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Abstract indicating that customers buying tequila and salt often

buy lemons too. Such rules may be generalized to ar-
bitrary categorial data. For example, let's have got a

database of patients suffering certain disease. We can
mine the following rule:

Association rules are essential data mining tool.
There exist many types of them. Indeed, asso-
ciation rules of different types have often com-
pletely dissimilar syntax. In this paper, we try
to design a framework based on relational oper- weight > 100kg/ smoker A —sport = heart-failure.
ations enabling one to express various associa- A3)
tion rules using the same syntax. Doing so we
will be able to study association rules at high
level — it will be possible to formally describe
common characteristics of different rule types.

The rule says, there is strong evidence of getting heart
failure for non-sporting smokers heavy at least 100 kg.
Please note, the rule is rather rational and it tells probably
nothing to the experts. However, many surprising rules
may be mined, in practice.
1 Preface We are not restricted on implicational rules only.
This paper focuses on the possibility of representing thd300k [7] introduces for example the rules of the form:
association rules using the relational operations. We do i . ) ) . .,
a lot of motivating in the beginning to make the reader Mathematics = “excellent” ~ physics = “excellent
clear why it is important to introduce precise formal lan- . , ) (4)
guage suitable for writing down various association rulesS@Ying that in database about pupils the excellentness
in the same way. in mathematlcs appears together with excele_ntness in
After that, we get through many precise definitions phy_sm;s. In the'othervx'/ords, the excellenteljess in mathe—
which result in a formal logic calleBrobabilistic Logic ~ Maticsis associated witlthe excellenteness in physics.
of Typed RelationéPLTR). Let's get more complicated. Work [7] presents further
At last, we reveal the reader some challenging taskhe Subsequentrules:
our research faces up today.
This paper expects the reader to be familiar with ba- X corry /C. ®)
sics of association rule mining, mathematical logic, an

_ > . . . dThe interpretation is: “The values of attributelsand
with most important notations of statistical science.

B are correlated when looking only on objects fulfilling

. L conditionC.” Rules of that type are well applicable on
2 Quick tour over association rule types quantitative data.

Association rule is an explicit representation of knowl- ~ Authors of paper [2] have developed the consecutive
edge about some possibly interesting relationship thatules:

holds good in data. There exist many approaches to get

such rules from data. They use sophisticated statistical ~ sex = “female” = wage: mean = $7.90/hr
methods or empirical procedures to measure the rele- (overall mearwage = $9.02) (6)
vance of the rule. The best-known type of such relation-

ship are rules of the type: indicating that the women’s wage mean is significantly

different to the rest of examined objects.
ar Aaz Aag = b. (1) We can be even more complicated and ask for the sig-
It express the fact that when an Object has got the atnificance of the mean difference in dafabetween two
tributesay, a» andas it is very probably that it has got Subsetsd;, A> C D whose union isn't the seb itself
b, too. For example, the Market-basket analysis (see [1](41 N A2 = 0, A; U A> C D) asin [12], [13]. E.g. we
[9]) works mainly on data describing shopping activities may to compare the mean wage of people with age lower

of the customers and can produce the subsequent rule: than 30 and people older than 50 etc.
Even the rule saying that theresemedifference be-

tequila A\ salt = lemon (2)  tween two sets of objects in an array of attributes with-
Proceedings of the Spring Young Researcher's Colloquium out t_elh_ng us_the kind .Of.the dissimilarity (m_otlvated by
on Database and Information Systems SYRCoDIS, St.-Petersburg, Multi-dimensional statistical tests, see [11]) is better than
Russia, 2005 knowing nothing.



2.1 Employing statistics in association rule mining 2. Two-sample tests are more general. They are able
to compare a characteristic of a sample against char-

One of the ways to increase the power of data mining acteristic of second sample. For example, we can

software is to employ the results of the statistic science .o \whether the mean weight of some ratef
in association rules mining process. The rule types men- meﬁ is significantly different from rac& (H, :
tioned above are only a few of many possibilities when ba = g, Ha : ha # 1p). Such tests are just
considering the large amount of statistical tests thatmay  ;4a5| to be’ utilized in association rule mining.

be conceivable for rules mining.

Statistical tests of hypotheses are very powerful tool. 3, Multi-sample tests- are used to compare a specific
In statistics, wide range of tests was designed. The tests  characteristics of finite number of samplds B,

are used to make decisions about miscellaneous charac- | 7. (Ho : Y4 = g = ... = 1)y is tested
teristics; so, each test could be used to mine a rule of  againstH, : Ji,j € {A,B,...,Z} : i # ;)
different type. These tests could be used in rule mining too.

