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Abstract 
   Parallel Discrete Event Simulation (PDES) is a 

method introduced to conduct simulation of a complex 
system, which consists of a large number of objects. The 
PDES has been known for about 30 years and we 
discuss why further analysis of the method is important 
nowadays. We briefly introduce the main features of the 
method and discuss the current state of PDES. We 
present a survey of the method as well as promising 
applications. 

1 Introduction 
    Methods of parallel algorithms developed in the 
middle of the last century are weakly applicable on the 
modern supercomputers. During the last two decades 
the high-performance computing evolved from the big 
mainframes with a complicated central processing unit 
(CPU) into the parallel processing of large numbers of 
CPUs and GPGPUs (general-purpose graphics 
processing units). Running hundreds of thousands or 
even millions of CPUs in a single task is one of the 
challenging problems of high-performance computing 
(HPC). We will focus our discussion on how the parallel 
discrete event simulation (PDES) method may be used 
in large-scale simulations. 
    There are two ways to parallelize a simulation model: 
time-parallel and space-parallel [1]. The time-parallel 
approach partitions the simulated time axis into intervals 
[T1,T2], [T2,T3], …, [Ti,Ti+1], … and assigns each 
interval to a separate process. A process i computes a 
sample path for the interval [Ti,Ti+1]. The final state of 
the system in the sample path  [Ti-1,Ti] must be the 
initial state in the sample path for [Ti,Ti+1]. It is clear 
that the time-parallel simulations are restricted to special 
models that fulfil that requirement. 
    The space-parallel approach partitions the system 
being modelled into a collection of subsystems, and 

assigns a logical process (LP) to each subsystem. 
Therefore, each LP is just a sequential event-driven 
simulator. Sending an event to a LP is equivalent to 
scheduling that event in the receiving list of LP pending 
events.  
    The PDES is a space-parallel approach with an 
execution of a single discrete event simulation program 
on a parallel computer or on a cluster of computers [1]. 
It is widely used in economics and logistics, and 
sometimes applied in physics and computer science. A 
system that should be simulated is divided into disjoint 
subsystems, which are mapped onto the programming 
objects [2]. Subsystems are not isolated during the 
simulations, and dependencies between objects should 
be resolved properly. There are three main essentials of 
PDES. First, it is assumed that changes of possible, or 
potential, dependencies occur at some particular 
moments of time. It is supposed that these moments of 
time are spread on a scale that is large enough compared 
to an elementary unit of simulation time. Therefore, 
changes are considered to be discrete (although random) 
in time, and are called discrete events. The objects 
evolve independently in time, as soon as there are no 
dependencies generated. We need to have some protocol 
in order to process dependencies correctly, in other 
words we would like to keep causality. Using general 
language we can say that we need some protocol for 
synchronization of discrete events. 
    The main idea of PDES is to use an asynchronous 
mechanism and to implement the concept of Virtual 
Time [2]. A local virtual time variable ��i is associated 
with each object i. As soon as a new time event is 
generated by an object i, that event is stamped with the 
local virtual time (LVT) �i. A message containing 
information on the event is generated and is sent to 
other objects. A message sending mechanism is the 
second essential feature of PDES. The third essential 
feature of PDES - there is no information exchange 
between subsystems through common variables and 
there is no access of objects to a shared memory. 
Instead, all the information is distributed via messages. 
The ensemble of LVT �i generates a profile of local 
virtual times. A minimal value of the profile defines 
time horizon, and an evaluation of this value defines 
Global Virtual Time (GVT) of simulations. An evolution 
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of LVT profile and of GVT in time depends on a 
particular scheme of managing causality, and the 
analysis of time profile properties (which is related to 
the problem of synchronization!) is one of subjects of 
the present paper. 
    Originally, the PDES was designed to deal with 
complex and heavy problems. Suppose, one has to 
simulate a complex system with the condition that 
simulation is resource consuming (huge processor time, 
big RAM, and big data storage, large number of 
sensors) and could not be fit in a single computer. An 
appropriate simulation method should be able to handle 
any problem. The main requirement was not in the 
effective use of CPU time, or storage, or other hardware 
loading level. The main requirement was just to have 
some possibility to simulate. It is not a usual 
requirement of scalability, which is traditionally 
associated with the effective use of hardware. Contrary, 
scalability in the PDES is just a possibility to evolve a 
system regardless of how large and complex this system 
is. During the last years, the PDES method attracts 
interest of a computational physics community, which is 
looking for methods to simulate huge systems that can 
be simulated on computers with millions of nodes 
[4,5,6]. A discussion of that issue is another subject of 
the paper.  
    The third subject of the paper is a discussion of the 
possibility to use the PDES method on a lower level, on 
a level of system software that will link together billions 
of nodes (computational units, CPUs, cores, sensors, 
etc.) within one task. This was mentioned in the White 
Paper “Performance Technologies for Peta-Scale 
Systems” prepared by a group of researchers from US 
National Laboratories and associated Universities [7]. 
    The paper is organized as follows. In Section 2 we 
describe briefly the PDES method. In Section 3 we 
review the research on the evolution of LVT time 
profiles. In Section 4 we discuss an application of PDES 
for in physics in informatics. In Section 5 we discuss a 
possible application of the PDES method in system 
software. In Section 6 we summarize our discussion and 
point out possible future research. 

