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Abstract 

     eScience offers huge potential of speeding up 
scientific discovery, being able to flexibly re-use, 
combine and build on top of existing tools and results. 
Yet, to reap the benefits we must be able to actually 
perform these activities, i.e. having the data, processing 
components etc. available for redeployment and being 
able to trust them. Thus, repeatability of e-Science 
experiments is a requirement of validating work to 
establish trust in results. This proves challenging as 
procedures currently in place are not set up to meet 
these goals. 
Several approaches have tackled this issue from various 
angles. This paper reviews these building blocks and 
ties them together. It starts from the capture and 
description of entire research processes and ways to 
document them. Regarding data, we review the 
recommendations of the Research Data Alliance on how 
to precisely identify arbitrary subsets of potentially 
high-volume and highly dynamic data used in a process. 
Last, we present mechanisms for verifying the 
correctness of process reexecutions. 

1 Introduction 
New means of performing research and sharing results 
offers huge potential for speeding up scientific discovery, 
enabling scientists to flexibly re-use, combine and build 
on top of results without geographical or time limitations 
and across
discipline boundaries. Yet, to reap the benefits  
promised by eScience [13], we must be able to actually 
perform these activities, i.e. having the data, processing 
components available for re-deployment. Funding 

agencies such as the 
EC 1 are committed to data re-use and open data 
initiatives. As a result, all research data from  
publicly funded projects needs to be made available for 
the public. Not only does this entail that the data must be 
equipped with useful and stable metadata, comprehensive 
descriptions and documentation, but also that the data 
must be preserved for the long term. Yet, from an 
eScience perspective, mere availability of data is not 
sufficient, as data as such is barely useful. First of all, 
eScience benefits not only from the availability of data, 
but also from the re-use and re-purposing of tools and 
entire experimental workflows. Secondly, and more 
importantly, data never exists solely on its own, but is 
usually the result of more or less complex (pre-
)processing chains. This commences with the processing 
happening at a sensor level or other processing happening 
during data capture, via analysis processes resulting in 
processed data, leading up to experimental results serving 
as input for further meta-studies. Thus, in both cases, we 
need to ensure that we have the underlying tools and 
processes available. This is necessary to understand their 
impact on the result, potential bias introduced by them, 
and to apply identical processing to new data to ensure 
comparability of results. To re-use such processing tools 
we need to trust them and any underlying components to 
produce identical (comparable) results under identical 
(similar) conditions. 

From a scientific point of view, the validation of such 
research results (or, in fact, the result of every individual 
processing step) is a core requirement needed for 
establishing such trust in the scientific community, its 
tools and data, specifically in dataintensive domains. This 
proves challenging as procedures currently in place are 
not set up to meet these goals. Experiments are often 
complex chains of processing, involving a number of data 
sources, computing infrastructure, software tools, or 
external and third-party services, all of which are subject 
to change dynamically. In scientific research external 

�������������������������������������������������������������������
1 ec.europa.eu/digital-agenda/en/open-data-0 

Proceedings of the XVII International Conference 
«Data Analytics and Management in Data Intensive 
Domains» (DAMDID/RCDL’2015), Obninsk, Russia, 
October 13 - 16, 2015 

246



influences can have a large impact on the outcome of� ���
�����	
����� 
�
��� ��������� ���� ����� ������ ����

���	�
����� ���� ����	�����	��� ��� ������ ���� ����������

���� ������	��� environment and its properties are 
important factors which need to be considered. The 
impact of such dependencies has proven to be graver than 
expected. While many approaches rely on documenting 
the individual processing steps performed during an 
experiment, on storing the data as well as the code used 
to perform an analysis, the impact of the underlying 
software and hardware stack are often ignored. Yet, 
beyond the challenges posed by the actual 
experiment/analysis, it is the complexity of the 
computing infrastructure (both the processing workflows 
and their dependencies on HW and SW environments, as 
well as the enormous amounts of data being processed) 
that renders research results in many domains hard to 
verify. As a recent study in the medical domain has 
prominently shown [11], even assumed minute 
differences such as the specific version of the operating 
system used can have a massive impact: different results 
were obtained in cortical thickness and volume 
measurements of neuroanatomical structures if the 
software setup of FreeSurfer, a popular software package 
processing MRI scans, is varied. More dramatically, 
though, there was also a difference in the result if not the 
primary software, but only the operating system versions 
(in this case the Mac-OSX 10.5 and 10.6) differ. This 
indicates the presence of dependencies from FreeSurfer to 
functions provided by the operating system, causing 
instabilities and misleading results. As these 
dependencies are hidden from the physician, such side-
effects of the ICT infrastructure need to be detected and 
resolved transparently if we want to be able to trust 
results based on computational analyses. 

