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Abstract

Association rules are essential data mining tool.
There exist many types of them. Indeed, asso-
ciation rules of different types have often com-
pletely dissimilar syntax. In this paper, we try
to design a framework based on relational oper-
ations enabling one to express various associa-
tion rules using the same syntax. Doing so we
will be able to study association rules at high
level – it will be possible to formally describe
common characteristics of different rule types.

1 Preface
This paper focuses on the possibility of representing the
association rules using the relational operations. We do
a lot of motivating in the beginning to make the reader
clear why it is important to introduce precise formal lan-
guage suitable for writing down various association rules
in the same way.

After that, we get through many precise definitions
which result in a formal logic calledProbabilistic Logic
of Typed Relations(PLTR).

At last, we reveal the reader some challenging task
our research faces up today.

This paper expects the reader to be familiar with ba-
sics of association rule mining, mathematical logic, and
with most important notations of statistical science.

2 Quick tour over association rule types
Association rule is an explicit representation of knowl-
edge about some possibly interesting relationship that
holds good in data. There exist many approaches to get
such rules from data. They use sophisticated statistical
methods or empirical procedures to measure the rele-
vance of the rule. The best-known type of such relation-
ship are rules of the type:

a1 ∧ a2 ∧ a3 ⇒ b. (1)

It express the fact that when an object has got the at-
tributesa1, a2 anda3 it is very probably that it has got
b, too. For example, the Market-basket analysis (see [1],
[9]) works mainly on data describing shopping activities
of the customers and can produce the subsequent rule:

tequila ∧ salt ⇒ lemon (2)
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indicating that customers buying tequila and salt often
buy lemons too. Such rules may be generalized to ar-
bitrary categorial data. For example, let’s have got a
database of patients suffering certain disease. We can
mine the following rule:

weight > 100kg∧ smoker ∧ ¬sport ⇒ heart-failure.
(3)

The rule says, there is strong evidence of getting heart
failure for non-sporting smokers heavy at least 100 kg.
Please note, the rule is rather rational and it tells probably
nothing to the experts. However, many surprising rules
may be mined, in practice.

We are not restricted on implicational rules only.
Book [7] introduces for example the rules of the form:

mathematics = “excellent” ∼ physics = “excellent”
(4)

saying that in database about pupils the excellentness
in mathematics appears together with excelentness in
physics. In the other words, the excellenteness in mathe-
maticsis associated withthe excellenteness in physics.

Let’s get more complicated. Work [7] presents further
the subsequent rules:

X corrY / C. (5)

The interpretation is: “The values of attributesA and
B are correlated when looking only on objects fulfilling
conditionC.” Rules of that type are well applicable on
quantitative data.

Authors of paper [2] have developed the consecutive
rules:

sex = “female” ⇒ wage: mean = $7.90/hr

(overall meanwage = $9.02) (6)

indicating that the women’s wage mean is significantly
different to the rest of examined objects.

We can be even more complicated and ask for the sig-
nificance of the mean difference in dataD between two
subsetsA1, A2 ⊂ D whose union isn’t the setD itself
(A1 ∩ A2 = ∅, A1 ∪ A2 ⊂ D) as in [12], [13]. E.g. we
may to compare the mean wage of people with age lower
than 30 and people older than 50 etc.

Even the rule saying that there issomedifference be-
tween two sets of objects in an array of attributes with-
out telling us the kind of the dissimilarity (motivated by
multi-dimensional statistical tests, see [11]) is better than
knowing nothing.



2.1 Employing statistics in association rule mining

One of the ways to increase the power of data mining
software is to employ the results of the statistic science
in association rules mining process. The rule types men-
tioned above are only a few of many possibilities when
considering the large amount of statistical tests that may
be conceivable for rules mining.

Statistical tests of hypotheses are very powerful tool.
In statistics, wide range of tests was designed. The tests
are used to make decisions about miscellaneous charac-
teristics; so, each test could be used to mine a rule of
different type.

Moreover, statistical tests of hypotheses provide a ba-
sic measure of rule interest. Every statistical test is based
on the computation of probability, at which the tested
characteristic is valid. Thus, the basic measure of rule
interest could be that probability. The more the tested
characteristic is probable, the stronger tested relationship
is, and therefore the more interesting the resulting rule
could be.

A perfunctory understanding of statistical tests of hy-
potheses is assumed. We denote a zero hypothesisH0

and alternative hypothesisHA. This subsection tries to
summarize basic characteristics of statistical tests and
make clear, what can be tested at all.

Partitioning of statistical tests according to distribution
dependence:

1. Parametric– these tests rely on a special type of
distribution of sample data. These tests should be
used with care in association rule mining process
since we can not say anything specific to the ana-
lyzed data, in general.