2 Time evolutions in Parallel Discrete Event 
Simulation method  
    We discuss an evolution of the local time profile and 
of the GVT in PDES algorithms [8,9] using simplified 
models of that evolution. In a sense, it is a modelling of 
the possible PDES algorithms. As we already 
emphasized, the evolution of the LVT and the GVT is 
associated with synchronization problems. The 
importance of the model-of-model approach becomes 
clear if we take into account that using that approach we 
may prove, for example, that deadlocks are never 
happens in conservative algorithms. In terms of LVT 
profile time evolution, it means that the speed of the 
time profile is always positive because there exists at 
least one object with the LVT lower than LVTs of other 
objects, therefore that object may proceed in time. In the 

case of local algorithms it is possible to prove existence 
of a lower bound of that speed [10]. 
    We use an extension [11] of Virtual Time concept on 
the current multi-core and multi-thread architecture of 
hardware and software. In our discussion, the LVT is 
associated with logical processes (LP) and not with 
processing elements, as it was the case in “before-core 
era” of hardware [9]. A processing element (PE) is 
associated with hardware, and a LP is more flexible 
because it is the virtual. Nowadays this extension is 
even more important with GPGPU in which threads 
may run LP in parallel and concurrently. 
    Let us define an abstract model of simulation in 
PDES. The whole physical system is decomposed into 
N subsystems. Each physical subsystem is associated 
with a logical process. Each logical process develops in 
time, changing its internal state at some moments of 
local simulation time. Time of simulation is measured in 
the Global Virtual Time [2], which is a minimal time of 
the LVT profile. We call a change in the internal state of 
simulated subsystem i as an event that happens at logical 
process i, it is denoted LP(i). We suppose that intervals 
of time between events are distributed according to a 
Poisson law. A logical process generates a message with 
information on the changes in the internal state, marked 
up (stamped) by the value of LVT. Sequence of LVT 
times ��i is not decreasing. Each logical process LP(i) 
receives a message and may include the received 
information in simulation, or ignore information if it is 
not necessary for simulation. In the case when LPs 
perform simulations in parallel, the following problem 
may occur. It may happen that LVT �j of LP(j) is higher 
than �i in the received message from LP(i), and LP(j) 
does depend on the information contained in the 
message generated by LP(i). Therefore, causality is 
violated! Fujimoto classified PDES algorithms into two 
groups [1,9]. They are called optimistic algorithms and 
conservative algorithms reflecting the way in which 
synchronization is performed. FaS algorithm is 
introduced and described in the paper [10], it may be 
viewed as representatives of the third group of PDES.  

2.1 Conservative PDES algorithm 
    In the case of a conservative algorithm, a subsystem 
waits for all events to happen in every subsystem from 
each it depends on, before proceed in time. Clearly it is 
possible only for the simulations in which we know in 
advance all dependencies between subsystems in the 
physical system (named as arcs on graphs of LPs). 
Therefore, in a conservative algorithm LVT �i of LP(i) 
should not be greater than LVT �k of all LPs from which 
LP(i) depends on [1].  
    In realizations, one has to define matrix of 
dependencies M(i,j) with elements equal to 0 or 1. If an 
element M(i,j) equals to 1, than LP(j) does may depend 
on events generated by LP(i). This matrix may be 
viewed as a matrix of sender-receiver for message 
sending.   For each LP(i) the corresponding column of a 
matrix is defined, and each time event happens in 
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simulations of LP(i), it sends messages to all LP(j) for 
which element of matrix M(i,j) is equal to one. 
Accordingly, LP(j) will never go forward in simulation
with LVT ��j  larger than minimal �k in its queue of 
messages stamped with the LVTs.  
    In subsection 3.1 we will show that a conservative 
algorithm never leads to a deadlock and will 
demonstrate how simulation speed of GVT behaves for 
some simple cases 