Moreover, statistical tests of hypotheses provide a ba-
sic measure of rule interest. Every statistical test is baseB L f istical di h b
on the computation of probability, at which the tested artitioning o StatI.S_tICE.l tests according to the number
characteristic is valid. Thus, the basic measure of ruleOf compared quantities:
interest could be that probability. The more the tested
characteristic is probable, the stronger tested relationship
is, and therefore the more interesting the resulting rule

1. One-dimensionat these tests work only with one
quantity (e.g. tests used to compare weight, wage
or density of something).

could be.

A perfunctory understanding of statistical tests of hy- 2 Multi-dimensional— does not compare the only
potheses is assumed. We denote a zero hypotitksis quantity, but in general the vector of quantities. We
and alternative hypothesis 4. This subsection tries to can compare, for example, weight, height, blood
summarize basic characteristics of statistical tests and  pressure etc. of two samples with one test trying
make clear, what can be tested at all. to state whether there is certain difference in at least

Partitioning of statistical tests according to distribution one attribute.

dependence: Both one-dimensional and multi-dimensional tests may

. . be used to discover rules.
1. Parametric— these tests rely on a special type of

distribution of sample data. These tests should bePartitioning of statistical tests according to the type of
used with care in association rule mining processtested characteristics:
since we can not say anything specific to the ana- There exist tests dealing withean variance (disper-
lyzed data, in general. sion), correlation, and so on. The type of tested charac-
teristic denotes in fact the type of mined rule. ..
2. Non-parametric- often calledank teststoo. These
tests d_oe; not depend on a specific shape of samy 5 \Where is the problem?
ple’s distribution. Weak apriory assumptions make
them more useful in association rule mining pro- What do we want to tell by this rule types enumeration?
cess. However, weakness of assumptions is paidVe can claim, the actually well-known rule types provide
with lesser strength of tests and the conversion othe possibility to mine various knowledge and thus are
quantitative data to ranks is sometimes relativelyvery different and the rule notation is very dissimilar too.
complex because of the need to sort the data, etc. ~ However, to be able to study such different rule types
deeply, to be able to explore the similarities and relation-
o - ) ships between various rule types and to infer formal con-
Partitioning of statistical tests according to the number,;sions about the rules, we should have got a tool for
of compared samples: uniform rule notation. That is, we need a formal lan-
guage capable to express association rules of any type —
and just this topic is addressed in this paper.

We do so in the hope of uncovering some hidden
truths about association rules which gives us the ideas
of further improvements in the array of association rule
mining algorithms, visualization and so on. We believe
hat without good understanding of causalities and rela-
tionships existing between various complex association
ule types we won't be able to do this. (In fact, the usage

f the framework presented here brings us immediately
the benefit of finding the idea sbsymmetric association
Furthermore, one kind of the well-known associa- rules which are discussed shortly in conclusion.)
tion rule (3) is defined as one-sample test on proba- Some work at the main topic of this paper was also
bility of binomial distribution; it tests that the simul- done in [7]. However, we present diametrally different
taneous occurrence of conditiohA S inthe ruleis  approach here and we think it is easier and more versa-
very probable in contrast td A =S (see [8]). tile.

1. One-sample tests are used to test, whether a spe-
cific sample characteristi¢y is equal to a given
value ¢y. For example, we can test, whether the
weights of flour bags filled by automatic machine
are in average equal tay = 1 kg (Ho : v = 1) Or
if there is present a systematic error which cause
under-weights or over-weightd(y : ¢ # o).
Such tests may be utilized in pair-comparing rules;
for example, whether the salary of people increase
after a training course.



3 Representing association rules using pro-
jection and selection

We can see from the previous chapter that association
rules express some strong relationship in data. Our idea

of how to design a formal logic language suitable for as-
sociation rule notation is based on considering a rule as a

relationship between two or more sub-tables of data table

R.
For example, rule (1) can be taken as a reIationship( >

Figure 1: Some types of relationships between two
sub-tablesA and B of table R

(a) Row-based relationship

between a sub-tabld that consists of alR’s rows sat- 4 )
isfying criteriona; A a2 A ag and sub-table3 satisfying @
criteriond (see also figure 1(a)). C Y.

When looking on rule (5) we see that it expresses re-
lationship between two sub-tabldsand B. Both A and
B have got just rows that satisfy conditi@r but table (b) Relationship among two columns of the same rows
A consists ofR’s attribute X only and B of attributeY
only (vide also figure 1(b)).

Rule of type (6) models a relationship between two '\ [
disjunctive sub-tables having one identical column. Such
relationships are also depicted in figure 1(c).

