
Repeatability and Re-usability in
Scientific Processes:

Process Context, Data Identification and Verification

©Andreas Rauber, ©Tomasz Miksa, ©Rudolf Mayer, © Stefan Proell

SBA Research, and
Vienna University of Technology

Vienna, Austria
{arauber, tmiksa, rmayer, sproell} @sba-research.org

Abstract

 eScience offers huge potential of speeding up
scientific discovery, being able to flexibly re-use,
combine and build on top of existing tools and results.
Yet, to reap the benefits we must be able to actually
perform these activities, i.e. having the data, processing
components etc. available for redeployment and being
able to trust them. Thus, repeatability of e-Science
experiments is a requirement of validating work to
establish trust in results. This proves challenging as
procedures currently in place are not set up to meet
these goals.
Several approaches have tackled this issue from various
angles. This paper reviews these building blocks and
ties them together. It starts from the capture and
description of entire research processes and ways to
document them. Regarding data, we review the
recommendations of the Research Data Alliance on how
to precisely identify arbitrary subsets of potentially
high-volume and highly dynamic data used in a process.
Last, we present mechanisms for verifying the
correctness of process reexecutions.

1 Introduction
New means of performing research and sharing results
offers huge potential for speeding up scientific discovery,
enabling scientists to flexibly re-use, combine and build
on top of results without geographical or time limitations
and across
discipline boundaries. Yet, to reap the benefits
promised by eScience [13], we must be able to actually
perform these activities, i.e. having the data, processing
components available for re-deployment. Funding

agencies such as the
EC 1 are committed to data re-use and open data
initiatives. As a result, all research data from
publicly funded projects needs to be made available for
the public. Not only does this entail that the data must be
equipped with useful and stable metadata, comprehensive
descriptions and documentation, but also that the data
must be preserved for the long term. Yet, from an
eScience perspective, mere availability of data is not
sufficient, as data as such is barely useful. First of all,
eScience benefits not only from the availability of data,
but also from the re-use and re-purposing of tools and
entire experimental workflows. Secondly, and more
importantly, data never exists solely on its own, but is
usually the result of more or less complex (pre-
)processing chains. This commences with the processing
happening at a sensor level or other processing happening
during data capture, via analysis processes resulting in
processed data, leading up to experimental results serving
as input for further meta-studies. Thus, in both cases, we
need to ensure that we have the underlying tools and
processes available. This is necessary to understand their
impact on the result, potential bias introduced by them,
and to apply identical processing to new data to ensure
comparability of results. To re-use such processing tools
we need to trust them and any underlying components to
produce identical (comparable) results under identical
(similar) conditions.

From a scientific point of view, the validation of such
research results (or, in fact, the result of every individual
processing step) is a core requirement needed for
establishing such trust in the scientific community, its
tools and data, specifically in dataintensive domains. This
proves challenging as procedures currently in place are
not set up to meet these goals. Experiments are often
complex chains of processing, involving a number of data
sources, computing infrastructure, software tools, or
external and third-party services, all of which are subject
to change dynamically. In scientific research external

���
1 ec.europa.eu/digital-agenda/en/open-data-0

Proceedings of the XVII International Conference
«Data Analytics and Management in Data Intensive
Domains» (DAMDID/RCDL’2015), Obninsk, Russia,
October 13 - 16, 2015

246

influences can have a large impact on the outcome of� ���
�����	
�����
�
��� ��������� ���� ����� ������ ����

���	�
����� ���� ����	�����	��� ��� ������ ���� ����������

���� ������	��� environment and its properties are
important factors which need to be considered. The
impact of such dependencies has proven to be graver than
expected. While many approaches rely on documenting
the individual processing steps performed during an
experiment, on storing the data as well as the code used
to perform an analysis, the impact of the underlying
software and hardware stack are often ignored. Yet,
beyond the challenges posed by the actual
experiment/analysis, it is the complexity of the
computing infrastructure (both the processing workflows
and their dependencies on HW and SW environments, as
well as the enormous amounts of data being processed)
that renders research results in many domains hard to
verify. As a recent study in the medical domain has
prominently shown [11], even assumed minute
differences such as the specific version of the operating
system used can have a massive impact: different results
were obtained in cortical thickness and volume
measurements of neuroanatomical structures if the
software setup of FreeSurfer, a popular software package
processing MRI scans, is varied. More dramatically,
though, there was also a difference in the result if not the
primary software, but only the operating system versions
(in this case the Mac-OSX 10.5 and 10.6) differ. This
indicates the presence of dependencies from FreeSurfer to
functions provided by the operating system, causing
instabilities and misleading results. As these
dependencies are hidden from the physician, such side-
effects of the ICT infrastructure need to be detected and
resolved transparently if we want to be able to trust
results based on computational analyses.

A number of approaches have tackled this issue from
various angles, including initiatives for data sharing, code
versioning and publishing as open source, the use of
workflow engines to formalize the steps taken in an
experiment, to ways to describe the complex environment
an experiment is executed in. In addition the data that is
created but also the processing algorithms, scripts, and
other software tools used in the experiment need to be
accessible for longer time periods, for facilitating data
reuse and allowing peers to retrieve and verify
experiments. Keeping these assets accessible is not only a
technical challenge, but requires institutional
commitment and defined procedures.

