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Abstract - This paper presents a study on the VHDL 
implementation of a class of binary irregular structured LDPC 
codes (IS-LDPC) applied to 100 Gbps optical networks. A 
comparison between two iterative decoding algorithms for 
irregular structured LDPC codes, sum-product based on log-
likelihood ratio and min-sum, is used to define the best choice for 
implementation. The performances of IS-LDPC codes are 
evaluated on an AWGN channel. The aim of this paper is to 
select out of a class IS-LDPC codes those ones with the best 
performance using the MS algorithm for VHDL implementation. 

Index Terms - LDPC codes; optical networks; VHDL. 

I. INTRODUCTION 

The increasing traffic in optical telecommunication networks 
has demanded links with even higher transmission rates. 
However, higher rates mean more noise and interference 
introduced by optical and electronic devices [1]. Efficient 
channel coding schemes, such as, low-density parity-check 
(LDPC) and turbo codes, have been devised to overcome 
those sources of errors [1],[2],[3],[4],[5],[6]. 

 LDPC codes can achieve near optimum Shannon limit 
performance over the additive white Gaussian noise (AWGN) 
channel [8]. The sparseness of 1's in the binary parity check 
matrix H makes the iterative decoding particularly attractive. 
The iterative decoding of LDPC codes allows a high degree of 
parallelism, which makes it suitable for high data rate 
communications. 

Iterative decoding algorithms for LDPC codes are bounded 
by a trade-off between decoding performance, in terms of bit 
error rate (BER), and implementation complexity. Moreover, 
the performance varies with the length and the structure of the 
parity check matrix of the LDPC codes.  

Among of the iterative decoding algorithms, the sum-
product (SP) algorithm achieves the best performance 
however it demands a high hardware complexity. An 
alternative is the min-sum (MS) algorithm that significantly 
reduces the implementation complexity at a cost of acceptable 
performance degradation. The complex computations at the 
check nodes are approximated to simple comparison and 
summation operations in the MS algorithm [7]. 

In general, LDPC codes can be categorized into regular and 
irregular codes. An LDPC code is regular if the weights of 
rows and columns in its parity check matrix are equal, 
otherwise it is irregular. Irregular LDPC codes have better 
performance than regular ones. 

The aim of this paper is to select out of a class of irregular 
structured (IS) LDPC codes those ones with the best 
performance using the MS algorithm. The log-SP decoding 
algorithm is used as reference for the sake of performance 
comparison. The MS algorithm presents lower complexity for 
VHDL implementation than the log-SP decoding algorithm 
[7]. The IS-LDPC codes were designed to match with the 
specifications of the 100 Gbps optical networks. 

II. IRREGULAR STRUCTURED LDPC CODES

The binary irregular structured (n, k) LDPC codes are built 
using a parity check matrix H generated by grouping circulant 
sub-matrices [2],[3]. Both code and the information lengths 
are denoted by n and k, respectively. A circulant matrix is 
generated by successive shifts of the first row (column) of a 
parent identity matrix Im to obtain the following rows 
(columns). Fig. 1 shows two examples of circulant matrices 
C8,j obtained from the parent identity matrix I8. The index j 
indicates the initial shift to the right of the first row of the 
identity matrix. 

Fig.1  Circulant matrices obtained from I8. 

Let Np be the set of the natural prime numbers. This set can 
be used to generate circulant sub-matrices that compose the 
parity check matrix H. For instance, fig. 2 shows a matrix H 
for a (32, 16) irregular structured code. Notice that H is in the 
systematic form 𝐇 = 𝐈!!!   𝐏] where P is a parity sub-matrix 
built by grouping four circulant sub-matrixes defined by the 
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first four elements of Np. This matrix H provides a fast 
encoding process [2]. The square null sub-matrix 𝐎! has 
dimension 8. 

Fig. 2  Parity check matrix H for the (32,16) irregular structured 
code. 

Notice that Im is used to generate the circulant sub-matrixes 
Cm,j of P, whereas In-k is related to the systematic part of H. 

III. ITERATIVE DECODING PROCESS

Tanner graph is a graphic representation of the parity check 
matrix H of a LDPC code. This graph is composite of two sets 
of nodes: variable nodes vi   and check nodes cj. There is a 
connection between vi  and cj when the entry hij of the matrix H 
is equal to 1. 