We can continue the same way and transform every{ A \_/
rule mentioned in section 2 to the proposition based on
relationship betweeR’s sub-tables. B

Okay, you might say, we can treat association rules
as relationships between sub-tables of analysed data ta-
ble, but how to describe such sub-tables to obtain formal o
and easy-to-understand formulae? The answer inheres in () Relationship among two sub-tables of one column
commonly known relational-database operatiosedec-
tion andprojection While selection is a tool for choosing
a certain rows satisfying given condition, the projection
takes out only specified columns of data table. Combin-
ing these two operations together, we can describe al-
most every sub-table of analysed data taBlésee also
figure 2).

To provide some concrete motivating examples, we
must be a little more formal. Thus, Iét be the data
table. The expression of the form

Ny
~

£ 06

(d) General relationship among two sub-tables

R(C) (7)

means selection aR’s rows that satisfy given condition
C, and the expression of the form

R[A1, As,. .., Ay] (8)

states projection on columns (attributes), Ao, ..., A,.

It is important for our topic to treat projection as the
operation which holds duplicities. This is a small dif-
ference in contrast to commonly known projection on
relations, since usual relations are sets and sets can not
contain the same item twice. Hence, such relational prog,, infixually
jection may cause some information lost — duplicities are
removed. Please see table 1 for illustrative projection R(C)[A] corr R(C)[B]. (20)
and selection results. Precise definition of notions such
asdata table attribute projection or selectionwill be In formula (9) (resp. (10)), we have prepared two sub-
provided later in section 4. tables using selections and projectiod®(()[A] and

Relationships between data can be modelled as usu®(C)[B]). These sub-tables act as arguments to a map-
mappings assigning a truth value to a tuple of sub-tableping named corr which results to “true” when the two
given as arguments. That way we are able to write evergolumns given as its arguments are strongly correlated.

{7

rule of section 2 in the new style. To show it, we will Rule (6) can be represented by subsequent formula:
start with rule (5). We can write it in our new notation as ) §
follows: R(sex = “female”)[wage] <z_test

corr(R(C)[X], R(C)[Y]) 9) R(sex # “female”)[wage].  (11)



Figure 2: Selection and projection defines a sub-table offable 1: Concrete example: selection and projection on

table R data tableR.
(a) Data tableR
O
- [ lafa [as |
o B ki | 1025 Tom
. k2 | 5 | 0,65] Jack
selectlon\\ ks 7 | 0,72 Bill
ky | 8 | 0,85]| John
— ~ ks | 8 | 0,31 Tom
n / ke | 9 | 0,25 | Tom
prz)j;ez:tion
(b) R(a1 > 6)
It says that the statistical Z—test (this is the test which ] a1 [az Jas |
Aumann and Lindell used in [2] to mine rule (6)) showed ks | 7 10,721 Bill
significant difference invage between the set of women k, | 8 | 0,85| John
and the rest of data table. ks | 8 | 0,31 Tom
The advantage of our approach also lies in the fact that ks | 9 | 0,25 | Tom
the mapping<z_testand others may be defined as to result
not in only true or false, but generally in arbitrary values
— for example in the p—value of the statistical test on the (¢) R[as]
background. That way we can construct a multi-valued
logic based on probability. [ [as ]
Our research shows that representation of rule (4) is ki1 | Tom
not such straightforward as in case of preceding rules. ko | Jack
The benefit of a small complications is rise of an idea ks | Bill
of new association rules type. A rule of type (4) we can k4 | John
write in new notation this way: ks | Tom
ke | Tom
~ (R, R(Ch), R(Cy)) (12)

where (] is conditionmathematics = “excellent” and
C, is physics = “excellent”. The reason of the need the ~ Moreover, sometimes even the rules relating two sub-
mapping~ to be ternary is as follows. To determine (4)'s tables of type depicted in figure 1(d) are profitable. Sup-
truth value we must know the number of records satisfypose sub-tablel contains quality characteristics of some
ing also conditiong’; A—Cs, =C1 AC2 and—C1 A—Ca;  metal « measuredbefore some process of quality im-
it equals to the number of rows iR(C1) — R(C2),  provement i = R(type = a)[Q1, @2, Q3]) and sub-
R(C2) — R(Cy) andR — R(Cy) — R(Cy), respectively.  table B represents the same quality characteristics of
(For more details of how the (4)'s confidence is com-metal b measuredfter the process of quality improve-
puted see [7], [8], [15].) The rule (12) can be interpretedment (B = R(type = b)[Q},Q%,Q%]). Then a rule
as follows: “In the context of data table the conditions 4 > B denotes the metal of typeis better even before
Cy andC; are mostly satisfied both or neither.” The new the improvement process than metal of typafter im-
type of association rules arises when we put selection gsrovement is performed. (However, this is rather tricky
conditionCy to R in the first argument — that is, when example, we know it.)
we modify thecontext We hope the preceding examples give the reader much
motivation to accept our proposition of treating the asso-
~ (R(Co), R(Cr), R(C2)). (13) " ciation rule mining process as follows. “Mining asso-
ciation rules of certain type from data tahbieis a pro-
cess of searching rather simple mixtures of selections and
projections on data tablg for which the mapping rep-
resenting the certain rule type gives truth value of our
demand.”