A number of approaches have tackled this issue from 
various angles, including initiatives for data sharing, code 
versioning and publishing as open source, the use of 
workflow engines to formalize the steps taken in an 
experiment, to ways to describe the complex environment 
an experiment is executed in. In addition the data that is 
created but also the processing algorithms, scripts, and 
other software tools used in the experiment need to be 
accessible for longer time periods, for facilitating data 
reuse and allowing peers to retrieve and verify 
experiments. Keeping these assets accessible is not only a 
technical challenge, but requires institutional 
commitment and defined procedures. 

Repeatability and reproducibility are two fundamental 
concepts in science. An experiment is repeatable, if it 
produces the exact same results under the very same 
preconditions. An experiment is reproducible, if the same 
results can be obtained even under somewhat different 
conditions, e.g. performed by a different team in a 
different location. There are several factors which have 
an influence on the variance of experiments. The ISO 
standard 57251:1994 [14] lists the following factors: (1) 

operator, (2) equipment, (3) calibration of the equipment, 
(4) environment and (5) time elapsed between 
measurements. The standard defines an experiment as 
repeatable, if the mentioned influences (1) - (4) are 
constant and (5) is a reasonable time span between two 
executions of the experiment and its verification. 
Reproducibility allows variance in these factors, as they 
cannot be avoided if different research teams want to 
compare results. 

To tackle these issues we proposed to introduce 
Process Management Plans (PMPs) [23]. They extend 
Data Management Plans by taking a process centric view, 
viewing data simply as the result of underlying processes 
such as capture, (pre-) processing, transformation, 
integration and analyses. The general objective of PMPs 
is to foster identification, description, sharing and 
preservation of scientific processes. To embody the 
concept of PMPs we need to solve the challenges related 
to the description of computational processes, verification 
and validation, monitoring external dependencies, as well 
as data citation. This paper reviews these building blocks 
and ties them together to demonstrate the feasibility of 
sharing and preservation of not only datasets, but also 
scientific processes. 

Section 2 summarizes related work from the areas of 
Data Management Plans (describing the result of data 
capturing/production processes), digital preservation of 
processes, and several eScience research infrastructures. 
Section 3 presents the Context Model that is 
automatically captured, describing the process 
implementation including all software and hardware 
dependencies. Ways to precisely identify and cite 
arbitrary subsets of dynamic data are described in Section 
4, presenting the recommendations of the RDA WG on 
Data Citation. Section 5 discusses the verification and 
validation of the reexecution of computational processes. 
These concepts are illustrated via a use case from the 
machine learning domain in Section 6, followed by 
conclusions in Section 7. 

2 Related Work 
2.1 Data Management Plans 
A prominent reason for the non-reproducibility of 
scientific experiments is poor data management, as 
criticized in several disciplines. Different data sets 
scattered around different machines with no track of 
dependency between them are a common landscape for 
particle physicists who move quickly from one research 
activity to another [5]. Several institutions reacted, 
publishing templates and recommendations for DMPs, 
such as the Digital Curation Centre (DCC) [9], Australian 
National Data Services (ANDS) [3] and National Science 
Foundation (NSF) [24], amongst many others. These are 
very similar, containing a set of advises, mainly lists of 
questions which researches should consider when 
developing a DMP. The attention is attracted to what 
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happens with data after it has been created, rather than in 
what way it was obtained. All the description is provided 
in a text form, and in case of NSF there is a limit of 2 
pages. Thus, it is unlikely anybody will be able to reuse 
or at least reproduce the process which created the data. 
Furthermore, the correctness of data is taken for granted 
and thus DMPs do not provide sufficient information that 
would allow� ���	���	��� ���� ������ �	������� ���� ����	���
���� ����	�� ��� 	����
��	��� ��������� �������� ��� ����

����� �	��� ��� researchers. There is no formal template for 
specification of DMPs which would ensure that all 
important information is covered comprehensively. 
Several tools are available, like DMPonline2 for DCC or 
DMPtool 3 for NSF, which aid the researcher in the 
process of DMP creation, but they are rather simple 
interactive questionnaires which generate a textual 
document at the end, rather than the complex tools 
required to validate at least the appropriateness of the 
provided information. The main conclusion from the 
analysis is that DMPs focus on describing results of 
experiments. This is a consequence of their data centric 
view, which enforces focus on access and correct 
interpretation (metadata) of data and does not pay much 
attention to processing of data. While these constitute a 
valuable step in the right direction, we need to move 
beyond this, taking a process centric view. 

2.2 Digital Preservation 

The area of digital preservation is shifting focus from 
collections of simple objects to the long term preservation 
of entire processes and workflows. 

WF4Ever4 addressed the challenges of preserving 
scientific experiments by using abstract workflows that 
are reusable in different execution environments [26]. 
The abstract workflow specifies conceptual and 
technology-independent representations of the scientific 
process. They further developed new approaches to share 
workflows by using an RDF repository and make the 
workflows and data sets accessible from a SPARQL 
Endpoint[10]. The TIMBUS 4 project addressed the 
preservation of business processes by ensuring continued 
access to services and software necessary to properly 
render, validate and transform information. The approach 
centers on a context model [20] of the process, which is 
an ontology for describing the process components and 
their dependencies. It allows to store rich information, 
ranging from software and hardware to organizational 
and legal aspects. The model can be used to develop 
preservation strategies and redeploy the process in a new 
environment in the future. The project developed a 
verification and validation method for redeployed 
processes [12] that evaluates the conformance and 
performance quality processes redeployed in new 
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3 dmp.cdlib.org/ 4 wf4ever-
project.org/ 
4 http://timbusproject.net/ 

environments. This is important when we want to reuse it 
to build other processes. 

2.3 eScience and Research Infrastructures 

Several projects benefit nowadays from sharing and 
reusing data [6]. In [7] the evolution of research practices 
by sharing of tools, techniques and resources is discussed. 
myExperiment [31] is a platform for sharing scientific 
workflows. This is already one step beyond just sharing 
the data. Workflows created and run within the Taverna 
workflow engine can be published and reused by other 
researchers. However, the workflows do not always 
specify all required information (e.g. tools to run the 
steps, description of parameters) to re-run the workflow 
[19]. 

An environment which enables scientists to 
collaboratively conduct their research and publish it in 
form of executable paper was presented in [25]. The 
solution requires working in a specific environment, 
limiting its applicability to the tools and software 
supported by the environment. PMPs does not have such 
a requirement and can be used in every case. There is a 
strong move towards ”providing a consistent platform, 
software and infrastructure, for all users in the European 
Research Area to gain access to suitable and integrated 
computing resources” [2].

3 Documenting eScience Processes 
To enable analysis, repeatability and reuse of processes, 
they must be well described and documented. As most 
processes are rather complex in their nature, a precise 
description is needed to re-enact the execution of the 
process. Thus, formalized models are useful for a detailed 
representation of critical aspects such as the hardware, 
software, data and execution steps supporting the process, 
as well as their relationships and dependencies. Several 
models can be considered for this type of documentation. 

Workflow-Centric Research Objects [15] (ROs) are a 
means to aggregate or bundle resources used in a 
scientific investigation, such as a workflow, provenance 
from results of its execution, and other digital resources 
such as publications, data-sets. In addition, annotations 
are used to further describe these digital objects. The 
model of Research Objects is in the form of an OWL 
ontology, and incorporates several existing ontologies. At 
its core, the Research Object model extends the Object 
Exchange and Reuse model (ORE) [33]5 to formalize the 
aggregation of digital resources. Annotations are realized 
by using the Annotation Ontology (AO) [4], which allows 
e.g. for comment and tag-style textual annotations. 
Specifying the structure of an abstract workflow is 
enabled by the wfdesc ontology. Finally, the provenance 
of a specific execution of a workflow is described using 
the wfprov ontology. Research objects have also been 
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presented as a means to preserve scientific processes [8], 
proposing archiving and autonomous curation solutions 
that would monitor the decay of workflows. 