Repeatability and reproducibility are two fundamental
concepts in science. An experiment is repeatable, if it
produces the exact same results under the very same
preconditions. An experiment is reproducible, if the same
results can be obtained even under somewhat different
conditions, e.g. performed by a different team in a
different location. There are several factors which have
an influence on the variance of experiments. The ISO
standard 57251:1994 [14] lists the following factors: (1)

operator, (2) equipment, (3) calibration of the equipment,
(4) environment and (5) time elapsed between
measurements. The standard defines an experiment as
repeatable, if the mentioned influences (1) - (4) are
constant and (5) is a reasonable time span between two
executions of the experiment and its verification.
Reproducibility allows variance in these factors, as they
cannot be avoided if different research teams want to
compare results.

To tackle these issues we proposed to introduce
Process Management Plans (PMPs) [23]. They extend
Data Management Plans by taking a process centric view,
viewing data simply as the result of underlying processes
such as capture, (pre-) processing, transformation,
integration and analyses. The general objective of PMPs
is to foster identification, description, sharing and
preservation of scientific processes. To embody the
concept of PMPs we need to solve the challenges related
to the description of computational processes, verification
and validation, monitoring external dependencies, as well
as data citation. This paper reviews these building blocks
and ties them together to demonstrate the feasibility of
sharing and preservation of not only datasets, but also
scientific processes.

Section 2 summarizes related work from the areas of
Data Management Plans (describing the result of data
capturing/production processes), digital preservation of
processes, and several eScience research infrastructures.
Section 3 presents the Context Model that is
automatically captured, describing the process
implementation including all software and hardware
dependencies. Ways to precisely identify and cite
arbitrary subsets of dynamic data are described in Section
4, presenting the recommendations of the RDA WG on
Data Citation. Section 5 discusses the verification and
validation of the reexecution of computational processes.
These concepts are illustrated via a use case from the
machine learning domain in Section 6, followed by
conclusions in Section 7.

2 Related Work
2.1 Data Management Plans
A prominent reason for the non-reproducibility of
scientific experiments is poor data management, as
criticized in several disciplines. Different data sets
scattered around different machines with no track of
dependency between them are a common landscape for
particle physicists who move quickly from one research
activity to another [5]. Several institutions reacted,
publishing templates and recommendations for DMPs,
such as the Digital Curation Centre (DCC) [9], Australian
National Data Services (ANDS) [3] and National Science
Foundation (NSF) [24], amongst many others. These are
very similar, containing a set of advises, mainly lists of
questions which researches should consider when
developing a DMP. The attention is attracted to what

247

happens with data after it has been created, rather than in
what way it was obtained. All the description is provided
in a text form, and in case of NSF there is a limit of 2
pages. Thus, it is unlikely anybody will be able to reuse
or at least reproduce the process which created the data.
Furthermore, the correctness of data is taken for granted
and thus DMPs do not provide sufficient information that
would allow� ���	���	��� ���� ������ �	������� ���� ����	���
���� ����	�� ��� 	����
��	��� ��������� �������� ��� ����

����� �	��� ��� researchers. There is no formal template for
specification of DMPs which would ensure that all
important information is covered comprehensively.
Several tools are available, like DMPonline2 for DCC or
DMPtool 3 for NSF, which aid the researcher in the
process of DMP creation, but they are rather simple
interactive questionnaires which generate a textual
document at the end, rather than the complex tools
required to validate at least the appropriateness of the
provided information. The main conclusion from the
analysis is that DMPs focus on describing results of
experiments. This is a consequence of their data centric
view, which enforces focus on access and correct
interpretation (metadata) of data and does not pay much
attention to processing of data. While these constitute a
valuable step in the right direction, we need to move
beyond this, taking a process centric view.

2.2 Digital Preservation

The area of digital preservation is shifting focus from
collections of simple objects to the long term preservation
of entire processes and workflows.

WF4Ever4 addressed the challenges of preserving
scientific experiments by using abstract workflows that
are reusable in different execution environments [26].
The abstract workflow specifies conceptual and
technology-independent representations of the scientific
process. They further developed new approaches to share
workflows by using an RDF repository and make the
workflows and data sets accessible from a SPARQL
Endpoint[10]. The TIMBUS 4 project addressed the
preservation of business processes by ensuring continued
access to services and software necessary to properly
render, validate and transform information. The approach
centers on a context model [20] of the process, which is
an ontology for describing the process components and
their dependencies. It allows to store rich information,
ranging from software and hardware to organizational
and legal aspects. The model can be used to develop
preservation strategies and redeploy the process in a new
environment in the future. The project developed a
verification and validation method for redeployed
processes [12] that evaluates the conformance and
performance quality processes redeployed in new

���
2 dmponline.dcc.ac.uk/
3 dmp.cdlib.org/ 4 wf4ever-
project.org/
4 http://timbusproject.net/

environments. This is important when we want to reuse it
to build other processes.