Such rule means: “In the context &'s records satisfy-
ing conditionCy...” The equivalent to this rule type is
mining rules (4) on sub-tabl&’ that is created fronR
by omitting all rows that do not satisfy conditiary,.
The representation of rules (1) or (3) is straightfor-
ward. We can apply the same principle as with (4):
4 Basic detailed definitions
= (R, R(a1 A as A ag), R(b))7 14) N o
We see that the language for writing association rules us-
Please note the possibility of representing more gening relational operations is very expressible. We won't
eral rules than described former. We are not limited toremain only in coarse motivation examples. In this sec-
use only one column sub-tables as in figure 1(c). Whertion, we provide a detailed definitions of tReobabilis-
we employ some multi-dimensional statistical test (sedtic logic of typed relationgPLTR) which we propose to
subsection 2.1) we can compare many columns at a timgepresent association rules in.



4.1 Typed relations of type A, too. The notatiorC'(u) denotesa selection
condition and it constitutes the fact that conditiod

We start with basic definitions of the mathematical rep-
polds on tuple.

resentations of data tables, attributes etc. Definitions o

this sub-section are mainly based on the work [14]. HOW-pefinition 7 (projection) LetA € To, B C A and let
ever, we had to make some important modifications top ~ Ra. A projection of relationR to the typeB is

adapt the notations to our needs. relation
In the subsequent, we sometimes use the phrase “set
of abstract elements”. It is simply a set whose elements R[B] = {u = (ky, 1) € 15 :
are not concrete, e.d{ = {z1,x2, x5} is abstract set of
three items. (Fv = (ku, 1) € R)
Definition 1 Let(2 be an infinite set of abstract elements (V6 € B) (lu(b) = lv(b)>} (16)

which we will call asattributes Let eacha € Q2 has
assigned a non-empty séfa) = D, called domain of  Of typeB.
attributea. Type A (of relations)is any finite subset of

the set2. We denoteZ, a set of all types. .
@ yp Example 8 As an example of relatio® of type A (see

A type A of relation is something like description €xample 2) we can take table 1(&) ©On the table are
of the data table. It says, what attributes (columns) arébjects thatis,k; € T). The selectiond; > 6) on that
present in the data table and what data can be stored fi¢lation is presented in table 1(b). Projectjag] one can
that attributes (attribute domain). see in table 1(c). "

Example 2 Let ay,az,a3 € , 6(ar) = N, 6(az) = Please note that projection is defined as to hold du-
Q andd(as) is equal to a set of all words made from Plicities. Why this is a matter see section 3.

English letters of length maximum 30, then a set= _ _ _
{a1,as,a3} is type. a 4.2 Modelling relationships

] ] ] With these basic definitions we can go forth to define
It is obvious that ifA and B are types thed U B, general notion of aredicate of relationshipPredicate of
AN BandA — B are types. relationship is simply a mapping that assigns truth value
to relations given as arguments. Since we are building
probabilistic logic, the truth value will be a probability.
Concretely, truth value will be defined as a pair of values
(I,h) where0 < [ < h < 1 that form an interval of
probability ( is its lower bound and its upper bound).

Definition 3 Let T is infinitive set of abstract elements
which we will call asobjects Let A € Tg is type. Let's
denoteD 4 = {D, = d(a) : a € A} (speciallyDy = 0).
A tuple of type A is pair (k,l), wherek € T andl is
such mappind : A — D4 that (Va € A)(l(a) € D,).
A set of all tuples of typel will be denoted ag*. Aset  Definition 9 Probability intervalis a pairi = (I, h),
of all tuples of typgla} (a € 2) will be denoted a3 wherel,h € Rand0 <1 < h < 1. AsetV of truth
valuesis a set of any probability interval By notation

A tuple of typeA is intuitively a representation of one q € i = (I,h) whereq € R we mearl < ¢ < h.

row of data table. We can observe thdt € Q) (1 # 0)
and(VA € To)(1* # 0) because definitions 1 and 3 say Definition 10 Let Ay, A, ..., A, € T and letV be a

thatD, # 0, Da # 0. set of truth values then-ary relationship predicatis a

) mappingp* : D)~ — V whereD,. C R4, X Ry, X
Example 4 Consider typed from example 2. Then =« R, is a set callecdlomain of relationship predi-
<k, {{a1, 1), {as, 0,25, (a3, James>}> wherek € T catep*.
is a tuple of typeA. [