2.2 Optimistic PDES algorithm 

    In an optimistic algorithm, all LPs are evaluated in 
time with assumption that causality is fulfilled. Clearly, 
LVT of subsystems increased independently, and it may 
happen that LP(j) will receive message with time stamp 
�i smaller than �l in the last processed message. 
Causality is broken! LP(j) proceeds using the wrong 
information, while ignoring an event which happened 
earlier in simulation time, �i < �l. An optimistic 
algorithm introduces a protocol of rollback in time that 
resolves the problem of causality. This is done again 
using a message sending procedure. The most well 
known optimistic protocol is Time Warp paradigm [2]. 
The event causing rollback is called a straggler. A 
recovery is organized by undoing effects of all events 
that have been processed prematurely by the LP 
receiving the straggler. 
    In addition to the Input Message Queue and Output 
Message Queue, each LP keeps State Queue, which is a 
list of the recently processed events. It gives a 
possibility to restore an old state vector on rollback. LP 
sends anti-message which annihilates the original one 
when it reaches its destination LP. So, rollback 
generates an anti-message (negative), which annihilates 
while meeting the corresponding primary (positive) 
message. This happens like annihilation in particle 
physics, with an electron and a positron. If LP(i) 
receives an anti-message that corresponds to a positive 
message, which it has already processed, then the 
process must be rolled back itself to undo the effect of 
processing that positive message. In the case if both an 
anti-message and a positive message are in LP(i) queue 
they just annihilate within queue and do not cause any 
rollback by LP(i). Recursive repetition of this procedure 
allows cancelling all erroneous calculations. This 
recursive procedure may lead to the avalanche in the 
rollback, but the length of the avalanche is limited by 
GVT. No event with time-stamp smaller than GVT will 
ever be rolled back, so LPs with GVT may discard that 
event from the State Queue.  
    In subsection 3.2 we will describe a simple model of 
evolution of LVT profile, and demonstrate an analogy 
with a process known in physics as an unrestricted 
surface growth. 

2.3 Freeze-and-Shift (FaS) algorithm 

To make the classification of the PDES algorithms 
possible, two steps are performed. First, concept of 
Virtual Time [2] was generalized, as LVT is associated 

with the logical processes (LP) rather than with the 
processing elements (PE). Second, it is assumed that it 
is possible to handle several LPs within one PE, and that 
communication within PE may be efficient using 
conservative algorithm. In that case we can use 
correspondence of time profile evolution in the 
conservative PDES [10] with the evolution of surface 
growth on substrate [12], described by Kardar-Parisi-
Zhang partial differential equation, named KPZ 
equation. There is one-to-one correspondence between 
classification of boundary conditions in KPZ equation 
and classification of PDES algorithms [11]. In KPZ 
equation, we may divide space into domains, and 
classify possible boundary conditions (BC) between 
domains. There are three possibilities of BC: 
continuous, free, and fixed. Mapping of KPZ onto 
PDES is as follows. Domain corresponds to PE, and BC 
between domains corresponds to the communication 
protocol. Therefore, with many LPs running within one 
PE and updated using conservative algorithm, there are 
three possible algorithms for communication protocol 
between PEs (associated with corresponding BC): 
conservative, optimistic, and FaS. FaS is abbreviation of 
the Freeze-and-Shift algorithm. 
    Let us consider the simplest parallel simulation task, 
in which LPs are placed along the horizontal lines (see 
Figure 1), and send time-stamped messages only to the 
left and right LP. Let us assume we distribute l logical 
processes on each of N processor elements.  

Fig. 1. Possible realization of the first two “steps” of the 
time profile evolution in the conservative algorithm. 

Number of LPs is equal to the number of PEs. Each LP 
sends message only to the neighboring LP at the left and 

right side. 

Figure 1 shows time profile of simulation with 12 LPs 
on the 12 PEs. We start with all LVT �i = 0. The system 
evaluates to the second raw of black LPs. At that 
“moment” GVT is defined by the process with the 
minimal LVT time, it is process number 3.  At the 
“next” step of simulation only LPs with the minimal 
local virtual time (number 1, 3, 6, 8, 10, and 12) are 
allowed to proceed to the possible time marked by pink, 
according with the conservative algorithm. The third 
“step” consists in possible evaluation of those processes, 
which are sitting in local minima of LVT profile; it is 
processes with number 4, 7, 9, and 11.  
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Fig. 2. Possible realization of the first two “steps” of the 
time profile evolution in the FaS algorithm. Number of 
LP=4 in each of PE=3. Each LP sends message only to 
the neighboring LPs at the left and right side: it is 
conservative algorithm between LP in each PE, and 
boundary LPs are frozen. 