2. Non-parametric– often calledrank tests, too. These
tests does not depend on a specific shape of sam-
ple’s distribution. Weak apriory assumptions make
them more useful in association rule mining pro-
cess. However, weakness of assumptions is paid
with lesser strength of tests and the conversion of
quantitative data to ranks is sometimes relatively
complex because of the need to sort the data, etc.

Partitioning of statistical tests according to the number
of compared samples:

1. One-sample tests– are used to test, whether a spe-
cific sample characteristicψ is equal to a given
valueψ0. For example, we can test, whether the
weights of flour bags filled by automatic machine
are in average equal toψ0 = 1 kg (H0 : ψ = ψ0) or
if there is present a systematic error which causes
under-weights or over-weights (HA : ψ 6= ψ0).
Such tests may be utilized in pair-comparing rules;
for example, whether the salary of people increased
after a training course.

Furthermore, one kind of the well-known associa-
tion rule (3) is defined as one-sample test on proba-
bility of binomial distribution; it tests that the simul-
taneous occurrence of conditionA∧S in the rule is
very probable in contrast toA ∧ ¬S (see [8]).

2. Two-sample tests– are more general. They are able
to compare a characteristic of a sample against char-
acteristic of second sample. For example, we can
test, whether the mean weight of some raceA of
men is significantly different from raceB (H0 :
ψA = ψB , HA : ψA 6= ψB). Such tests are just
ideal to be utilized in association rule mining.

3. Multi-sample tests– are used to compare a specific
characteristics of finite number of samplesA, B,
. . . , Z. (H0 : ψA = ψB = . . . = ψZ is tested
againstHA : ∃i, j ∈ {A,B, . . . , Z} : ψi 6= ψj .)
These tests could be used in rule mining too.

Partitioning of statistical tests according to the number
of compared quantities:

1. One-dimensional– these tests work only with one
quantity (e.g. tests used to compare weight, wage
or density of something).

2. Multi-dimensional– does not compare the only
quantity, but in general the vector of quantities. We
can compare, for example, weight, height, blood
pressure etc. of two samples with one test trying
to state whether there is certain difference in at least
one attribute.

Both one-dimensional and multi-dimensional tests may
be used to discover rules.

Partitioning of statistical tests according to the type of
tested characteristics:

There exist tests dealing withmean, variance (disper-
sion), correlation, and so on. The type of tested charac-
teristic denotes in fact the type of mined rule. . .

2.2 Where is the problem?

What do we want to tell by this rule types enumeration?
We can claim, the actually well-known rule types provide
the possibility to mine various knowledge and thus are
very different and the rule notation is very dissimilar too.

However, to be able to study such different rule types
deeply, to be able to explore the similarities and relation-
ships between various rule types and to infer formal con-
clusions about the rules, we should have got a tool for
uniform rule notation. That is, we need a formal lan-
guage capable to express association rules of any type –
and just this topic is addressed in this paper.

We do so in the hope of uncovering some hidden
truths about association rules which gives us the ideas
of further improvements in the array of association rule
mining algorithms, visualization and so on. We believe
that without good understanding of causalities and rela-
tionships existing between various complex association
rule types we won’t be able to do this. (In fact, the usage
of the framework presented here brings us immediately
the benefit of finding the idea ofcosymmetric association
rules, which are discussed shortly in conclusion.)

Some work at the main topic of this paper was also
done in [7]. However, we present diametrally different
approach here and we think it is easier and more versa-
tile.



3 Representing association rules using pro-
jection and selection

We can see from the previous chapter that association
rules express some strong relationship in data. Our idea
of how to design a formal logic language suitable for as-
sociation rule notation is based on considering a rule as a
relationship between two or more sub-tables of data table
R.

For example, rule (1) can be taken as a relationship
between a sub-tableA that consists of allR’s rows sat-
isfying criteriona1 ∧ a2 ∧ a3 and sub-tableB satisfying
criterionb (see also figure 1(a)).

When looking on rule (5) we see that it expresses re-
lationship between two sub-tablesA andB. BothA and
B have got just rows that satisfy conditionC, but table
A consists ofR’s attributeX only andB of attributeY
only (vide also figure 1(b)).

Rule of type (6) models a relationship between two
disjunctive sub-tables having one identical column. Such
relationships are also depicted in figure 1(c).

We can continue the same way and transform every
rule mentioned in section 2 to the proposition based on
relationship betweenR’s sub-tables.

Okay, you might say, we can treat association rules
as relationships between sub-tables of analysed data ta-
ble, but how to describe such sub-tables to obtain formal
and easy-to-understand formulae? The answer inheres in
commonly known relational-database operations:selec-
tionandprojection. While selection is a tool for choosing
a certain rows satisfying given condition, the projection
takes out only specified columns of data table. Combin-
ing these two operations together, we can describe al-
most every sub-table of analysed data tableR (see also
figure 2).