So, relationship predicate is a mapping that assigns
to certain relations a truth value. It is obvious, we can
Definition 5 (typed relation) Let A € 7Ty be type. A model various relationships that way. The definition pre-
relation R of type A is any finite subset of the sét'. sented above. assumes the predicate to rt_asult in thg mter—
SymbolR 4 denotes a set of all relations of type Sim- V@l of probability. However, we can modify the defini-
ilarly, a set of all relations of typda} wherea € Qs  tions to suit classical two-valued logic.

denoted with symbaoR,. . L. .
5 Intermezzo: Simultaneous statistical in-

As one can see, the notion of typed relations is sim-  ference and data mining
ply a representation of data table. Now, we introduce

definitions of the important relational operations called B€70re going further we should do a little discussion on
selection and projection. data-mining from the statistician’s point of view.

Nowadays usual practice is to use statistical tests in
Definition 6 (selection) Let A € 7T, and letR € R 4. association rules mining process. Statistical tests are

A selection from relatiorR of type A according to con- based on hypothesis testing. One formulates a zero hy-
dition C' is relation pothesisH, and appropriate alternative hypothegig

such that the simultaneous turning upfé§ and H 4 is
R(C)={u:ue RAC(u)} (15) impossible; that isP(Hy N H4) = 0 where P states



probability. Hypotheses are constructed a#itp be the  The concrete task we are accually working on is the situ-
event whose validity we want to be convinced of. Theation when some mined rules belosgmehowogether.
appropriate statistical test then computes the probabil- For example, let attributel be categorical with do-
ity o at which the zero hypothes| is valid. If this  maind(4) = {1,2,3,4} and let attributeB be quantita-
probability is very small¢ < 0,05, « < 0,01 or even tive, thatis§(B) = R. Consider the following rules:

a < 0,001) we are almost sure dffy’s invalidity. In the

other words, we know at least with— « certainty that R(A =1)[B] >z-test R(A = 2)[B], (19)
H, is valid.

Please take into account the following important note: R(A = 2)[B] <z-est R(A = 4)[B], (20)
whenq isn’t small, we aren’t sure offy’s validity; we R(A = 3)[B] <z_est R(A = 4)[B]. (1)

simply know nothing — vide e.g. [10]. )

Thus, stating whether a rule is important or not is These rules logically belong together because they ex-
done by the certain test of hypotheses. The importancBress strong differences in attribuie between objects
of the rule is then derived from the level of significance that differ in attributeA. We are working on a method
at which the zero hypothesis can be rejected — that isthat treats such rule sets specially and since we manage
the truth value of the rule is simply — . One can see & setof rules as one compllcqted_rule, it is us_eful for us
that the same approach is enabled in this Work; we usg) know the overall p—VaIUe. V|de||cet, we are interested

interval of probabmty as the ru|e's truth Value_ what is the probablllty of the truthfulness of the rule
However, when performing many tests of hypotheses

at the time and rejecting mangl/y hypotheses at very (R(A = 1)[B] >z-est R(A = 2)[B]) A

small level of significancey, the resultant probability of /\(R(A = 2)[B] <z-test R(A = 4)[B]) A

validity is greater tham. In fact, the probability of erro- /\(R(A — 3)[B] <z-est R(A = 4)[3})' 22)

neous reject of at least orf&, tends rapidly to 1.

This phenomenon is often called sismultaneous sta-
tistical inference(see [10] etc.). We can explain it using
Bonferroni’'s theorem (vide [11]) which sounds as fol- In this sub-section we will define logical connectives
lows. able to work with probability intervals as presented in

Consider random eventd;, A, ..., A,. Each of definition 9.
them has got some certain probabil®(A;). Bonfer- o -
roni's theorem says that for the probability of the eventDefinition 11 LetV be a set of truth valueg2robabilis-
A1NAsnN...NA, (the simultaneous occurrence of every tic connectiveis a mapping.* : V" — V wheren is

6.1 Probabilistic connectives

eventA;) holds the following: arity of probabilistic connective*.
n Definition 12 LetV be a set of truth value®robabilis-
P(Ain...NA,) <max (0, 1- Z (1- P(Ai))> . tic negationis unary probabilistic connective* : V —
i—1 V suchthat-*({l, h)) = (1 —h, 1 =1).
(7)
Take A; to be the validity of anyi-th H4. SoP(A;) = We can see that the traditional feature of negations

1 — «;, wherea is level of significance at which we holds for our probabilistic negation too:
have rejected corresponding zero hypothdsis Thus
the probability that everyl, was rejected rightfully is (=) =1i. (23)

n Definitions of probabilistic conjunctions and disjunc-
P(Ain...NA,) <max |0, 1— Z(ai) (18)  tions will be based on the commonly known notations of
i=1 t-norm and t-conorm.