Figure 2 demonstrate FaS algorithm applied to the chain 
of LPs communicating only with the neighbors. 12 LP 
distributed over 3 PE, with 4 LP in each PE. Boundary 
LP (number 1,4,5,8,9, and 12) is not allowed to proceed 
after step 1 - they are fixed. On the “next step” only LP 
in the local minima and not on the border of PE are 
allowed to proceeds simulation, it is processes 3, 6, and 
10, marked by pink. Compare Figure 2 and Figure 1 –
the difference only on the border of PE. We have to 
note, that no LP could proceed after that step – there are 
no local minima of LVT time profile. The next step of 
FaS algorithm is to perform shift phase, i.e. perform 
exchange of LPs between PEs. For the case depicted in 
Figure 2, we have to “shift” LPs cyclically by two 
positions. So, PE number 1 will keep LPs 3,4,5, and 6; 
PE number 2 – LPs 7,8,9, and 10; PE number 3 – LPs 
11,12,1, and 2. So, from that boundary LPs (the fixed 
ones) will be 3, 6, 7, 10, 11, and 2, this is the freeze 
phase of FaS algorithm. After that, processes 4, 8, 12, 
and 1 could proceed.   
    The forward process depends on the number l of 
logical processes on each of N processor elements, and 
time to stop can be estimated as l2/4 for the linear chain 
of LPs discussed for simplicity.  
    FaS allows for an effective realization on the parallel 
computers, clusters of computers, and in grid 
computing. It effectively decouples the computation 
phase and communication phase for these parallel 
computations.  This allows, for example, the 
programmer to utilize fast block-memory-transfer 
commands.  Furthermore, it should allow the efficient 
simultaneous execution of both computation part and 
communication part when they are performed by 
independent hardware. 

3 Evolution of time profile in PDES 

    In this section we will discuss evolution of LVT time 
profile in PDES. We do not discuss case studies in 
which particular realization of PDES are investigated 
empirically. Instead, we will discuss properties of 
models which mimics essential features of PDES and 
which can be investigated using methods of applied 
mathematics and mathematical physics. First, we 
discuss results of the research done in series of papers 

by group of Korniss, mainly on the conservative 
algorithm. Next, we discuss results of our research with 
Mark Novotny, mainly for the optimistic algorithm. 

3.1 Conservative PDES and Kardar-Parisi-Zhang 
equation

    Let us consider the simplest case of application of 
conservative algorithm to the chain of LPs 
communicating with neighbors only as already 
considered in Subsection 2.3 and depicted schematically 
in the Figure 1. LVT ��i is associated with each LP(i). We 
start with all �i = 0 (LVT time profile is flat at t = 0,
where t is artificial time, and the discrete one for 
simplicity1).  Evolution of LVT profile may be written 
as iterative process: �i (t+1) = �i (t)+� i(t) if �i (t) � min 
{�i-1 (t),�i+1 (t)}, and �i (t+1) = �i (t), otherwise. Here � i(t)
are random variables. When LP(i) advanced in time it 
sends messages to the right LP(i+1) and left LP(i-1) 
stamped with the LVT �i (t+1). In this process causality 
is never violated. 
    This algorithm is free of deadlock. This can be seen 
qualitatively from the fact that statistically there are four 
possible local configurations for LVT of LP(i), and only 
one of them with the local minima. Therefore, average 
speed of GVT (time horizon) should be 1/4. In fact, 
numerical simulation of Korniss et al model gives 
average speed of the time horizon is 0.246 410(7) [10] 
for the Poisson distribution of �i(t), 0.267(4) [11] for the 
uniformly distributed �i(t), and 0.258(5) [11] for the 
Gaussian noise. So, average utilization of CPU time in 
this simplified local version of conservative algorithm is 
close to 25 per cent. 
    Korniss et al argued that in the continuum limit (the 
increment of the artificial time t is infinitesimal) 
iteration process for the LVT time profile obeys the 
equation introduced by Kardar-Parisi-Zhang (KPZ) for 
the surface growth on the solid substrate [10,11]. This is 
very important observation because it provides mapping 
of conservative PDES algorithm with local message 
exchange onto KPZ problem. In turn, KPZ problem is 
well investigated [12], and solution demonstrates 
universal properties of the profile fluctuations 
depending on the time and system size.  
    First, from the fluctuations of surface profile it is 
possible to estimate the width growth of the profile. 
Mapping this result from KPZ onto the properties of 
LVT time profile in PDES shows us that width of LVT 
grows with time as t3/2. This means that LPs are 
unsynchronized with simulation time growth. This is a 
bad news, but from KPZ analysis it follows, that width 
growth is saturated at some moment of time. Saturation 
level of LVT width is proportional to the square root 
from the number of LPs. This is a good news. 