The log-SP algorithm is a well-known decoding algorithm 
for LDPC codes. It operates on the Tanner graph 
representation of the parity check matrix of a code. The most 
straightforward variant of the log-SP algorithm is the a 
posteriori probability (APP) decoding. A simplified version of 
the log-SP algorithm is the MS or maximum-likelihood 
sequence detection (MLSD). The iterative decoding process is 
illustrated in fig. 3. However, before describing the steps of 
the decoding algorithm, it is convenient to set some 
definitions: 

𝐿(𝑐!): intrinsic information received by the decoder. 

𝐿(𝑟!"): message evaluated by the check node 𝑐! and sent to 
the variable node 𝑣!. 

𝐿(𝑞!"): message evaluated by the variable node 𝑣! and sent to 
the check node 𝑐!. 

𝑉!: variable nodes connected to the check node 𝑐!. 

𝑉!\!: variable nodes connected to the check node 𝑐! with 
exception of the variable node 𝑣!. 

𝐶! : check nodes connected to the variable node 𝑣! 

𝐶!\!: check nodes connected to the variable node 𝑣! with 
exception of the check node 𝑐!. 

Fig. 3  Decoding fluxogram for a LDPC code. 

The log-SP decoding algorithm is divided into the 
following steps [8]: 

a) Initialization: the intrinsic message 𝐿 𝑐! =   2𝑦!/𝜎!   is
evaluated where 𝑦! is the received signal and 𝜎!   is the 
variance of the AWGN (additive white Gaussian noise) 
channel. 

b) Horizontal step: each check node then sends to the variable
nodes its new probabilities of 0 and 1, which are evaluated 
from the probabilities received from the variable nodes, 
excluding the check node that is going to receive that 
probabilities. The probabilities are evaluated by  

𝐿 𝑟!" =    𝛼!!! .𝛷( 𝛷(!!!!!\! 𝛽!!!))!!∈!!\! ,          (1) 

where 

𝛷 𝑥 =   − log 𝑡𝑎𝑛ℎ 𝑥
2 = log  (!

!!!
!!!!

).             (2) 

c) Vertical step: each variable node sends to its connected
check nodes the probabilities of 0 and 1. New probabilities are 
evaluated by summing the received probabilities from the 
check nodes, excluding the probabilities of the check node that 
is going to receive them. The new probabilities are evaluated 
by 𝐿 𝑞!" = 𝐿 𝑐! +    𝐿(𝑟!!!)!!∈!!\! . 

d) Syndrome: after horizontal and vertical steps, each entry of
the codeword c is updated using 𝐿 𝑄! = 𝐿 𝑐! +    𝐿(𝑟!")!∈!!  
and 

𝑐! =
1    if    𝐿 𝑄! < 0  
0              otherwise. (3)

The syndrome is then evaluated and if it is a null vector the 
decoding process stops and the information is recovered. 



 

 

Otherwise the process continues until the number of iterations 
set by the algorithm is reached. 

When the log-SP decoding algorithm is implemented in 
VHDL, the vertical step consumes the greatest amount of 
logical elements. This happens because it is necessary to 
perform logarithmic operations to evaluate Φ(x). The function 
Φ(x) can be implemented in VHDL by lookup tables. 
However, if the H matrix has a greater number of 1’s the 
number of lookup tables can be prohibitive. Notice that it is 
necessary a lookup table for each hij = 1 of the parity check 
matrix H of a LDPC code. 

An alternative to the log-SP algorithm to reduce the number 
of logical elements is the MS decoding process. The vertical 
step of the MS algorithm is simplified by evaluating the 
minimum values of probabilities from the check nodes. Let 
𝛼!" = sgn(𝐿(𝑞!")) and 𝛽!" = abs(𝐿(𝑞!")), then Φ(x) can be 
evaluated by the following approximation [4] 

𝛷 𝛷 𝛽!!!!! ≈ 𝛷 𝛷 min!! 𝛽!!! = min!!!!!\! 𝛽!!! .     (4) 

This simplifies the evaluation of 𝐿 𝑟!"  to 

𝐿 𝑟!" = 𝛼!!! .min!!!!!\! 𝛽!!!!!!!!\! .                (5) 

Therefore there is no need of lookup tables for the MS 
decoding algorithm. Notice also that there is no need of 
knowing the channel characteristics [7], i.e., the initialization 
of the algorithm can be made by 𝐿 𝑞!" =   𝑦!  . 