The sum tends fast to 1 so the right side gets to zero verpefinition 13 LetV be a set of truth valuesriangular
quickly. For example, when performing 20 tests and renorm (t-norm)is any binary probabilistic connective :
jecting zero hypotheses at = 0,05 in each test, the y »x v — v whereVz,y, z € V holds:
overall probability of at least one unauthorized rejection
is greater or equal t20 - 0,05 = 1. 1. T(x,y) =T(y,x); (commutativity)
What is the consquence? In contrast to common sta- . o

tistical analyses, data-mining results can not be treated 2- T(z,T(y,2)) =T(T(x,y),2); (asociativity)
as natural law or undisputed truth. Data-mining gives 3 jf min(z) < min(y) then
answers to the questions of type “whatybeholds in -
the area described by my data?” E.g. work [7] proposes min (T(lu Z)) < min (T(% Z))
to understand the association rules as enumeration of hy-
potheses that are supported with data or as hypotheses and ifmax(z) < max(y) then
the data tend to.

max (T(z, z)) < max (T(y, 2));
6 Advanced definitions

Although we have vindicate the possibility to ignore si-
multaneous statistical inference (vide section 5), some- 4. T'((0,0), z) = (0,0) andT'((1,1), z) = z. _
times it is useful to prevent it even in data-mining results. (restriction)

(monotony)



Definition 14 LetV be a set of truth valueslriangular  Definition 18 (language) Language of PLTR is a set
co-norm (t-conorm)s such binary probabilistic connec- 7 of formulae created from the alphabet of the PLTR

tiveS: V x V — V whereVx,y € V holds: language accordingly to the following conditions. Let
Ay, A5, A3, A, B € T be types of relations and let
S(l’,y) _ (71(_|uo((l,)7 _‘*(y))> (24) A C B. We define:

i e selection condition of typd:
andT ist-norm

1. Any symbohk € A of attribute’s name is a

Concrete t-norms are interpreted as probabilistic con- selection condition of typd.
junctions and t-conorms as probabilistic disjunctions. 2. If C,, C, are selection conditions of typé
We can easily check the validity of the subsequent equa- then also~Cy, (Cy V Cy), (C1 A Cy), (Cy =
tion: C3) and (C, & Cs) are selection conditions

T(,y) == (S(=*(2), =) (5 of typeA.

Specific t-norm and t-conorm is defined accordingly 3 ;I;here is no other selection condition of type
to Bonferroni's theorem about probability of random '
event conjunction (see [11]). e term of typeA:
Definition 15 Letiy, i € V andiy = (I, h1), iz = 1. Symbols of relations of typé are terms of
(l2, ho). Binary probabilistic connective, ;. defined type A.
as 2. If Ty, T, are terms of typed then also(T; U

Ty), (TyNT,) and(T; —T) are terms of type
Ntagelityi2) = ( max(0, b + 1 = 1), min(hy, ho) ) A.

(26) 3. If T"is term of typed and C' is selection con-
is called assafe conjunction dition of typeA then alsdl'(C) is term of type
Binary probabilistic connective’;, ;. defined as A.
4. If A={a1,as,...,ar} C BandT is term of
Viapelin,ia) = <maX(l1, l2), min(1, h1+h2)> 27) type B thenT[aq, as, . .., ai] is term of type
A.
is called assafe disjunction 5. There is no other term of typé
Theorem 16 Safe conjunction, ;, is t-norm and safe ~ ® formula PLTR:
d|Sjunct|0n\/;afe is t-conorm of/\;afe. 1. Ty, Ty, ..., T, are terms of typed,, Ao,
: A, *isn- lationshi icat
Proof. Evident. 0 andp* is n-ary relationship predicate

thenp*(T1,Ts, ..., T,) is formula.

2. If F, I are formulae PLTR then also* Fi,
(FyV* Fy) and(F) A* Fy) are formulae PLTR.

3. There is no other formula PLTR.

With connectives defined in this sub-section we can
even join various relationship predicates together.

7 Probabilistic Logic of Typed Relations Definition 19 (model) Model of PLTR is a pairM =

Now we have defined all notions necessary for creatiol@. 9) whereQ is a set of typed relation8:, Ry, ..., Ry,

of language of Probabilistic Logic of Typed Relations Of typesA;, As, ..., A, andg is a mapping assigning
(PLTR). an element frond) to every symbol of typed relationA.

set of all modelss denoted M.