To provide some concrete motivating examples, we
must be a little more formal. Thus, letR be the data
table. The expression of the form

R(C) (7)

means selection ofR’s rows that satisfy given condition
C, and the expression of the form

R[A1, A2, . . . , An] (8)

states projection on columns (attributes)A1,A2, . . .,An.
It is important for our topic to treat projection as the

operation which holds duplicities. This is a small dif-
ference in contrast to commonly known projection on
relations, since usual relations are sets and sets can not
contain the same item twice. Hence, such relational pro-
jection may cause some information lost – duplicities are
removed. Please see table 1 for illustrative projection
and selection results. Precise definition of notions such
as data table, attribute, projection or selectionwill be
provided later in section 4.

Relationships between data can be modelled as usual
mappings assigning a truth value to a tuple of sub-tables
given as arguments. That way we are able to write every
rule of section 2 in the new style. To show it, we will
start with rule (5). We can write it in our new notation as
follows:

corr
(
R(C)[X], R(C)[Y ]

)
(9)

Figure 1: Some types of relationships between two
sub-tablesA andB of tableR

(a) Row-based relationship

(b) Relationship among two columns of the same rows

(c) Relationship among two sub-tables of one column

(d) General relationship among two sub-tables

or infixually

R(C)[A] corrR(C)[B]. (10)

In formula (9) (resp. (10)), we have prepared two sub-
tables using selections and projections (R(C)[A] and
R(C)[B]). These sub-tables act as arguments to a map-
ping named corr which results to “true” when the two
columns given as its arguments are strongly correlated.

Rule (6) can be represented by subsequent formula:

R(sex = “female”)[wage] <Z–test

R(sex 6= “female”)[wage]. (11)



Figure 2: Selection and projection defines a sub-table of
tableR

It says that the statistical Z–test (this is the test which
Aumann and Lindell used in [2] to mine rule (6)) showed
significant difference inwage between the set of women
and the rest of data table.

The advantage of our approach also lies in the fact that
the mapping<Z–testand others may be defined as to result
not in only true or false, but generally in arbitrary values
– for example in the p–value of the statistical test on the
background. That way we can construct a multi–valued
logic based on probability.

Our research shows that representation of rule (4) is
not such straightforward as in case of preceding rules.
The benefit of a small complications is rise of an idea
of new association rules type. A rule of type (4) we can
write in new notation this way:

∼
(
R, R(C1), R(C2)

)
(12)

whereC1 is conditionmathematics = “excellent” and
C2 is physics = “excellent”. The reason of the need the
mapping∼ to be ternary is as follows. To determine (4)’s
truth value we must know the number of records satisfy-
ing also conditionsC1∧¬C2,¬C1∧C2 and¬C1∧¬C2;
it equals to the number of rows inR(C1) − R(C2),
R(C2)−R(C1) andR−R(C1)−R(C2), respectively.
(For more details of how the (4)’s confidence is com-
puted see [7], [8], [15].) The rule (12) can be interpreted
as follows: “In the context of data tableR the conditions
C1 andC2 are mostly satisfied both or neither.” The new
type of association rules arises when we put selection at
conditionC0 to R in the first argument – that is, when
we modify thecontext:

∼
(
R(C0), R(C1), R(C2)

)
. (13)

Such rule means: “In the context ofR’s records satisfy-
ing conditionC0. . . ” The equivalent to this rule type is
mining rules (4) on sub-tableR′ that is created fromR
by omitting all rows that do not satisfy conditionC0.

The representation of rules (1) or (3) is straightfor-
ward. We can apply the same principle as with (4):

⇒
(
R, R(a1 ∧ a2 ∧ a3), R(b)

)
, (14)

Please note the possibility of representing more gen-
eral rules than described former. We are not limited to
use only one column sub-tables as in figure 1(c). When
we employ some multi-dimensional statistical test (see
subsection 2.1) we can compare many columns at a time.

Table 1: Concrete example: selection and projection on
data tableR.