Enterprise architecture (EA) modelling languages 
provide a holistic framework to describe several aspects 
of a process. For example, the Archimate [30] language 
supports description, analysis and visualization of the 
process architecture, on three distinct but interrelated 
layers: business, application and technology layer. On 
each of these layers, active structures, behavior and 
passive structures can be 
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Fig. 1 Overview on the Context Model architecture: cor 
and extensions 

level sequence of inputs and outputs from software and 
hardware components needed to run the process, e.g. 
database software, libraries, software device drivers, 
fonts, codecs, or dedicated hardware created for the 
purpose of the experiment. Enterprise architectures do not 
address any specific domaindependent concerns. They 
rather cut across the whole organization running the 
process [16]. 

While models such as Archimate or Research Objects 
are extensive, they often do not provide enough detail on 
technology aspects of the process, and thus in these 
aspects provide only little guidance to researchers aiming 
to produce a solid description of their technical 
infrastructure. One approach to alleviate this issue is 
realized in the Process Context Model [17], which builds 
on top of Archimate and extends it with domain specific 
languages to address specific requirements of a given 
domain. Wherever possible, the extension ontologies are 
based on already existing languages. The development of 
the model was driven by requirements to preserve and re-
execute complete processes. The context a process is 
embedded in covers immediate and local aspects such as 
the software and hardware supporting the process, to 
aspects such as the organization the process is executed 
in, the people involved, service providers, to even laws 
and regulations. The exact context can differ significantly 
depending on the domain the process stems from. 

The model is using the domain-independent Archimate 
language as a core model to integrate the domain specific 
extension languages. It is implemented in the Web 

Ontology Language (OWL) [34], and the integration is 
performed via ontology mapping from the extensions to 
the core model. An overview of this architecture and the 
provided domain-specific extensions is given in Figure 1, 
consisting of: 

Software Dependencies cover dependencies between 
different types of software, including information on 
which versions are compatible or conflicting with each 
other. It is, for example, important to know that a specific 
version of a Java Virtual Machine is required to run a 
certain piece of software, or that a particular application 
is required to view a digital object. This is important 
when considering preservation of specific parts of the 
software stack utilized in the process. Beyond 
repeatability, this information may be used during 
preservation planning to identify alternative software 
applications that can be utilized. Technical dependencies 
on software and operating systems in the Context Model 
can be captured and described via the Common 
Upgradeability Description Format (CUDF) [32]. 

Data Formats In a process execution, a number of 
digital objects are created, modified or read. This section 
includes information on which data/file formats these are 
stored in. It is used for preservation actions and for 
selecting appropriate comparator modules during the 
validation process described in Sec. 5 Our 
implementation of the Context Model uses the PREMIS 
Data Dictionary [27] to represent this information. 

Hardware contains a comprehensive description of 
the computational hardware, from desktop systems, 
server infrastructure components, to specialized hardware 
used for certain tasks. Even though in many processes the 
hardware employed to host the software applications 
might be standard commodity hardware, its exact 
specifications can still influence the run-time behavior of 
a process. This might be critical in certain circumstances, 
such as execution speed, or when specific functionalities 
and characteristics of the hardware such as precision 
limits, analog/digital conversion thresholds etc. are part 
of the computation. Further, certain processes might use 
certain hardware capabilities for computation, such as 
using graphical processing units (GPUs) for large-scale 
experiments in scientific processes. These types of 
hardware, and the software that can utilize them, are not 
yet as standardized and abstracted, thus an exact 
description is needed in many cases. 

Legal aspects cover legal restrictions imposed on the 
processes. License information focusies specifically on 
software licenses. Relevant aspects are e.g. the types of 
licenses under which software was made available, and 
the clauses they contain. Patent information describes the 
owner of a specific patent, or when it was granted. 

Large parts of the Context Model of a process can be 
extracted automatically [17], especially in the aspects of 
software dependencies and data formats. Other aspects 
may still require significant manual work to obtain a 
proper representation. For example, the communication 
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to a web service has to be described via the provision of 
its exact address and interface type. Databases usually run 
as independent server processes they are usually detected 
but not fully captured when running a tool to monitor a 
specific research process execution. 