Definition 17 (alphabet) The PLTR language alphabet

consists from the following symbols: The model definition assumes the relationship predi-

cates to have fixed interpretations all the time. (That is,
e Symbols for typed relationst, S, T, ... the relationship predicates interpretations are the same
for all models.)

e Symbols for attributess, b, ¢, ... _ -
Definition 20 LetV be a set of truth values (that i8] is

e Logical connectives for creation of selection condi- a set of all probability intervals)The evaluating function

tions: -, A, V, =, & Val is a function which maps formuld and modelM =
(Q, g) to the interval of probability. That is/al : J x
¢ Relational operations=—, U, N M — V. Domain of functiori/al depends on domains
) ) ) of relationship predicates used in formufa
e Symbols of:-ary relationship predicatesp*, ¢*, The receipt to get the value of functidful is as fol-
(ARERTRSI lows. LetM = (Q, g) be a model of PLTR then:
e Probabilistic logical connectives:*, A*, V* 1. One must find out values of all terms recursively.

N (For that case let us introduce a functidfal’ for
e Auxiliary symbols (parentheses, brackets)), [, | term evaluation):



(a) LetR be the symbol of typed relation then e Formulay € Sent is alogical Vy-consequencef
a setl C Sent of formulae (notationV =y, o) if

Val'(R) = g(R). VM € M the following holds:

(b) LetR, S be the terms then (Vi € O)(M |y, ) = (M vy, @).
Val'(RUS) = Val'(R)UVal'(9), e Formulaey € Sent andiy € Sent are logically
Val'(RNS) = Val'(R)NVal'(S), Vo-equivalent(notationy =v; v) if
Val'(R—S) = Val'(R) - Val'(S). (0 v %) A (6 v ).

(c) LetT be the termand.,...,a, € Q then . )
For new we introduce even stronger concepts:

/ o /
Val(Tlay, ..., an]) = Val'(T)las, ., anl- pefinition 23 Let S = (Sent, M,V,Val) be a seman-

. tic system.
(d) LetT be the term and” be the selection con- 4

dition then e Formulay € Sent is logical consequencef a set
¥ C Sent of formulae (notationV = o) if
Val'(T(C)) = (Val'(T))(C).
(7Vo C V(¥ v, )
2. One must figure out the formula’s truth value recur-
sively: e Formulaey € Sent andy € Sent are logically

equivalentnotationy = ) if
(a) LetTiy,...,T, be the terms and lep* be g ( v=1v)

the n-ary relationship predicate (defined on (Vo CV)(p =v, ¥).
(Val'(Ty), ..., Val'(Ty))) then

* —
Val(p(Ty,..., Tn)) = Example 24 Here are examples of some simple logical

=p*(Val'(Ty),...,Val'(T,)). equivalences:
(b) LetF,G be formulae then P*(R(C1) UR(C2)) = p*(R(C1V(y)),
*(R(C1) N R(C: = p*(R(Ci ACY)),
Val(=*F) = —*(Val(F)), p*( (@0 R(C) p*( (€10 C2)
. « P (R(Ol) - R(CQ)) = p (R(Ol N —‘02)).
Val(F N G) = AN (Val(F),Val(G)),
Val(FV*G) = V*(Val(F),Val(G)). "
One can find many well formed formulae of PLTR
language in section 3. 9 Related work
] Association rules have been well researched. First men-
8 Semantic system of PLTR tion about them is dated in sixtieth years of the twentieth

century. Czech authorsdjek, Havel and Chytil in 1966
Spresented the work [6] about automated hypothesis test-
ing in method called GUHA. Their work appeard long
time before concepts such as data mining or knowledge
discovery becomes familiar. Although their work was
Definition 21 A semantic systenis determined by an Presented many times in the whole world, many peo-
non-empty sefent of formulae, a non-empty se¥! of ple mtereste@ in d_ata mining then erroneOl_Jst present
models, a non-empty setof truth values and an evalu- Agrawal, Imielinski and Swami ([1]) as the first people

This section provides definitions dégical followings
which are necessary for writing down consideration
about PLTR formulae. We start with definition taken
from book [7]:

ating functionVal : (Sent x M) — V. who tried to mine association rules. (See e.g. [9] on page
276.)
We need one more definition from book [7]: Hajek and Havainek have written the book [7] where

the concepts of the automatized hypotheses generation

Definition 22 Let S = (Sent, M,V,Val) be aseman- Wwere very well described. They based the thinking of
tic system and let, C V be a set ofdesignated values  the rules as of formulae interconnected wgémeralized

quantifiers
e Aformulay € Sent is Vo-truein a modelM (no- Generalized quantifiers is natural generalization of
tation M =y, o) if classical quantifiers (universal) and (existential). For
example, Rescher’s (1962) plurality quantifiéf says
Val(p, M) € Vp. that “most objects satisfy the formula”. The second ex-

ample, the Church’s (1951) quantifier of implication (not
e Aformulay € Sent is Vj-tautology(notationf=y;, to be confused with the logicall connective of implica-
p) ifitis Vy-true for each modeM € M suchthat tion) =0 (¢1(0), p2(0)) says that thep, formula is true
the formulay is defined on it. for all objects for which the formulay is true.