(a) Data tableR

a1 a2 a3

k1 1 0,25 Tom
k2 5 0,65 Jack
k3 7 0,72 Bill
k4 8 0,85 John
k5 8 0,31 Tom
k6 9 0,25 Tom

(b) R(a1 > 6)

a1 a2 a3

k3 7 0,72 Bill
k4 8 0,85 John
k5 8 0,31 Tom
k6 9 0,25 Tom

(c) R[a3]

a3

k1 Tom
k2 Jack
k3 Bill
k4 John
k5 Tom
k6 Tom

Moreover, sometimes even the rules relating two sub-
tables of type depicted in figure 1(d) are profitable. Sup-
pose sub-tableA contains quality characteristics of some
metal a measuredbefore some process of quality im-
provement (A = R(type = a)[Q1, Q2, Q3]) and sub-
table B represents the same quality characteristics of
metalb measuredafter the process of quality improve-
ment (B = R(type = b)[Q′

1, Q
′
2, Q

′
3]). Then a rule

A > B denotes the metal of typea is better even before
the improvement process than metal of typeb after im-
provement is performed. (However, this is rather tricky
example, we know it.)

We hope the preceding examples give the reader much
motivation to accept our proposition of treating the asso-
ciation rule mining process as follows. “Mining asso-
ciation rules of certain type from data tableR is a pro-
cess of searching rather simple mixtures of selections and
projections on data tableR for which the mapping rep-
resenting the certain rule type gives truth value of our
demand.”

4 Basic detailed definitions

We see that the language for writing association rules us-
ing relational operations is very expressible. We won’t
remain only in coarse motivation examples. In this sec-
tion, we provide a detailed definitions of theProbabilis-
tic logic of typed relations(PLTR) which we propose to
represent association rules in.



4.1 Typed relations

We start with basic definitions of the mathematical rep-
resentations of data tables, attributes etc. Definitions of
this sub-section are mainly based on the work [14]. How-
ever, we had to make some important modifications to
adapt the notations to our needs.

In the subsequent, we sometimes use the phrase “set
of abstract elements”. It is simply a set whose elements
are not concrete, e.g.X = {x1, x2, x3} is abstract set of
three items.

Definition 1 LetΩ be an infinite set of abstract elements
which we will call asattributes. Let eacha ∈ Ω has
assigned a non-empty setδ(a) = Da called domain of
attributea. TypeA (of relations)is any finite subset of
the setΩ. We denoteTΩ a set of all types.

A type A of relation is something like description
of the data table. It says, what attributes (columns) are
present in the data table and what data can be stored in
that attributes (attribute domain).

Example 2 Let a1, a2, a3 ∈ Ω, δ(a1) = N, δ(a2) =
Q and δ(a3) is equal to a set of all words made from
English letters of length maximum 30, then a setA =
{a1, a2, a3} is type.

It is obvious that ifA andB are types thenA ∪ B,
A ∩B andA−B are types.

Definition 3 Let Υ is infinitive set of abstract elements
which we will call asobjects. LetA ∈ TΩ is type. Let’s
denoteDA = {Da = δ(a) : a ∈ A} (speciallyD∅ = ∅).
A tuple of typeA is pair 〈k, l〉, wherek ∈ Υ and l is
such mappingl : A → DA that (∀a ∈ A)(l(a) ∈ Da).
A set of all tuples of typeA will be denoted as1A. A set
of all tuples of type{a} (a ∈ Ω) will be denoted as1a.

A tuple of typeA is intuitively a representation of one
row of data table. We can observe that(∀a ∈ Ω)(1a 6= ∅)
and(∀A ∈ TΩ)(1A 6= ∅) because definitions 1 and 3 say
thatDa 6= ∅,DA 6= ∅.

Example 4 Consider typeA from example 2. Thenu =〈
k, {〈a1, 1〉 , 〈a2, 0, 25〉 , 〈a3, James〉}

〉
wherek ∈ Υ

is a tuple of typeA.

Definition 5 (typed relation) Let A ∈ TΩ be type. A
relationR of typeA is any finite subset of the set1A.
SymbolRA denotes a set of all relations of typeA. Sim-
ilarly, a set of all relations of type{a} wherea ∈ Ω is
denoted with symbolRa.

As one can see, the notion of typed relations is sim-
ply a representation of data table. Now, we introduce
definitions of the important relational operations called
selection and projection.

Definition 6 (selection) LetA ∈ TΩ and letR ∈ RA.
A selection from relationR of typeA according to con-
ditionC is relation

R(C) = {u : u ∈ R ∧ C(u)} (15)

of typeA, too. The notationC(u) denotesa selection
condition and it constitutes the fact that conditionC
holds on tupleu.

Definition 7 (projection) LetA ∈ TΩ, B ⊆ A and let
R ∈ RA. A projection of relationR to the typeB is
relation

R[B] =
{
u = 〈ku, lu〉 ∈ 1B :(
∃v = 〈ku, lv〉 ∈ R

)
(
∀b ∈ B

)(
lu(b) = lv(b)

)}
(16)

of typeB.