We created a set of tools processing eScience 
Workflows modeled for the Taverna Workflow engine to 
extract the above-mentioned information and represent it 
within the context Model. A� ������� !���	" ����������
������ �������� ���#����� �	���� $� ����� ���
��%� ����
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Fig. 2 SQL query selecting data for music classification 
experiment, supporting data citation 

the static workflow definition is captured. This is 
complemented by monitoring the execution of one or 
more process execution instances using the extractor of 
the Process Migration Framework (PMF)8 which is based 
on the strace 9 tool. This way, all dependencies are 
explored and all files and ports touched by the process are 
detected and added to the context model as dependencies. 

These process traces will usually detect an enormous 
number of libraries and other files used by a process. To 
refine and make the model more compact, the PMF can 
resolve Debian packages to which an identified file 
belongs and therefore create a smaller, concise list of 
dependencies. It also removes files from the model that 
are not used for data exchange, for example, log and 
cache files. 

4 Data Citation 
Processes frequently process large volumes of data. To be 
able to repeat any such process we need to ensure that 
precisely the same sequence of data is fed as input into it. 
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6 ifs.tuwien.ac.at/dp/process/projects/

tavernaExtractor.html 
7 ifs.tuwien.ac.at/dp/process/projects/archi2OWL.

html 
8 ifs.tuwien.ac.at/dp/process/projects/pmf.html 

9 sourceforge.net/projects/strace 

Storing a dump of such huge volumes of data, e.g. as part 
of the validation data in the context model, is not feasible 
in big data settings. We need to ensure that we can refer 
to the original data source / data repository for providing 
the data upon re-execution. While this may be rather 
trivial for static data sources being analysed in their 
entirety, precise identification turns into a challenge when 
researchers use only a specific subset of the entire data 
collection, and where this data collection is dynamic, i.e. 
subject to changes. 

Most research datasets are not just static, but highly 
dynamic in their nature. New data is read from sensors or 
added from continuous experiments. Additional dynamics 
arises from the need of correcting errors in the data, 
removing erroneous data values, or re-calibrating and 
thus re-computing values at later points in time. Thus, 
researchers require a mechanism to retrieve a specific 
state of the data again, to compare the results of previous 
iterations of an experiment. Freezing the databases at 
specific points in time, batch-release of versions, etc. all 
provide rather inconvenient work-arounds, wasting 
storage space by keeping multiple copies of unchanged 
data in different releases, and delaying the release of new 
data by aggregating continuous streams of data into batch 
releases. 

Additionally, most processes will not analyse the 
entire database, but a very specific subset of it. We thus 
need to ensure that precisely the same subset can be fed 
into the process again. Current approaches either waste 
space by storing explicit dumps of the subset used as 
input, or require human intervention by providing 
(sometimes rather ambiguous) natural language 
descriptions of the subset of data used. 

To address this issue, the Working Group on Dynamic 
Data Citation10 (WGDC) of the Research Data Alliance 
(RDA) has devised a set of recommendations to address 
this challenge. In a nutshell, it relies on time-stamped and 
versioned storage of the data. Subsets are identified by 
assigning persistent identifiers (PIDs) to time-stamped 
queries resolving to the subset. Hash-keys of the queries 
and the result sets are stored as metadata to allow 
verification of the resulting data sets upon re-execution 
[29, 28]. By shifting the focus from citing static data sets 
towards the citation of queries, which allow retrieving 
reproducible data sets from versioned data sources on 
demand, the problem of referencing accurate data sets can 
be addressed more flexibly. It also provides additional 
provenance information on the data set by containing a 
semantic description of the subset in the form of filter 
parameters in the query. It furthermore allows retrieving 
the semantically identical data set including all 
corrections applied to it afterwards by re-executing the 
timestamped query with a later time-stamp. As the 
process can be automated it allows integrating data 
citation capabilities into existing workflows. 
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10 rd-alliance.org/groups/data-citation-wg.html 
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The persistent identifier serves as a handle which, in 
addition to representing the input of data in a specific 
process, can be shared with other peers and be used in 
publications. As the system is aware of updates and 
evolving data, researchers have transparent access to 
specific versions of data in their workflows. There is no 
need of storing multiple versions of a dataset externally 
for the long term as the system can reproduce them on 
demand. As hashing methods are in place, the integrity of 
the datasets can be verified. Thus the exact data set used 
during a specified workflow execution can be referenced 
as part of an experiment description/specification within 
the parts of the context model describing specific process 
instances. These can later-on be used for validation. 