3.2 Optimistic PDES and unrestricted surface 

                                                            
1 One should not confuse artificial time t we introduce for the sake of 
simplicity with the time at which events happens and time-stamped 
messages are generated. 
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growth 

    Model for the evolution of time profile, which mimics 
essential features of optimistic algorithm, was 
introduced first in [13]. Let us consider again for the 
sake of simplicity the linear chain of LPs. The first step 
is the optimistic unrestricted evolution of LVT at which 
simulation evolves forward in time and the second is the 
rollback (or backward) algorithm of sending anti-
messages. For this purpose one may introduce two 
parameters, F and B associated with two steps of 
optimistic scheme. Namely, at the first step one 
evaluates the time horizon by updating time of the 
randomly chosen LPs with value F following the 
Poisson distribution, and every LP can be chosen with 
the non-zero probability. Then one have to relax
(rollback!) LVT profile B times: for all LP(i) value of 
LVT time changed to the value of LVT time of the 
nearest left LP(i-1) or right LP(i+1). Value of B satisfies 
the Poisson distribution. The average value of the speed 
profile u(t) evolves proportional to (q-qc)a, with 
q=1/(1+B), with a value of a=1.74 close to the critical 
exponent of directed percolation and describing 
roughening transition in one-dimensional unrestricted 
growth process [14]. The value of qc=0.23(3)
corresponds to the value of the parameter B=3.3. It 
should be mentioned that the width of the LVT profile 
acts better for values q far away from the critical value 
qc. When close to qc the system practically does not 
evolve in time. The growth of width provides an 
analogy with the roughening transition, which is in the 
same universality class as a directed percolation [14].
Practically this means that if the length of avalanche 
(see subsection 2.2) is larger than B=3.3 in average, 
optimistic algorithm will not proceed in time but will be 
rather stock. It is quite important to perform case studies 
of optimistic algorithm in order to understand that 
prediction in details. 

4 Using PDES in physics and informatics 
    The most important feature of PDES for using in 
physics is that PDES algorithms are scaled very 
naturally with the physical system size (number of 
objects, or logical processes) and with the hardware size 
(number of nodes, cores, threads) with the only 
requirement that the time for message distribution is 
smaller than computation time. This is valid for the 
simulation in which time to simulate object is much 
larger than time to send message. It is clear that more 
complex and hard simulations the more gain can be 
reached.  
    Last years a number of papers with the analysis of 
implementation of PDES ideas in the large-scale 
computing of models in physics have been published. 
Most of discussions were done for the analysis of 
application of PDES algorithm to the Ising model, 
which is the simplest model of ferromagnetism, and 
which is standard model to test algorithms in Monte 
Carlo simulations [15]. Here we review some of the 

papers that may be of general interest. 
    SPPARKS is the project running by Sandia National 
Laboratory and developing kinetic Monte Carlo 
simulator [16]. SPPARKS runs on single processors or 
in parallel using message-passing techniques and a 
spatial-decomposition of the simulation domain. The 
code is designed to be easy to modify or extend with 
new functionality. Main idea is in partitioning of 
simulation space into the computational domains, and 
performing simulations in parallel within some time 
window. In some sense, this idea is similar to FaS 
algorithm. It implements several KMC solvers whose 
serial computational complexity ranges from O(N) to 
O(NlogN) to O(1) in the number of events N owned by a 
processor. In a generic sense the solvers are catalog a 
list of "events", each with an associated probability, 
choose a single event to perform, and advance time by 
the correct amount. Events may be chosen individually 
at random, or by sweeping over sites in a more ordered 
fashion.  Problems they addressed are magnetic spin 
models, surface growth on substrate, etc. One of the 
simulations is connected with the microstructural 
evolution during sintering [17]. The model is a grain 
growth with physical effects of particle diffusion, 
vacancy diffusion, and vacancy annihilation. This 
sintering model is able to capture all the necessary 
mechanism to simulate simple solid-state sintering 
correctly. It was demonstrated by comparing it to the 
three--dimensional, in-situ images taken in a high-
energy synchrotron during the sintering of Cu particles. 
Similar project is running by Lawrence Livermore 
National Laboratory, also for the parallel kinetic Monte 
Carlo [18,19]. It is based on ideas of virtual time and 
random order of simulating computational domains 
within time window. It is tested on the model of billion 
atoms. The approach was tested with the Ising model 
(the simplest ferromagnetic model) and demonstrated 
that scalability with the number of nodes is close to the 
ideal one. 
    A number of projects connected with simulation of 
communication networks are using PDES. One of such 
projects is running by INRIA, and it is connected with 
the simulation of Border Gateway Protocol using 
optimistic PDES [20] with number of nodes from 10 to 
100 thousands. In the last case simulation lasts up to 36 
hours on 4-core Intel Xeon W5580 3.2Ghz with 64GB 
of RAM running 64-bit Fedora 12 on a Linux kernel 
2.6.32.  