Example 8 As an example of relationR of typeA (see
example 2) we can take table 1(a) (ki on the table are
objects, that is,ki ∈ Υ). The selection (a1 > 6) on that
relation is presented in table 1(b). Projection[a3] one can
see in table 1(c).

Please note that projection is defined as to hold du-
plicities. Why this is a matter see section 3.

4.2 Modelling relationships

With these basic definitions we can go forth to define
general notion of apredicate of relationship. Predicate of
relationship is simply a mapping that assigns truth value
to relations given as arguments. Since we are building
probabilistic logic, the truth value will be a probability.
Concretely, truth value will be defined as a pair of values
〈l, h〉 where0 ≤ l ≤ h ≤ 1 that form an interval of
probability (l is its lower bound andh its upper bound).

Definition 9 Probability intervalis a pair i = 〈l, h〉,
wherel, h ∈ R and 0 ≤ l ≤ h ≤ 1. A setV of truth
valuesis a set of any probability intervali. By notation
q ∈′ i = 〈l, h〉 whereq ∈ R we meanl ≤ q ≤ h.

Definition 10 LetA1, A2, . . . , An ∈ TΩ and letV be a
set of truth values thenn-ary relationship predicateis a
mappingp? : Dp? → V whereDp? ⊆ RA1 × RA2 ×
. . . × RAn

is a set calleddomain of relationship predi-
catep?.

So, relationship predicate is a mapping that assigns
to certain relations a truth value. It is obvious, we can
model various relationships that way. The definition pre-
sented above assumes the predicate to result in the inter-
val of probability. However, we can modify the defini-
tions to suit classical two-valued logic.

5 Intermezzo: Simultaneous statistical in-
ference and data mining

Before going further we should do a little discussion on
data-mining from the statistician’s point of view.

Nowadays usual practice is to use statistical tests in
association rules mining process. Statistical tests are
based on hypothesis testing. One formulates a zero hy-
pothesisH0 and appropriate alternative hypothesisHA

such that the simultaneous turning up ofH0 andHA is
impossible; that is,P (H0 ∩ HA) = 0 whereP states



probability. Hypotheses are constructed as toHA be the
event whose validity we want to be convinced of. The
appropriate statistical test then computes the probabil-
ity α at which the zero hypothesisH0 is valid. If this
probability is very small (α < 0, 05, α < 0, 01 or even
α < 0, 001) we are almost sure ofH0’s invalidity. In the
other words, we know at least with1 − α certainty that
HA is valid.

Please take into account the following important note:
whenα isn’t small, we aren’t sure ofH0’s validity; we
simply know nothing – vide e.g. [10].

Thus, stating whether a rule is important or not is
done by the certain test of hypotheses. The importance
of the rule is then derived from the level of significance
at which the zero hypothesis can be rejected – that is,
the truth value of the rule is simply1 − α. One can see
that the same approach is enabled in this work; we use
interval of probability as the rule’s truth value.

However, when performing many tests of hypotheses
at the time and rejecting manyH0 hypotheses at very
small level of significanceα, the resultant probability of
validity is greater thanα. In fact, the probability of erro-
neous reject of at least oneH0 tends rapidly to 1.

This phenomenon is often called assimultaneous sta-
tistical inference(see [10] etc.). We can explain it using
Bonferroni’s theorem (vide [11]) which sounds as fol-
lows.

Consider random eventsA1, A2, . . . , An. Each of
them has got some certain probabilityP (Ai). Bonfer-
roni’s theorem says that for the probability of the event
A1∩A2∩. . .∩An (the simultaneous occurrence of every
eventAi) holds the following:

P (A1 ∩ . . . ∩An) ≤ max

(
0, 1−

n∑
i=1

(
1− P (Ai)

))
.

(17)
TakeAi to be the validity of anyi-th HA. SoP (Ai) =
1 − αi, whereα is level of significance at which we
have rejected corresponding zero hypothesisH0. Thus
the probability that everyH0 was rejected rightfully is

P (A1 ∩ . . . ∩An) ≤ max

(
0, 1−

n∑
i=1

(αi)

)
. (18)

The sum tends fast to 1 so the right side gets to zero very
quickly. For example, when performing 20 tests and re-
jecting zero hypotheses atα = 0, 05 in each test, the
overall probability of at least one unauthorized rejection
is greater or equal to20 · 0, 05 = 1.

What is the consquence? In contrast to common sta-
tistical analyses, data-mining results can not be treated
as natural law or undisputed truth. Data-mining gives
answers to the questions of type “whatmaybeholds in
the area described by my data?” E.g. work [7] proposes
to understand the association rules as enumeration of hy-
potheses that are supported with data or as hypotheses
the data tend to.

6 Advanced definitions
Although we have vindicate the possibility to ignore si-
multaneous statistical inference (vide section 5), some-
times it is useful to prevent it even in data-mining results.