2.3 eScience and Research Infrastructures

Several projects benefit nowadays from sharing and
reusing data [6]. In [7] the evolution of research practices
by sharing of tools, techniques and resources is discussed.
myExperiment [31] is a platform for sharing scientific
workflows. This is already one step beyond just sharing
the data. Workflows created and run within the Taverna
workflow engine can be published and reused by other
researchers. However, the workflows do not always
specify all required information (e.g. tools to run the
steps, description of parameters) to re-run the workflow
[19].

An environment which enables scientists to
collaboratively conduct their research and publish it in
form of executable paper was presented in [25]. The
solution requires working in a specific environment,
limiting its applicability to the tools and software
supported by the environment. PMPs does not have such
a requirement and can be used in every case. There is a
strong move towards ”providing a consistent platform,
software and infrastructure, for all users in the European
Research Area to gain access to suitable and integrated
computing resources” [2].

3 Documenting eScience Processes
To enable analysis, repeatability and reuse of processes,
they must be well described and documented. As most
processes are rather complex in their nature, a precise
description is needed to re-enact the execution of the
process. Thus, formalized models are useful for a detailed
representation of critical aspects such as the hardware,
software, data and execution steps supporting the process,
as well as their relationships and dependencies. Several
models can be considered for this type of documentation.

Workflow-Centric Research Objects [15] (ROs) are a
means to aggregate or bundle resources used in a
scientific investigation, such as a workflow, provenance
from results of its execution, and other digital resources
such as publications, data-sets. In addition, annotations
are used to further describe these digital objects. The
model of Research Objects is in the form of an OWL
ontology, and incorporates several existing ontologies. At
its core, the Research Object model extends the Object
Exchange and Reuse model (ORE) [33]5 to formalize the
aggregation of digital resources. Annotations are realized
by using the Annotation Ontology (AO) [4], which allows
e.g. for comment and tag-style textual annotations.
Specifying the structure of an abstract workflow is
enabled by the wfdesc ontology. Finally, the provenance
of a specific execution of a workflow is described using
the wfprov ontology. Research objects have also been

���
5 openarchives.org/ore/1.0

248

presented as a means to preserve scientific processes [8],
proposing archiving and autonomous curation solutions
that would monitor the decay of workflows.

Enterprise architecture (EA) modelling languages
provide a holistic framework to describe several aspects
of a process. For example, the Archimate [30] language
supports description, analysis and visualization of the
process architecture, on three distinct but interrelated
layers: business, application and technology layer. On
each of these layers, active structures, behavior and
passive structures can be

�������������� �����������������������	�	������������

������	��

Fig. 1 Overview on the Context Model architecture: cor
and extensions

level sequence of inputs and outputs from software and
hardware components needed to run the process, e.g.
database software, libraries, software device drivers,
fonts, codecs, or dedicated hardware created for the
purpose of the experiment. Enterprise architectures do not
address any specific domaindependent concerns. They
rather cut across the whole organization running the
process [16].

While models such as Archimate or Research Objects
are extensive, they often do not provide enough detail on
technology aspects of the process, and thus in these
aspects provide only little guidance to researchers aiming
to produce a solid description of their technical
infrastructure. One approach to alleviate this issue is
realized in the Process Context Model [17], which builds
on top of Archimate and extends it with domain specific
languages to address specific requirements of a given
domain. Wherever possible, the extension ontologies are
based on already existing languages. The development of
the model was driven by requirements to preserve and re-
execute complete processes. The context a process is
embedded in covers immediate and local aspects such as
the software and hardware supporting the process, to
aspects such as the organization the process is executed
in, the people involved, service providers, to even laws
and regulations. The exact context can differ significantly
depending on the domain the process stems from.

The model is using the domain-independent Archimate
language as a core model to integrate the domain specific
extension languages. It is implemented in the Web

Ontology Language (OWL) [34], and the integration is
performed via ontology mapping from the extensions to
the core model. An overview of this architecture and the
provided domain-specific extensions is given in Figure 1,
consisting of:

Software Dependencies cover dependencies between
different types of software, including information on
which versions are compatible or conflicting with each
other. It is, for example, important to know that a specific
version of a Java Virtual Machine is required to run a
certain piece of software, or that a particular application
is required to view a digital object. This is important
when considering preservation of specific parts of the
software stack utilized in the process. Beyond
repeatability, this information may be used during
preservation planning to identify alternative software
applications that can be utilized. Technical dependencies
on software and operating systems in the Context Model
can be captured and described via the Common
Upgradeability Description Format (CUDF) [32].

Data Formats In a process execution, a number of
digital objects are created, modified or read. This section
includes information on which data/file formats these are
stored in. It is used for preservation actions and for
selecting appropriate comparator modules during the
validation process described in Sec. 5 Our
implementation of the Context Model uses the PREMIS
Data Dictionary [27] to represent this information.