Authors of the GUHA method have introduced many [3] Michal Burda, Martin Hynar, and Jararmanod.
such generalized quantifiers that model various relation-  Object-oriented interface to algorithms searching
ships. frequent conjunctions. It5IM, Hradec nad Mora-

This work proposes the other look at association rules. vici, 2005.

We don'’t treat association rules as formulae intercon- ) . . i
nected with quantifiers but rather as pieces of data de-[4] Michal Burda, Martin Hynar, and Jarsarmano.
scribed with relational operations interconnected with Probabilistic logic of typed relations (in czech). In
predicates. The difference is in the level of logical no- Znalosti, poster proceedingpages 13-16, Vysék
tions where the knowledge is presented. GUHA uses  1afry, 2005.

predicates simply to denote attributes and it models re—[ ] Michal Burda, Marian Mindek, and Jarfarma-

lationships with quantifiers. We hide the fashion of de- NOVA. Chara(’:teristics of cosy}nmetric association

scribing the objects figuring in a rule in functional sym- rules. InDatesg 2005.

bols and the relationship modelling arises in predicates,

already. [6] Petr Hajek, Ivan Havel, and Metdag Chytil. The
GUHA method of automatic hypotheses determi-

10 Conclusion and future work nation. InComputing 1pages 293-308, 1966.

In this paper, we have presented summary overview of (7] petr Hajek and Tor&S Havének. Mechaniz-

the best-known association rule types. We have deSigne |ng Hypothesis Formatian Springer_VeHag’ Ber-
a new language usable for rule representations atthat ba-  |in, 1978. Internet: http://www.cs.cas.cz/

sis and we have shown many examples of how to use this  ~hajek/guhabook/ (May 2004).

language (see also our work [4]). The usage of the pre-

sented language has directly led to some new types of[8] Petr Hajek, Ton&s Havianek, and M. K. ChytilThe

association rules (vide rule (13)). GUHA method — automatized hypothesis creation
Please note that our primary goal of the language de-  (in czech) Academia, Praha, 1983.

sign was to create logic suitable for our further research

on similar properties of various association rules. We .

confess the fact that our language may not be ideal instru- Qoncepts and Techniquelorgan Kaufmann Pub-

ment for rule representations to the end-user (analyst). lishers, USA, 2000.

Our future work is focused to the study of properties 1] Tomas Havianek.Statistics for biological and med-
of so-calledcosymmetric rulesActually, we don’t have ical sciences (in czechj\cademia, Praha, 1993.
precise definition of what a cosymmetric rule is. (Some ' ’

notes may be found in [5].) Intuitively, we can say that [11] Petr Helak and Jii Hustopecl. Multi-dimensional
cosymmetric rule is a rule of the form statistical methods and its applications (in czech)
SNTL, Praha, 1987.

[9] Jiawei Han and Micheline KambebData Mining:

D(Cl)[A17...7An} >* D(CQ)[B:[,...,B"L] (28) ) )
[12] Tomas Karban. SDS—rules (in czech). Zmalosti,
where two sub-tables are compared and the mapping poster proceedingpages 17-20, Brno, 2004.
tells us whether the first sub-table ssemehowgreater N el
than the second one. For example, (11) is a typical meml13] Tomés Karban and MilaiSiminek. SDS-rules and
ber of cosymmetric rule class. It comes to light that the ~ @ssociation rules. lfirack on Data Mining (DM),
class of cosymmetric rules is very large. Our research ~ ACM Symposium on Applied Computi2§04.

shows that even the rules (1), (2), (3) could be treated aﬁ4] Wendy MacCaull and Ewa Orlowska. A calculus

CO?/)\//?QS;ICS'O working on fast algorithms for mining the of typed relations. IRelMiCS/Kleene-Algebra Ws
9 9 9 2003, LNCS 305Ipages 191201, 2004.

cosymmetric rules. See [3] for the implementation of the
generic framework for mining frequent conjunctions.  [15] Jan Rauch. Association rules and mathematical

In the centre of interest stands the problem of visu- logic (in czech). IriZnalostj pages 114-125, Brno,
alization of cosymmetric rules — the usage of concep- 2004.

tual lattices for such purposes is elaborated. We also
study the benefits of displaying the cosymmetric rules as
guasi—ordered set in slightly modified Hasse’s diagram.
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