The concrete task we are accually working on is the situ-
ation when some mined rules belongsomehowtogether.

For example, let attributeA be categorical with do-
mainδ(A) = {1, 2, 3, 4} and let attributeB be quantita-
tive, that isδ(B) = R. Consider the following rules:

R(A = 1)[B] >Z–testR(A = 2)[B], (19)

R(A = 2)[B] <Z–testR(A = 4)[B], (20)

R(A = 3)[B] <Z–testR(A = 4)[B]. (21)

These rules logically belong together because they ex-
press strong differences in attributeB between objects
that differ in attributeA. We are working on a method
that treats such rule sets specially and since we manage
a set of rules as one complicated rule, it is useful for us
to know the overall p–value. Videlicet, we are interested
what is the probability of the truthfulness of the rule(

R(A = 1)[B] >Z–testR(A = 2)[B]
)
∧

∧
(
R(A = 2)[B] <Z–testR(A = 4)[B]

)
∧

∧
(
R(A = 3)[B] <Z–testR(A = 4)[B]

)
. (22)

6.1 Probabilistic connectives

In this sub-section we will define logical connectives
able to work with probability intervals as presented in
definition 9.

Definition 11 LetV be a set of truth values.Probabilis-
tic connectiveis a mappingι? : V n → V wheren is
arity of probabilistic connectiveι?.

Definition 12 LetV be a set of truth values.Probabilis-
tic negationis unary probabilistic connective¬? : V →
V such that¬?(〈l, h〉) = 〈1− h, 1− l〉 .

We can see that the traditional feature of negations
holds for our probabilistic negation too:

¬?
(
¬?(i)

)
= i. (23)

Definitions of probabilistic conjunctions and disjunc-
tions will be based on the commonly known notations of
t-norm and t-conorm.

Definition 13 LetV be a set of truth values.Triangular
norm (t-norm)is any binary probabilistic connectiveT :
V × V → V where∀x, y, z ∈ V holds:

1. T (x, y) = T (y, x); (commutativity)

2. T
(
x, T (y, z)

)
= T

(
T (x, y), z

)
; (asociativity)

3. if min(x) ≤ min(y) then

min
(
T (x, z)

)
≤ min

(
T (y, z)

)
and ifmax(x) ≤ max(y) then

max
(
T (x, z)

)
≤ max

(
T (y, z)

)
;

(monotony)

4. T
(
〈0, 0〉 , x

)
= 〈0, 0〉 andT

(
〈1, 1〉 , x

)
= x.

(restriction)



Definition 14 LetV be a set of truth values.Triangular
co-norm (t-conorm)is such binary probabilistic connec-
tiveS : V × V → V where∀x, y ∈ V holds:

S(x, y) = ¬?
(
T
(
¬?(x), ¬?(y)

))
(24)

andT is t-norm.

Concrete t-norms are interpreted as probabilistic con-
junctions and t-conorms as probabilistic disjunctions.
We can easily check the validity of the subsequent equa-
tion:

T (x, y) = ¬?
(
S
(
¬?(x), ¬?(y)

))
. (25)

Specific t-norm and t-conorm is defined accordingly
to Bonferroni’s theorem about probability of random
event conjunction (see [11]).

Definition 15 Let i1, i2 ∈ V and i1 = 〈l1, h1〉, i2 =
〈l2, h2〉. Binary probabilistic connective∧?

safe defined
as

∧?
safe(i1, i2) =

〈
max(0, l1 + l2 − 1), min(h1, h2)

〉
(26)

is called assafe conjunction.
Binary probabilistic connective∨?

safe defined as

∨?
safe(i1, i2) =

〈
max(l1, l2), min(1, h1+h2)

〉
(27)

is called assafe disjunction.

Theorem 16 Safe conjunction∧?
safe is t-norm and safe

disjunction∨?
safe is t-conorm of∧?

safe.

Proof. Evident.

With connectives defined in this sub-section we can
even join various relationship predicates together.

7 Probabilistic Logic of Typed Relations

Now we have defined all notions necessary for creation
of language of Probabilistic Logic of Typed Relations
(PLTR).

Definition 17 (alphabet) The PLTR language alphabet
consists from the following symbols:

• Symbols for typed relations:R, S, T , . . .

• Symbols for attributes:a, b, c, . . .

• Logical connectives for creation of selection condi-
tions:¬, ∧, ∨,⇒,⇔

• Relational operations:−, ∪, ∩

• Symbols ofn-ary relationship predicates:p?, q?,
r?, . . . ,≤?, . . .

• Probabilistic logical connectives:¬?, ∧?, ∨?