Hardware contains a comprehensive description of
the computational hardware, from desktop systems,
server infrastructure components, to specialized hardware
used for certain tasks. Even though in many processes the
hardware employed to host the software applications
might be standard commodity hardware, its exact
specifications can still influence the run-time behavior of
a process. This might be critical in certain circumstances,
such as execution speed, or when specific functionalities
and characteristics of the hardware such as precision
limits, analog/digital conversion thresholds etc. are part
of the computation. Further, certain processes might use
certain hardware capabilities for computation, such as
using graphical processing units (GPUs) for large-scale
experiments in scientific processes. These types of
hardware, and the software that can utilize them, are not
yet as standardized and abstracted, thus an exact
description is needed in many cases.

Legal aspects cover legal restrictions imposed on the
processes. License information focusies specifically on
software licenses. Relevant aspects are e.g. the types of
licenses under which software was made available, and
the clauses they contain. Patent information describes the
owner of a specific patent, or when it was granted.

Large parts of the Context Model of a process can be
extracted automatically [17], especially in the aspects of
software dependencies and data formats. Other aspects
may still require significant manual work to obtain a
proper representation. For example, the communication

249

to a web service has to be described via the provision of
its exact address and interface type. Databases usually run
as independent server processes they are usually detected
but not fully captured when running a tool to monitor a
specific research process execution.

We created a set of tools processing eScience
Workflows modeled for the Taverna Workflow engine to
extract the above-mentioned information and represent it
within the context Model. A� ������� !���	" ����������
������ �������� ���#����� �	���� $� ����� ���
��%� ����

���������� !���	&����
������� ������ ���� ��������

��������
��� 	����'()���������������������	�����	���

���� !���	 '()* ����������� ��	�� ����� ���� 	����
��	���

�������������������������
�

Fig. 2 SQL query selecting data for music classification
experiment, supporting data citation

the static workflow definition is captured. This is
complemented by monitoring the execution of one or
more process execution instances using the extractor of
the Process Migration Framework (PMF)8 which is based
on the strace 9 tool. This way, all dependencies are
explored and all files and ports touched by the process are
detected and added to the context model as dependencies.

These process traces will usually detect an enormous
number of libraries and other files used by a process. To
refine and make the model more compact, the PMF can
resolve Debian packages to which an identified file
belongs and therefore create a smaller, concise list of
dependencies. It also removes files from the model that
are not used for data exchange, for example, log and
cache files.

4 Data Citation
Processes frequently process large volumes of data. To be
able to repeat any such process we need to ensure that
precisely the same sequence of data is fed as input into it.

���
6 ifs.tuwien.ac.at/dp/process/projects/

tavernaExtractor.html
7 ifs.tuwien.ac.at/dp/process/projects/archi2OWL.

html
8 ifs.tuwien.ac.at/dp/process/projects/pmf.html

9 sourceforge.net/projects/strace

Storing a dump of such huge volumes of data, e.g. as part
of the validation data in the context model, is not feasible
in big data settings. We need to ensure that we can refer
to the original data source / data repository for providing
the data upon re-execution. While this may be rather
trivial for static data sources being analysed in their
entirety, precise identification turns into a challenge when
researchers use only a specific subset of the entire data
collection, and where this data collection is dynamic, i.e.
subject to changes.

Most research datasets are not just static, but highly
dynamic in their nature. New data is read from sensors or
added from continuous experiments. Additional dynamics
arises from the need of correcting errors in the data,
removing erroneous data values, or re-calibrating and
thus re-computing values at later points in time. Thus,
researchers require a mechanism to retrieve a specific
state of the data again, to compare the results of previous
iterations of an experiment. Freezing the databases at
specific points in time, batch-release of versions, etc. all
provide rather inconvenient work-arounds, wasting
storage space by keeping multiple copies of unchanged
data in different releases, and delaying the release of new
data by aggregating continuous streams of data into batch
releases.

Additionally, most processes will not analyse the
entire database, but a very specific subset of it. We thus
need to ensure that precisely the same subset can be fed
into the process again. Current approaches either waste
space by storing explicit dumps of the subset used as
input, or require human intervention by providing
(sometimes rather ambiguous) natural language
descriptions of the subset of data used.

To address this issue, the Working Group on Dynamic
Data Citation10 (WGDC) of the Research Data Alliance
(RDA) has devised a set of recommendations to address
this challenge. In a nutshell, it relies on time-stamped and
versioned storage of the data. Subsets are identified by
assigning persistent identifiers (PIDs) to time-stamped
queries resolving to the subset. Hash-keys of the queries
and the result sets are stored as metadata to allow
verification of the resulting data sets upon re-execution
[29, 28]. By shifting the focus from citing static data sets
towards the citation of queries, which allow retrieving
reproducible data sets from versioned data sources on
demand, the problem of referencing accurate data sets can
be addressed more flexibly. It also provides additional
provenance information on the data set by containing a
semantic description of the subset in the form of filter
parameters in the query. It furthermore allows retrieving
the semantically identical data set including all
corrections applied to it afterwards by re-executing the
timestamped query with a later time-stamp. As the
process can be automated it allows integrating data
citation capabilities into existing workflows.

���
10 rd-alliance.org/groups/data-citation-wg.html

250

The persistent identifier serves as a handle which, in
addition to representing the input of data in a specific
process, can be shared with other peers and be used in
publications. As the system is aware of updates and
evolving data, researchers have transparent access to
specific versions of data in their workflows. There is no
need of storing multiple versions of a dataset externally
for the long term as the system can reproduce them on
demand. As hashing methods are in place, the integrity of
the datasets can be verified. Thus the exact data set used
during a specified workflow execution can be referenced
as part of an experiment description/specification within
the parts of the context model describing specific process
instances. These can later-on be used for validation.