We implemented several prototypes to demonstrate the 
feasibility of this data identification� ���� �	���	���
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given timestamp, removing those that had been deleted 
by that timestamp. 

5 Verification and Validation 
Upon re-executing a process (be it a simple reproduction 
or a repeatability setting after applying preservation 
actions), we need to verify the correct behavior in a 
potentially changed environment. To verify and validate 
the replicated process that was extracted from the source 
system and run in the target system, we follow the 
guidelines of [1] that describe the verification and 
validation of such a transition activity. We devised 
guidelines forming the VFramework [22] which are 
specifically tailored to processes and describe what 
conditions must be met and what actions need to be taken 
to compare the executions of two processes in different 
environments. This process of verification and validation 
(V&V) does not check the scientific correctness of the 
processes. It rather helps in obtaining evidence whether 
the replicated process has the same characteristics and 
performs in the same way as the original process. 

According to these guidelines, verification checks 
whether the process set-up and configuration in the new 
environment is identical to the original one, i.e. whether 
the same software, operating system, library versions etc. 
are used in the according configurations. Any changes 
made to run the process in the new environment (re-
compilations, newer versions of individual components) 
will be detected and reported as potential causes for 
differences in any reexecution. 
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Following the static verification, the validation step 
analyses the actual computations by comparing all 
interim and final results produced at each input/output 
point (files, ports) for the original and the re-executed 
process. This validation data (as well as according 
metrics) are defined when preparing the VPlan for the 
process. 

The VFramework consists of two sequences of actions. 
The first is performed in the original environment, i.e. the 
system that a process is initially deployed in. The results 
obtained from the execution of each step are written into 
the VPlan. This VPlan is another modular extension of 
the context model described in Sec. 3. It contains 
information needed to validate whether a process is 
reexecuted correctly. In a nutshell, it comprises of 
measurement points (usually all input/output happening 
between the individual process steps), associated metrics 
(usually testing whether the data for in/output are 
identical upon re-execution), and according reference 
process instance data (i.e. storing expected values for 
specific process test runs to compare against), captured at 
process runs in the original environment. 

The second sequence is performed in the redeployment 
environment at any time in the future when 
the original platform may not be available anymore. The 
migration of an entire process, i.e. the set-up of a minimal 
environment required to run the process in an identical 
configuration, is supported by the second part of the 
Process Migration Framework. The information needed 
for such a migration is read from the VPlan. It may, 
however, be necessary to re-engineer the process to fit it 
into a new system (in which case the verification step will 
report all elements in the resulting dependency tree that 
are different from the original setting). 

Subsequently, the validation data is captured again 
from the re-executed process and compared to the 
information stored in the VPlan module of the context 
model using specific metrics. (usually requiring them to 
be identical or within certain tolerance intervals, 
depending on the significant properties of the process 
step/output to be compared.) 

We developed the Provenance Extractor 12 which 
extracts relevant process instance information from the 
provenance files produced by workflows executed in the 
Taverna workflow engine. It converts these into an OWL 
representation linked to the context model via the VPlan 
module. 

We investigated several workflows to define 
requirements, metrics and measurement points for each of 
them. The analysis revealed that the majority of 
functional requirements deal with the correctness of a 
single workflow step execution and the best way to 
validate it is to check each of its output ports. In case of 
the non-functional metrics, the prevailing requirement 

�������������������������������������������������������������������
12 ifs.tuwien.ac.at/dp/process/projects/

ProvenanceExtractor.html 
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was the computation time that should be similar or should 
not exceed the ’reasonable time’.