IV. RESULTS 

The IS-LDPC codes are designed to operate at 100 Gbs optical 
networks. Therefore, the encoding and decoding algorithms of 
the (2000, 1000) and (4000, 2000) IS-LDPC codes should 
operate at the frequencies of 50 MHz and 25 MHz, 
respectively, for the VHDL implementation. The 
performances of the codes are analyzed on an additive white 
Gaussian noise (AWGN) channel, which is considered a good 
statistical model for the impairments found in an optical 
network. Then the goal of this work is to adjust the dimension 
of the parent identity matrix Im that generates the IS-LDPC 
code to narrow the performance gap between log-SP and MS 
decoding algorithms. 

For instance, four (2000, 1000) IS-LDPC codes are built 
using circulant sub-matrixes generated by different-size parent 
identity matrixes (I50, I100, I200 and I500) to find that with the 
best MS decoding performance. 

A. (2000, 1000) IS-LDPC codes 

Figures 4 to 7 show the performance, in terms of bit error rate 
(BER) versus energy per bit/unilateral noise power spectral 
density (Eb/N0), of the (2000, 1000) IS-LDPC using log-SP 
and MS decoding schemes. Each code is decoded using five 
iterations. Four codes were implemented using parent identity 
matrixes with dimension values: 50, 100, 200 and 500. 

Fig. 4 shows the performance of an IS-LDPC code built 
from an identity matrix with dimension 50. The log-SP 
algorithm presents 1.3 dB gain over the MS algorithm at BER 
= 10-4. 

 
Fig. 4  (2000, 1000) IS-LDPC codes with parent identity 

matrix I50. 

Fig. 5 presents the performance curves for (2000, 1000) IS-
LDPC code using an identity matrix of dimension 100. The 
algorithm log-SP performs 0.4 dB, in terms of Eb/N0, better 
than the MS algorithm for a BER = 10-4. 

 
Fig. 5  (2000, 1000) IS-LDPC codes with I100. 

Fig. 6 shows the performance of an IS-LDPC code built 
using an identity matrix with dimension 200. The log-SP 
algorithm presents 0.15 dB gain over the MS algorithm, for a 
BER = 10-4. 

 
Fig. 6  (2000, 1000) IS-LDPC codes with I200. 

Finally, fig. 7 presents an IS-LDPC code built with an 
identity matrix of dimension equal to 500. The decoding 
performances for both algorithms are almost coincident. The 
difference in performance is smaller than 0.1 dB between log-
SP and MS algorithms, for a BER = 10-4. 



 

 

 
Fig. 7  (2000, 1000) IS-LDPC codes with I500. 

Notice that by increasing the dimension of the parent 
identity matrix the performances of the log-SP and MS 
decoding algorithm become closer and closer. Further the 
increase in dimension reduces the number of 1's in H, which 
reduces the VHDL implementation complexity. Notice also 
that the (2000, 1000) IS-LDPC code generated by I50 presents 
the best performance for MS decoding algorithm. However, 
this code has more branches between variable and check nodes 
than the others. 

B. (4000, 2000) IS-LDPC codes 

Figures 8 to 12 show the performance, in terms of BER versus 
Eb/N0, for the (4000, 2000) IS-LDPC codes using log-SP and 
MS decoding algorithms. Again each code is decoded using 
five iterations. Five codes were implemented using parent 
identity matrixes with dimension values: 50, 100, 200, 500 
and 1000. 

 
Fig. 8  (4000, 2000) IS-LDPC codes with I50. 

Fig. 8 shows the performance of a (4000, 2000) IS-LDPC 
code with identity matrix with dimension 50. The log-SP 
algorithm presents around 1 dB gain over the MS algorithm 
for BER = 10-3. 

 
Fig. 9  (4000, 2000) IS-LDPC codes with I100. 

Fig. 9 presents the performance curves for the IS-LDPC 
code using an identity matrix of dimension 100. The algorithm 
log-SP performs 1.3 dB, in terms of Eb/N0, better than the MS 
algorithm, for BER = 10-4. 