• Auxiliary symbols (parentheses, brackets):(, ), [, ]

Definition 18 (language) Language of PLTR is a set
J of formulae created from the alphabet of the PLTR
language accordingly to the following conditions. Let
A1, A2, A3, A,B ∈ TΩ be types of relations and let
A ⊆ B. We define:

• selection condition of typeA:

1. Any symbola ∈ A of attribute’s name is a
selection condition of typeA.

2. If C1, C2 are selection conditions of typeA
then also¬C1, (C1 ∨C2), (C1 ∧C2), (C1 ⇒
C2) and (C1 ⇔ C2) are selection conditions
of typeA.

3. There is no other selection condition of type
A.

• term of typeA:

1. Symbols of relations of typeA are terms of
typeA.

2. If T1, T2 are terms of typeA then also(T1 ∪
T2), (T1∩T2) and(T1−T2) are terms of type
A.

3. If T is term of typeA andC is selection con-
dition of typeA then alsoT (C) is term of type
A.

4. IfA = {a1, a2, . . . , ak} ⊆ B andT is term of
typeB thenT [a1, a2, . . . , ak] is term of type
A.

5. There is no other term of typeA.

• formula PLTR:

1. If T1, T2, . . . , Tn are terms of typeA1, A2,
. . . ,An andp? is n-ary relationship predicate
thenp?(T1, T2, . . . , Tn) is formula.

2. If F1, F2 are formulae PLTR then also¬?F1,
(F1∨?F2) and(F1∧?F2) are formulae PLTR.

3. There is no other formula PLTR.

Definition 19 (model) Model of PLTR is a pairM =
〈Q, g〉whereQ is a set of typed relationsR1,R2, . . . ,Rn

of typesA1, A2, . . . ,An and g is a mapping assigning
an element fromQ to every symbol of typed relations.A
set of all modelsis denotedM.

The model definition assumes the relationship predi-
cates to have fixed interpretations all the time. (That is,
the relationship predicates interpretations are the same
for all models.)

Definition 20 LetV be a set of truth values (that is,V is
a set of all probability intervals).The evaluating function
V al is a function which maps formulaF and modelM =
〈Q, g〉 to the interval of probability. That is,V al : J ×
M → V . Domain of functionV al depends on domains
of relationship predicates used in formulaF .

The receipt to get the value of functionV al is as fol-
lows. LetM = 〈Q, g〉 be a model of PLTR then:

1. One must find out values of all terms recursively.
(For that case let us introduce a functionV al′ for
term evaluation):



(a) LetR be the symbol of typed relation then

V al′(R) = g(R).

(b) LetR,S be the terms then

V al′(R ∪ S) = V al′(R) ∪ V al′(S),
V al′(R ∩ S) = V al′(R) ∩ V al′(S),
V al′(R− S) = V al′(R)− V al′(S).

(c) LetT be the term anda1, . . . , an ∈ Ω then

V al′(T [a1, . . . , an]) = V al′(T )[a1, . . . , an].

(d) LetT be the term andC be the selection con-
dition then

V al′
(
T (C)

)
=
(
V al′(T )

)
(C).

2. One must figure out the formula’s truth value recur-
sively:

(a) Let T1, . . . , Tn be the terms and letp? be
the n-ary relationship predicate (defined on
〈V al′(T1), . . . , V al′(Tn)〉) then

V al
(
p?(T1, . . . , Tn)

)
=

= p?
(
V al′(T1), . . . , V al′(Tn)

)
.

(b) LetF,G be formulae then

V al
(
¬?F

)
= ¬?

(
V al(F )

)
,

V al(F ∧? G) = ∧?
(
V al(F ), V al(G)

)
,

V al(F ∨? G) = ∨?
(
V al(F ), V al(G)

)
.

One can find many well formed formulae of PLTR
language in section 3.

8 Semantic system of PLTR
This section provides definitions oflogical followings
which are necessary for writing down considerations
about PLTR formulae. We start with definition taken
from book [7]:

Definition 21 A semantic systemis determined by an
non-empty setSent of formulae, a non-empty setM of
models, a non-empty setV of truth values and an evalu-
ating functionV al : (Sent× M) → V .

We need one more definition from book [7]:

Definition 22 Let S = 〈Sent,M, V, V al〉 be a seman-
tic system and letV0 ⊆ V be a set ofdesignated values.

• A formulaϕ ∈ Sent is V0-true in a modelM (no-
tationM |=V0 ϕ) if

V al(ϕ,M) ∈ V0.

• A formulaϕ ∈ Sent is V0-tautology(notation|=V0

ϕ) if it is V0-true for each modelM ∈ M such that
the formulaϕ is defined on it.