We implemented several prototypes to demonstrate the
feasibility of this data identification� ���� �	���	���

����������	�����	��������	�������������	���������������

$+,-&.%� ����� ��� &�./)�� ��� ����� ��� ���� ��

��

���������� ������ �	���� $0.1% 22 �� !�� ���
����

��
�������	������������������	�	�������	��������������

�������������� ����	��� ���	���� �	
�����
���� ����� 	��

����	���� 	�� �	��� �� !��	�� ����	��	��� �����	��

����	��
�����$�����	����
��	���	�����
	�	
�
��������

��� 2 3� �������%� 	�� ��������� ��� 	�� ���� ���	������ at a
given timestamp, removing those that had been deleted
by that timestamp.

5 Verification and Validation
Upon re-executing a process (be it a simple reproduction
or a repeatability setting after applying preservation
actions), we need to verify the correct behavior in a
potentially changed environment. To verify and validate
the replicated process that was extracted from the source
system and run in the target system, we follow the
guidelines of [1] that describe the verification and
validation of such a transition activity. We devised
guidelines forming the VFramework [22] which are
specifically tailored to processes and describe what
conditions must be met and what actions need to be taken
to compare the executions of two processes in different
environments. This process of verification and validation
(V&V) does not check the scientific correctness of the
processes. It rather helps in obtaining evidence whether
the replicated process has the same characteristics and
performs in the same way as the original process.

According to these guidelines, verification checks
whether the process set-up and configuration in the new
environment is identical to the original one, i.e. whether
the same software, operating system, library versions etc.
are used in the according configurations. Any changes
made to run the process in the new environment (re-
compilations, newer versions of individual components)
will be detected and reported as potential causes for
differences in any reexecution.

���
11 datacitation.eu

Following the static verification, the validation step
analyses the actual computations by comparing all
interim and final results produced at each input/output
point (files, ports) for the original and the re-executed
process. This validation data (as well as according
metrics) are defined when preparing the VPlan for the
process.

The VFramework consists of two sequences of actions.
The first is performed in the original environment, i.e. the
system that a process is initially deployed in. The results
obtained from the execution of each step are written into
the VPlan. This VPlan is another modular extension of
the context model described in Sec. 3. It contains
information needed to validate whether a process is
reexecuted correctly. In a nutshell, it comprises of
measurement points (usually all input/output happening
between the individual process steps), associated metrics
(usually testing whether the data for in/output are
identical upon re-execution), and according reference
process instance data (i.e. storing expected values for
specific process test runs to compare against), captured at
process runs in the original environment.

The second sequence is performed in the redeployment
environment at any time in the future when
the original platform may not be available anymore. The
migration of an entire process, i.e. the set-up of a minimal
environment required to run the process in an identical
configuration, is supported by the second part of the
Process Migration Framework. The information needed
for such a migration is read from the VPlan. It may,
however, be necessary to re-engineer the process to fit it
into a new system (in which case the verification step will
report all elements in the resulting dependency tree that
are different from the original setting).

Subsequently, the validation data is captured again
from the re-executed process and compared to the
information stored in the VPlan module of the context
model using specific metrics. (usually requiring them to
be identical or within certain tolerance intervals,
depending on the significant properties of the process
step/output to be compared.)

We developed the Provenance Extractor 12 which
extracts relevant process instance information from the
provenance files produced by workflows executed in the
Taverna workflow engine. It converts these into an OWL
representation linked to the context model via the VPlan
module.

We investigated several workflows to define
requirements, metrics and measurement points for each of
them. The analysis revealed that the majority of
functional requirements deal with the correctness of a
single workflow step execution and the best way to
validate it is to check each of its output ports. In case of
the non-functional metrics, the prevailing requirement

���
12 ifs.tuwien.ac.at/dp/process/projects/

ProvenanceExtractor.html

251

was the computation time that should be similar or should
not exceed the ’reasonable time’.

Based on this analysis we validate the workflow by
validating all of its steps by comparing the data on the
outputs of the workflow steps and also by checking their
execution duration. The comparison is made taking into
account the format of the data using appropriate tools.
For example if two JPEG images depicting the same
phenomenon are compared by computing a hash value,
they may be detected as being different due to different
creation timestamps in the metadata. While this could be
fixed by identifying the date of a computation (i.e. the
system clock) as one system input being used (which then
would need to be set to the same constant value) it may
also be modelled explicitly by performing a dedicated
comparison for checking the identity of two JPEG files
relying only on the image content. A correct way to
perform this comparison in general would be to compare
the features of the images using software for image
analysis. We developed a set of comparator tools for
prominent� �	��� ���
���� $�����
�&)�� &45�� 4,��� 467��

�89�� 9&)�� :;4%� �������	��� ����� �������	����� !�� ����

0������� &����� �����	��� 	����
��	��� ������ ���� �	���

���
��� ��� ����� ��������<����� ��� �� ����	�	�� ����� ��

��	��������
��������	������������

������ ���� �� ��
���� ��� ����������� ����� ����� ��� ���

��#��� 	���� �������� ���	��� 1=1�� .�
�� ����������

���������������	����������������������	��������	�������

������#��������	���������������������
������������

Fig. 3. Music Genre Classification Process [18]

���	������ ���	��� ���� ���	���	��� �������� ��� ����� ����

process can interact with them. A solution that allows
monitoring of external services for changes, as well as
their replacement for the purpose of verification and
validation is described in [21].