 
Fig. 10  (4000, 2000) IS-LDPC codes with I200. 

Fig. 10 shows the performance of a IS-LDPC code built 
using an identity matrix with dimension 200. The log-SP 
algorithm presents 0.3 dB gain over the MS algorithm, for 
BER = 10-4. 

 
Fig. 11  (4000, 2000) IS-LDPC codes with I500. 

Fig. 11 presents an IS-LDPC code built with an identity 
matrix of dimension 500. The difference in performance was 
0.1 dB between log-SP and MS algorithms, for BER = 10-4. 



 

 

 
Fig. 12  (4000, 2000) IS-LDPC codes with I1000. 

Finally, fig. 12 presents an IS-LDPC code built with an 
identity matrix of dimension equal to 1000. The decoding 
performances for both algorithms are coincident. 

Again, the performance gap between the log-SP and MS 
decoding algorithm narrows when the dimension of the parent 
identity matrix increases. Therefore, the (4000, 2000) IS 
LDPC codes using parent identity matrixes with dimension 
500 and 1000 present the lowest VHDL implementation 
complexity. 

V. CONCLUSION 

The class of IS-LDPC codes can be generated in an easy and 
direct way. Moreover, its parity check matrix structure reduces 
the iterative decoding complexity and as consequence it 
reduces also the VHDL implementation complexity. 

As expected the sum-product decoding algorithm performs 
always better than the min-sum algorithm. However, a 
decrease in performance around 0.2 dB by using the MS 
decoding algorithm instead of log-SP algorithm is very 
reasonable, because the MS algorithm provides a significant 
reduction in the number of logical elements in FPGA and 
VHDL implementations. 

For the (2000, 1000) IS-LDPC codes, the code built with 
the parent identity matrix of dimension 500 is under the 
0.2 dB log-SP/MS performance threshold. On the other hand, 
for the (4000, 2000) IS-LDPC codes, the codes built with 
parent identity matrix of dimension 500 and 1000 have very 
close performance for both decoding algorithms and they are 
also under the 0.2 dB threshold. Therefore, those codes 
present lower complexity for VHDL implementation. Notice 
that the decoding performances between log-SP and MS 
algorithms are very close for codes with the parent identity 
matrix with high dimension. 

ACKNOWLEDGEMENTS 

This work was partially supported by FAPESP under contract 
nº. 2012/01789-4. 

REFERENCES 

[1] Bo Yuan, Li Li and Zhongfeng Wang, Efficient Forward 
Error Correction Decoder Design for High-Speed Optical 
Networking, Instech, chapter 11, pp. 267 – 288. 

[2] M. Jobes, A VLSI Architecture and the FPGA 
Implementation for multi-rate LDPC Decoding, MSc 
thesis, McMaster University, 2009. 

[3] M. Karkooti, Semi-Parallel Architectures for Real-Time 
LDPC Coding, MSc thesis, Rice University, 2004. 

[4] M. M. Mansour, N. Shanbhag, Low Power VLSI Decoder 
Architectures for LDPC Codes, Proceedings of the 2002 
International Symposium on Low Power Electronics and 
Design, pp. 284 – 289, 2002. 

[5] S. Myung, K. Yang, Quasi-Cyclic LDPC Codes for Fast 
Encoding, IEEE Transactions on Information Theory, Vol. 
51, issue: 8, pp. 2894 - 2901, 2005. 

[6] I. B. Djordjevic, M. Arabaci, and L. L. Minkov, Next 
Generation FEC for High-Capacity Communication in 
Optical Transport Networks, Journal of Lightwave 
Technology, Vol. 27, Issue 16, pp. 3518-3530, Aug. 2009. 

[7] M. R. Islam, D. S. Shafiullah, M. M. A. Faisal, I. Rahman 
Optimized Min-Sum Decoding Algorithm for Low 
Density Parity Check Codes, International Journal of 
Advanced Computer Science and Applications, Vol. 2, 
No. 12, 2011. 

[8] W. E. Ryan, An Introduction to LDPC Codes, 
http://tuk88.free.fr/LDPC/ldpcchap.pdf 

[9] B. S. Nugroho, LDPC code using MATLAB and C MEX, 
http://sites.google.com/site/bsnugroho/ldpc. 

 