• Formulaϕ ∈ Sent is a logical V0-consequenceof
a setΨ ⊆ Sent of formulae (notationΨ |=V0 ϕ) if
∀M ∈ M the following holds:(

(∀ψ ∈ Ψ)(M |=V0 ψ)
)
⇒ (M |=V0 ϕ).

• Formulaeϕ ∈ Sent andψ ∈ Sent are logically
V0-equivalent(notationϕ ≡V0 ψ) if

(ϕ |=V0 ψ) ∧ (ψ |=V0 ϕ).

For new we introduce even stronger concepts:

Definition 23 Let S = 〈Sent,M, V, V al〉 be a seman-
tic system.

• Formulaϕ ∈ Sent is logical consequenceof a set
Ψ ⊆ Sent of formulae (notationΨ |= ϕ) if

(∀V0 ⊆ V )(Ψ |=V0 ϕ).

• Formulaeϕ ∈ Sent andψ ∈ Sent are logically
equivalent(notationϕ ≡ ψ) if

(∀V0 ⊆ V )(ϕ ≡V0 ψ).

Example 24 Here are examples of some simple logical
equivalences:

p?
(
R(C1) ∪R(C2)

)
≡ p?

(
R(C1 ∨ C2)

)
,

p?
(
R(C1) ∩R(C2)

)
≡ p?

(
R(C1 ∧ C2)

)
,

p?
(
R(C1)−R(C2)

)
≡ p?

(
R(C1 ∧ ¬C2)

)
.

9 Related work
Association rules have been well researched. First men-
tion about them is dated in sixtieth years of the twentieth
century. Czech authors Hájek, Havel and Chytil in 1966
presented the work [6] about automated hypothesis test-
ing in method called GUHA. Their work appeard long
time before concepts such as data mining or knowledge
discovery becomes familiar. Although their work was
presented many times in the whole world, many peo-
ple interested in data mining often erroneously present
Agrawal, Imielinski and Swami ([1]) as the first people
who tried to mine association rules. (See e.g. [9] on page
276.)

Hájek and Havŕanek have written the book [7] where
the concepts of the automatized hypotheses generation
were very well described. They based the thinking of
the rules as of formulae interconnected withgeneralized
quantifiers.

Generalized quantifiers is natural generalization of
classical quantifiers∀ (universal) and∃ (existential). For
example, Rescher’s (1962) plurality quantifierW says
that “most objects satisfy the formula”. The second ex-
ample, the Church’s (1951) quantifier of implication (not
to be confused with the logicall connective of implica-
tion)⇒o (ϕ1(o), ϕ2(o)) says that theϕ2 formula is true
for all objects for which the formulaϕ1 is true.



Authors of the GUHA method have introduced many
such generalized quantifiers that model various relation-
ships.

This work proposes the other look at association rules.
We don’t treat association rules as formulae intercon-
nected with quantifiers but rather as pieces of data de-
scribed with relational operations interconnected with
predicates. The difference is in the level of logical no-
tions where the knowledge is presented. GUHA uses
predicates simply to denote attributes and it models re-
lationships with quantifiers. We hide the fashion of de-
scribing the objects figuring in a rule in functional sym-
bols and the relationship modelling arises in predicates,
already.

10 Conclusion and future work
In this paper, we have presented summary overview of
the best-known association rule types. We have designed
a new language usable for rule representations at that ba-
sis and we have shown many examples of how to use this
language (see also our work [4]). The usage of the pre-
sented language has directly led to some new types of
association rules (vide rule (13)).

Please note that our primary goal of the language de-
sign was to create logic suitable for our further research
on similar properties of various association rules. We
confess the fact that our language may not be ideal instru-
ment for rule representations to the end-user (analyst).

Our future work is focused to the study of properties
of so-calledcosymmetric rules. Actually, we don’t have
precise definition of what a cosymmetric rule is. (Some
notes may be found in [5].) Intuitively, we can say that
cosymmetric rule is a rule of the form

D(C1)[A1, . . . , An] >? D(C2)[B1, . . . , Bm] (28)

where two sub-tables are compared and the mapping>?

tells us whether the first sub-table issomehowgreater
than the second one. For example, (11) is a typical mem-
ber of cosymmetric rule class. It comes to light that the
class of cosymmetric rules is very large. Our research
shows that even the rules (1), (2), (3) could be treated as
cosymmetric.

We are also working on fast algorithms for mining the
cosymmetric rules. See [3] for the implementation of the
generic framework for mining frequent conjunctions.

In the centre of interest stands the problem of visu-
alization of cosymmetric rules – the usage of concep-
tual lattices for such purposes is elaborated. We also
study the benefits of displaying the cosymmetric rules as
quasi–ordered set in slightly modified Hasse’s diagram.
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