Another challenge having influence on the verification
is the lack of determinism of components. It can apply to
both external resources that provide random values and to
internal software components that, for example, depend
on the system clock or the current CPU speed. In such
cases the exact conditions must be re-created in both
environments. Potentially, such components need to be
substituted with deterministic equivalents [12].

The Context Model contains information about
dependencies required to run the software. If any of them
was not identified by the automated tools or modelled
manually, then the process will not execute. In the course
of verification and validation the Context Model gets
improved until the process operates correctly. This is
achieved either by repeating the capturing of the process

using different process instances or by manual addition of
identified process dependencies. By verification and
validation of the process automatically recreated in the
target system we also indirectly verify and validate the
Context Model. We determine its correctness and
completeness, as the process is re-created via the
information stored in the Context Model, re-creating all
elements stored there in the target system. If the
representation in the Context Model were incomplete the
process could not be repeated and run correctly in the
target system.

This methodology can be applied to all situations in
which a process is re-run, re-produced, or re-used. To
support the verification and validation for reproduction
and reuse, it is important to also publish the verification
data, as other researchers may not have access to the
source system. Then they can perform V&V using the
validation data provided by the experiment owner.

6 Use Cases
We will use an example from the domain of music
information retrieval (MIR) to illustrate the concepts
presented in the preceding sections. A common task in
MIR is automatic classification of audio into some set of
pre-defined categories, e.g. genres such as jazz, pop, rock,
classic etc. at different levels of granularities. A process
reflecting this task is depicted in Fig. 3. It requires the
acquisition of both the actual audio files as well as
ground truth information (i.e. pre-assigned genre labels
for training and test data in the music collection) from
some source. Next, some numeric descriptors (e.g.
MFCCS, Rhythm-

Fig. 4. Music Genre Classification Process modelled in
Taverna

‘

Patterns, SSDs) are extracted from the individual audio
files via a range of signal processing routines and
applying psycho-acoustic models to obtain feature vector
representations of the audio. These are subsequently fed
into some machine learning algorithm to train a classifier

252

such as Support Vector Machines (SVM) or Random
Forests, and subsequently evaluated using performance
measures such as recall and precision.

In one of our experiment settings this process was
implemented using a web service for the feature
extraction, WEKA as a third-party machine learning
package, and a set of dedicated scripts and java
applications for tasks such as data acquisition,
transformation, etc. These were orchestrated manually via
the command line or partially automated via shell scripts,
deployed on a Linux system. To increase repeatability
and ease automatic analysis we migrated this process into
a proper workflow representation using the Taverna
workflow engine, as depicted in Fig. 4. It lists explicitly
the data sources (URLs) where the audio files and ground
truth labels are read from, as well as providing the

authentication codes for the web service that the audio
files are sent to for feature extraction. The vector files are
merged and fed into the classifier which returns the actual
classification results and the overall accuracy.

Applying a process monitoring tool we are able to
automatically capture all resources (files, ports) accessed
or created by one instance of the process, depicted in Fig.
5. This includes, amongst others, a whole range of
libraries (depicted in the upper left corner), the set of mp3
audio files (depicted in the lower left corner), a range of
processes being called (e.g. wget to download the audio
files and ground truth information, depicted in the upper
right� ������%�� ���� ����� 	�� ��� ���� ������� ����	��� ����
���������������������

Fig. 5 Dependencies extracted from Music Genre Classification Process.

253

The raw information extracted bottom-up is subsequently enhanced, both automatically as well as
manually, by structuring it according to the concepts

The raw information extracted bottom-up is
subsequently enhanced, both automatically as well as
manually, by structuring it according to the concepts
provided by Archimate and adding additional
information, such as file format information being added
by performing file format analysis using tools such as
DROID, contacting file format registries such as
PRONOM. The resulting structure is depicted in Fig. 6.
Fig. 6a captures, at the bottom, the basic process and the
objects (Music files, features extracted and passed on to
the classifier, the ground truth annotations, and the final
results). Stacked above it are the services being called,
i.e. the audio feature extractor. In Fig. 6b the basic
software (Java Virtual Machine, WEKA, the data
fetchers) are provided, with additional dependencies (e.g.
the Unix Bash Shell, Base64 encoders, Ubuntu Linux in a
specific version), with the data objects in different
representations (e.g. the audio files as MP3 as well as
base64-encoded MP3 files) and license information for
the various tools (different versions of GPL, Apache
License, Oracle Binary Code License, the MP3 patent).
On top of these, the detailed application components and
services, both internal as well as external, are represented.
This way, a comprehensive and well-structured
documentation of the process can be obtained in a semi-
automatic manner.
This information forms the Process Context Model and
can be used for verification and validation.

