to a broad range of CPS
modeling methods. I will validate this claim by demonstrating
the applicability of my approach to several representative CPS
modeling methods.

Since a significant part of this thesis research is applied, it is
critically important to evaluate these claims on practical cyber-
physical systems and projects. Therefore, I plan to combine
several validation methods. First, I check feasibility of my
constructs and approach by implementing prototypes of sug-
gested tools. I selected AcmeStudio and OSATE2 because the
former already served as a platform for multi-view CPS model
consistency research [17], and the latter supports multiple
architectural CPS analyses based on AADL. Second, I plan
to evaluate effectiveness and generality of my research on
realistic industrial or academic projects (examples are below)
by taking them as case studies and applying my approach
to integrate modeling methods. In addition to the first two
approaches, I will use theoretical validation to investigate
formal guarantees of my research in a form of theorems.

Finding appropriate CPS case studies can be challenging.
To simplify the search I establish the following criteria for the
desired case study projects:



• Heterogeneity: the project has at least two heterogeneous
models or informal representations that are not integrated.

• Applicability: the system should have or have a possibility
of having discrepancies between models or representa-
tions that would lead to critical design errors.

• Realism: a project is intended for practical use in industry
or academia.

• Scale: the project should involve at least three engineers.
• Timing: the scope of the system can be adjusted so that

validation does not take longer than one person-year.
Currently the candidate systems for conducting an integra-

tion case study are: the NASA Europa spacecraft, 5 the Andy
Lunar Rover,6 the SMACCMPilot quadrotor, 7 the STARMAC
quadrotor, 8 and the Toyota powertrain [23].

VII. CURRENT STATUS

Most of the fundamental research towards my dissertation
has been completed, but several theoretical and practical
aspects remain. The tasks are summarized in Tab. I, with the
required work estimated to be completed in 11–16 months.
The next steps in my research focus on finalizing the design
of the multi-model property language and conducting a case
study of model integration.

Task Completion Months left
Contract framework design 100% 0
Contract framework implementation 90% 0.5
Model-view mechanism design 90% 0.5
Model-view mechanism
implementation

75% 1

Multi-model property language design 50% 2-3
Multi-model property verification
implementation

50% 1

Case study search 50% 1-2
Case study execution 0% 2-4
Thesis writing 15% 2-3
Thesis defense 0% 1
(Optional) Theoretical evaluation of
model-view mechanism

0% 2

(Optional) Another instantiation of
model-view mechanism

0% 1-2

(Optional) Contract & property library 25% 1-2
Total without optional 11-16
Total with optional 15-22

TABLE I: Thesis tasks.
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