Based on this analysis we validate the workflow by 
validating all of its steps by comparing the data on the 
outputs of the workflow steps and also by checking their 
execution duration. The comparison is made taking into 
account the format of the data using appropriate tools. 
For example if two JPEG images depicting the same 
phenomenon are compared by computing a hash value, 
they may be detected as being different due to different 
creation timestamps in the metadata. While this could be 
fixed by identifying the date of a computation (i.e. the 
system clock) as one system input being used (which then 
would need to be set to the same constant value) it may 
also be modelled explicitly by performing a dedicated 
comparison for checking the identity of two JPEG files 
relying only on the image content. A correct way to 
perform this comparison in general would be to compare 
the features of the images using software for image 
analysis. We developed a set of comparator tools for 
prominent� �	��� ���
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Fig. 3. Music Genre Classification Process [18] 
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process can interact with them. A solution that allows 
monitoring of external services for changes, as well as 
their replacement for the purpose of verification and 
validation is described in [21]. 

Another challenge having influence on the verification 
is the lack of determinism of components. It can apply to 
both external resources that provide random values and to 
internal software components that, for example, depend 
on the system clock or the current CPU speed. In such 
cases the exact conditions must be re-created in both 
environments. Potentially, such components need to be 
substituted with deterministic equivalents [12]. 

The Context Model contains information about 
dependencies required to run the software. If any of them 
was not identified by the automated tools or modelled 
manually, then the process will not execute. In the course 
of verification and validation the Context Model gets 
improved until the process operates correctly. This is 
achieved either by repeating the capturing of the process 

using different process instances or by manual addition of 
identified process dependencies. By verification and 
validation of the process automatically recreated in the 
target system we also indirectly verify and validate the 
Context Model. We determine its correctness and 
completeness, as the process is re-created via the 
information stored in the Context Model, re-creating all 
elements stored there in the target system. If the 
representation in the Context Model were incomplete the 
process could not be repeated and run correctly in the 
target system. 

This methodology can be applied to all situations in 
which a process is re-run, re-produced, or re-used. To 
support the verification and validation for reproduction 
and reuse, it is important to also publish the verification 
data, as other researchers may not have access to the 
source system. Then they can perform V&V using the 
validation data provided by the experiment owner. 

6 Use Cases 
We will use an example from the domain of music 
information retrieval (MIR) to illustrate the concepts 
presented in the preceding sections. A common task in 
MIR is automatic classification of audio into some set of 
pre-defined categories, e.g. genres such as jazz, pop, rock, 
classic etc. at different levels of granularities. A process 
reflecting this task is depicted in Fig. 3. It requires the 
acquisition of both the actual audio files as well as 
ground truth information (i.e. pre-assigned genre labels 
for training and test data in the music collection) from 
some source. Next, some numeric descriptors (e.g. 
MFCCS, Rhythm- 

Fig. 4. Music Genre Classification Process modelled in 
Taverna 

‘

Patterns, SSDs) are extracted from the individual audio 
files via a range of signal processing routines and 
applying psycho-acoustic models to obtain feature vector 
representations of the audio. These are subsequently fed 
into some machine learning algorithm to train a classifier 

252



such as Support Vector Machines (SVM) or Random 
Forests, and subsequently evaluated using performance 
measures such as recall and precision. 

In one of our experiment settings this process was 
implemented using a web service for the feature 
extraction, WEKA as a third-party machine learning 
package, and a set of dedicated scripts and java 
applications for tasks such as data acquisition, 
transformation, etc. These were orchestrated manually via 
the command line or partially automated via shell scripts, 
deployed on a Linux system. To increase repeatability 
and ease automatic analysis we migrated this process into 
a proper workflow representation using the Taverna 
workflow engine, as depicted in Fig. 4. It lists explicitly 
the data sources (URLs) where the audio files and ground 
truth labels are read from, as well as providing the 

authentication codes for the web service that the audio 
files are sent to for feature extraction. The vector files are 
merged and fed into the classifier which returns the actual 
classification results and the overall accuracy. 