When applying the VFramework this information is
used in two ways. First, to verify the environment in
which the workflow is re-executed to confirm that it is
configured correctly; second, to validate that the results
conform to the original workflow execution. The report
summarizing the verification result is provided in fig. 7a.
It provides an aggregated summary of the libraries,
specifically the jar files of WEKA for machine learning,
and the SOMToolbox for the vector format migration, as
well as the remote service call for the feature extraction
web service.
We use the Process Migration Framework (PMF) tools to
generate the VPlan module of the Context Model of a
workflow execution and compare it with a Context Model
obtained in the same way for its re-execution in a
different environment. We use the data captured for each
of the workflow steps and compare it using appropriate
comparators. For the MIR case study we compare 16
metrics related to the outputs of the workflow steps, thus
evaluating 13 functional requirements. We also use 12
metrics related to workflow execution time to evaluate 2
nonfunctional requirements. All of them are fulfilled,
therefore the workflow re-execution is established as
being repeatable. An excerpt of the validation report is
depicted in Fig.7b, confirming that the output at three of
the measurement points is identical.

$�%� $�%�

Fig. 6 Annotated Context Model of the Music Genre Classification Process.

254

(a)

(b)

Fig. 7. (a) Verification and (b) Validation report (excerpt)
for the MIR process

13 functional requirements. We also use 12 metrics
related to workflow execution time to evaluate 2
nonfunctional requirements. All of them are fulfilled,
therefore the workflow re-execution is established as
being repeatable. An excerpt of the validation report is
depicted in Fig.7b, confirming that the output at three of
the measurement points is identical.

7 Conclusions and Future Work
This paper describes a way to move beyond datacentric
research evaluation and re-use by addressing the capture
and description of entire research processes using Process
Management Plans (PMPs), which foster identification,
description, sharing and preservation of scientific
processes. To demonstrate how the core elements of a
PMP can be implemented we described how capturing of
computational processes and their context can be
performed. We also reviewed the recommendations of the
Research Data Alliance on how to precisely identify
arbitrary subsets of potentially high-volume and highly
dynamic data. Last, we presented mechanisms for
verification and validation of process re-executions.

Current work focuses on evaluating the individual
components of the PMP with stakeholders from different
scientific communities. Specific focus is on tool support
to automate the documentation steps, specifically
capturing and monitoring of low-level process
characteristics and performance aspects. We incorporate
all suggestions into a prototype implementation which
fosters actionability and enforceability of Process
Management Plans.

ACKNOWLEDGMENTS
This research was co-funded by COMET K1, FFG
Austrian Research Promotion Agency.

References
>2? IEEE Std 1012 - 2012 IEEE Standard for Software

Verification and Validation. Technical report, 2012.
> ? Cristina Aiftimiei, Alberto Aimar, Andrea Ceccanti,

Marco Cecchi, Alberto Di Meglio, Florida Estrella,
Patrick Fuhrmam, Emidio Giorgio, Balzs Knya,
Laurence Field, Jon Kerr Nilsen, Morris Riedel, and
John White. Towards next generations of software
for distributed infrastructures: The european
middleware initiative. In 8th IEEE Intl Conf on E-
Science, 2012.

>5? Australian National Data Service. ANDS Guides
Awareness level - Data management planning.
Technical Report, 2011.

>@? Paolo Ciccarese, Marco Ocana, Leyla Garcia Castro,
Sudeshna Das, and Tim Clark. An open annotation
ontology for science on web 3.0. Journal of
Biomedical Semantics, 2(Suppl 2):S4, 2011.

>A? Andrew Curry. Rescue of old data offers lesson for
particle physicists. Science, 331(6018):694– 695,
2011.

>"? R. Darby, S. Lambert, B. Matthews, M. Wilson, K.
Gitmans, S. Dallmeier-Tiessen, S. Mele, and J.
Suhonen. Enabling scientific data sharing and re-
use. In IEEE 8th Intl Conf on E-
Science, 2012.

>*? D. De Roure. Machines, methods and music: On the
evolution of e-research. In 2011 Intl Conf on High
Performance Computing and Simulation (HPCS),
pages 8–13, 2011.

>B? David De Roure, Khalid Belhajjame, Paolo Missier,
Jos´e Manuel, Rau´l Palma, Jos´e Enrique Ruiz,
Kristina Hettne, Marco Roos, Graham Klyne, and
Carole Goble. Towards the preservation of scientific
workflows. In 8th Intl Conf on Preservation of
Digital Objects, 2011.

>C? Martin Donnelly and Sarah Jones. Checklist for a
Data Management Plan. DCC, 2011.

>23? Daniel Garijo and Yolanda Gil. A new approach for
publishing workflows: Abstractions, standards, and
linked data. In 6th WS on Workflows in support of
large-scale science, 2011.

255

>22? Ed Gronenschild, Petra Habets, Heidi Jacobs, Ron
Mengelers, Nico Rozendaal, Jim van Os, and
Machteld Marcelis. The effects of Freesurfer
version, workstation type, and macintosh operating
system version on anatomical volume and cortical
thickness measurements. PloS one, 7(6), 2012.