5 PDES and system software 
    The goal of high end computing (HEC) initiative in 
US and Europe is to deploy large-scale computing 
platforms with hundreds thousands of nodes. In the 
White Paper “Performance Technologies for Peta-Scale 
Systems” the group of US researchers emphasized 
importance of the research on the program tools and 
software facilities, and in particular in system 
simulation [7]. They see that as  “an open-source 
architectural simulation framework and API that enables 
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plug-and-play between separately-developed simulators 
for different architectural features… and would also 
enable zoom-out and zoom-in between statistically-
based and cycle-accurate simulation techniques”. 
Solution seen by them as “the simulations will be 
decomposed into logical processes, and will be 
synchronized by either conservative or optimistic 
methods … as developed in PDES community”. The 
reason is that by such approach the high degree of 
computational parallelism in the simulation will 
perfectly match the high degree of real parallelism of 
HEC systems.  
   There are several simulators available as open source 

software. 
    The most famous realization of Time Warp 
synchronization algorithm is Rensselaer's Optimistic 
Simulation System, named as ROSS simulator [21]. It is 
public domain software, which can be installed on the 
cluster. Recently group of researchers from Lawrence 
Livermore National Laboratory, Rensselaer Polytechnic 
Institute and University of Illinois at Urbana-
Champaign tested ROSS on the Blue Gene architecture 
with successful use of almost 2 billions of cores [22] 
yielding speed of 504 billion events per second. 
Modification of optimistic algorithm named shock-
resistant Time WARP (SRTW) designed by group in 
Westminster University and analysis was performed 
using the Grid’5000 platform [23]. 
Group from Bologna University developed PDES 
software named ErlangTW based on Time Warp 
algorithm. Work was presented at 1st ACM SIGPLAN 
workshop on Functional high-performance computing 
(FHPC '12) [24], where some preliminary performance 
results on multicore and distributed architectures using 
the PHOLD benchmark.  
There are at least two attempts to implement PDES in 
Cloud architecture. Fujimoto group introduced TW-
SMIP (the Time Warp Straggler Message Identification 
Protocol) protocol resigned for environment with shared 
hardware resources for which it is known that traditional 
Time Warp (TW) algorithm shows poor performance 
[25]. TW-SMIP protocol defines dynamic 
synchronization points for individual LPs based on 
straggler messages (a new event with time stamp 
smaller than other events it has already processed), 
which improves efficiency of simulation.  
Second example is realization of PDES simulator on 
Cloud/Virtual machine platforms developed in Oak 
Ridge National Laboratory [26].  The scalability of 
virtual time scheduler has been tested on 128 virtual 
machines multiplexed on 32 cores, showing 
improvement in the runtime relative to the default 
Cloud/VM scheduler. Authors believe that algorithmic 
design, observations, and results of their work are 
timely for emerging cloud/VM-based installations, 
highlighting the need for PDES-specific support in high 
performance PDES on the cloud/VM platforms. 

6 Summary and discussion 
    Parallel Discrete Event Simulation paradigm is one of 
the paradigms for the large-scale high performance 
computing. It is under extensive development by many 
groups of researches. PDES was successfully tested on 
the new architectures, from Blue Gene and conventional 
clusters and CPUs to the Virtual Machine/Cloud 
approach. Efficiency of PDES does depend on the 
problem and it is promising to investigate properties of 
synchronization, scalability and efficiency. 
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