Applying a process monitoring tool we are able to 
automatically capture all resources (files, ports) accessed 
or created by one instance of the process, depicted in Fig. 
5. This includes, amongst others, a whole range of 
libraries (depicted in the upper left corner), the set of mp3 
audio files (depicted in the lower left corner), a range of 
processes being called (e.g. wget to download the audio 
files and ground truth information, depicted in the upper 
right� ������%�� ���� ����� 	�� ��� ���� ������� ����	��� ����
���������������������

Fig. 5 Dependencies extracted from Music Genre Classification Process. 
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The raw information extracted bottom-up is subsequently enhanced, both automatically as well as 
manually, by structuring it according to the concepts

The raw information extracted bottom-up is 
subsequently enhanced, both automatically as well as 
manually, by structuring it according to the concepts 
provided by Archimate and adding additional 
information, such as file format information being added 
by performing file format analysis using tools such as 
DROID, contacting file format registries such as 
PRONOM. The resulting structure is depicted in Fig. 6. 
Fig. 6a captures, at the bottom, the basic process and the 
objects (Music files, features extracted and passed on to 
the classifier, the ground truth annotations, and the final 
results). Stacked above it are the services being called, 
i.e. the audio feature extractor. In Fig. 6b the basic 
software (Java Virtual Machine, WEKA, the data 
fetchers) are provided, with additional dependencies (e.g. 
the Unix Bash Shell, Base64 encoders, Ubuntu Linux in a 
specific version), with the data objects in different 
representations (e.g. the audio files as MP3 as well as 
base64-encoded MP3 files) and license information for 
the various tools (different versions of GPL, Apache 
License, Oracle Binary Code License, the MP3 patent). 
On top of these, the detailed application components and 
services, both internal as well as external, are represented. 
This way, a comprehensive and well-structured 
documentation of the process can be obtained in a semi-
automatic manner. 
This information forms the Process Context Model and 
can be used for verification and validation. 

When applying the VFramework this information is 
used in two ways. First, to verify the environment in 
which the workflow is re-executed to confirm that it is 
configured correctly; second, to validate that the results 
conform to the original workflow execution. The report 
summarizing the verification result is provided in fig. 7a. 
It provides an aggregated summary of the libraries, 
specifically the jar files of WEKA for machine learning, 
and the SOMToolbox for the vector format migration, as 
well as the remote service call for the feature extraction 
web service. 
We use the Process Migration Framework (PMF) tools to 
generate the VPlan module of the Context Model of a 
workflow execution and compare it with a Context Model 
obtained in the same way for its re-execution in a 
different environment. We use the data captured for each 
of the workflow steps and compare it using appropriate 
comparators. For the MIR case study we compare 16 
metrics related to the outputs of the workflow steps, thus 
evaluating 13 functional requirements. We also use 12 
metrics related to workflow execution time to evaluate 2 
nonfunctional requirements. All of them are fulfilled, 
therefore the workflow re-execution is established as 
being repeatable. An excerpt of the validation report is 
depicted in Fig.7b, confirming that the output at three of 
the measurement points is identical. 

$�%� $�%�

Fig. 6 Annotated Context Model of the Music Genre Classification Process. 
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(a) 

(b) 

Fig. 7. (a) Verification and (b) Validation report (excerpt) 
for the MIR process 

13 functional requirements. We also use 12 metrics 
related to workflow execution time to evaluate 2 
nonfunctional requirements. All of them are fulfilled, 
therefore the workflow re-execution is established as 
being repeatable. An excerpt of the validation report is 
depicted in Fig.7b, confirming that the output at three of 
the measurement points is identical. 

7 Conclusions and Future Work 
This paper describes a way to move beyond datacentric 
research evaluation and re-use by addressing the capture 
and description of entire research processes using Process 
Management Plans (PMPs), which foster identification, 
description, sharing and preservation of scientific 
processes. To demonstrate how the core elements of a 
PMP can be implemented we described how capturing of 
computational processes and their context can be 
performed. We also reviewed the recommendations of the 
Research Data Alliance on how to precisely identify 
arbitrary subsets of potentially high-volume and highly 
dynamic data. Last, we presented mechanisms for 
verification and validation of process re-executions. 

Current work focuses on evaluating the individual 
components of the PMP with stakeholders from different 
scientific communities. Specific focus is on tool support 
to automate the documentation steps, specifically 
capturing and monitoring of low-level process 
characteristics and performance aspects. We incorporate 
all suggestions into a prototype implementation which 
fosters actionability and enforceability of Process 
Management Plans. 
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