>2 ? Mark Guttenbrunner and Andreas Rauber. A
measurement framework for evaluating emulators
for digital preservation. ACM Transactions on
Information Systems (TOIS), 30(2), 3 2012.

>25? Tony Hey, Stewart Tansley, and Kristin Tolle,
editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, 2009.

>2@? ISO. ISO 5725:1:1994 Accuracy (trueness and
precision) of measurement methods and results Part
1: General principles and definitions. Technical
report, ISO, December 1994.

>2A? K. Belhajjame, O. Corcho, D. Garijo, et. al.
Workflow-centric research objects: First class
citizens in scholarly discourse. In Workshop on the
Semantic Publishing, 9th Extended Semantic Web
Conf, May 28 2012.

>2"? M. Lankhorst. Enterprise architecture at work.
Springer, 2005.

>2*? Rudolf Mayer, Gonc¸alo Antunes, Artur Caetano,
Marzieh Bakhshandeh, Andreas Rauber, and Jos´e
Borbinha. Using ontologies to capture the semantics
of a (business) process for digital preservation. Intl
J. of Digital Libraries (IJDL), 15:129–152, April
2015.

>2B? Rudolf Mayer and Andreas Rauber. Towards time-
resilient mir processes. In 13th Intl Society for
Music Information Retrieval Conf (ISMIR), 2012.

>2C? Rudolf Mayer and Andreas Rauber. A Quantitative
Study on the Re-executability of Publicly Shared
Scientific Workflows. In 11th IEEE Intl Conf on
eScience, 2015.

> 3? Rudolf Mayer, Andreas Rauber, Martin Alexander
Neumann, John Thomson, and Gonc¸alo Antunes.
Preserving scientific processes from design to
publication. In 16th Intl Conf on Theory and
Practice of Digital Libraries (TPDL 2012).
Springer, 2012.

> 2? Tomasz Miksa, Rudolf Mayer, and Andreas Rauber.
Ensuring sustainability of web services dependent
processes. Intl J. of Computational Science and
Engineering, 10(1/2):70–81, 2015.

> ? Tomasz Miksa, Stefan Proell, Rudolf Mayer,
Stephan Strodl, Ricard Vieira, Jose Barateiro, and
Andreas Rauber. Framework for verification of
preserved and redeployed processess. In 10th Conf
on Preservation of Digital Objects (IPRES), 2013.

> 5? Tomasz Miksa, Stephan Strodl, and Andreas
Rauber. Process management plans. Intl J. of Digital
Curation, 9(1), 2014.

> @? National Science Foundation. Data Management for
NSF EHR Directorate. NSF, 2011.

> A? Piotr Nowakowski, Eryk Ciepiela, Daniel Harezlak,
Joanna Kocot, Marek Kasztelnik, Tomasz
Bartynski, Jan Meizner, Grzegorz Dyk, and Maciej
Malawski. The collage authoring environment.
Procedia CS, 4:608–617, 2011.

> "? Kevin Page, Raul Palma, Piotr Holubowicz, Graham
Klyne, Stian Soiland-Reyes, Don Cruickshank,
Rafael Gonzalez Cabero, Esteban Garcia, David De
Roure Cuesta, and Jun Zhao. From workflows to
research objects: an architecture for preserving the
semantics of science. In 2nd Intl Workshop on
Linked Science, 2012.

> *? PREMIS Editorial Committee. Premis data
dictionary for preservation metadata. Technical
report, March 2008.

> B? Stefan Proell and Andreas Rauber. A Scalable
Framework for Dynamic Data Citation of Arbitrary
Structured Data. In 3rd Intl Conf on Data
Management Technologies and Applications
(DATA2014), Vienna, Austria, August 29-31 2014.

> C? Stefan Pr¨oll and Andreas Rauber. Data Citation in
Dynamic, Large Databases: Model and Reference
Implementation. In IEEE Intl Conf on Big Data,
Santa Clara, CA, USA, October
2013.

>53? Van Haren Publishing and A.J.E. Al. Archimate 2.0:
A Pocket Guide. TOGAF series. Van Haren
Publishing, 2012.

>52? D.D. Roure, C. Goble, S. Aleksejevs, S. Bechhofer,
J. Bhagat, D. Cruickshank, P. Fisher, N. Kollara, D.
Michaelides, P. Missier, D. Newman, M. Ramsden,
M. Roos, K. Wolstencroft, E. Zaluska, and Jun
Zhao. The evolution of myexperiment. In IEEE 6th
Intl Conf on eScience, pages 153–160, 2010.

>5 ? Ralf Treinen and Stefano Zacchiroli. Description of
the CUDF Format. Technical report, 2008.
http://arxiv.org/abs/0811.3621.

>55? Herbert Van de Sompel and Carl Lagoze.
Interoperability for the Discovery, Use, and ReUse
of Units of Scholarly Communication. CTWatch
Quarterly, 3(3), August 2007.

>5@? W3C. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax. W3C
Recommendation, 2012.

256

