
Deductive Approach to Semistructured Schema Evolution ∗

c© D. Luciv Ph.D. adviser: B. Novikov

Saint-Petersburg State University

dluciv@lanit-tercom.com

Abstract

Schema evolution for different methodologies

is an interesting area of research for now and

future.

Some results of research of semistructured

database schema evolution are presented here.
Semistructured database schema model based

on [11, 4] and its evolution techniques are in-

troduced. Extensions to data model are also de-
scribed.

Some refactoring problems are described.
Declarative approach to schema evolution and

refactoring is presented.

1 Introduction

As one of the most popular universal data interchange

formats, XML [2] needs to be structured and constraints

applied to XML data are to be formalized.

XML is now often used for short message interchange

and storing small pieces of data for particular appli-

cations. Number of such applications is relatively big
and in this case data structure of XML can be restricted

with only constraints applied by XML itself: the data

should have hierarchical form with tags and attributed
and should obey XML syntax.

For more serious applications XML data schema con-

straints are practically defined and then checked using
such means as DTD [12], XML Schema [21], Relax-

NG [1], etc. Although for productivity reasons genuine-

XML (unparsed textual) data packages are still relatively
small for such applications, they can have a complicated

structure.

For all methodologies maintaining data structure is in-

teresting, but difficult. One of research areas is database
schema evolution for relational, object-oriented [11],

semistructured hierarchical [4, 5, 10, 14, 15] databases,
and a number of related areas like XML-relational map-

ping [3, 7, 8, 14].

Traditionally, data schema evolution is not a part of

the both object-oriented, relational and semistructured
data definition methodologies, however data structure

often requires being alterable. This comes from prac-

tice. As an illustration we can say that almost any re-

∗ This research was partially supported by Microsoft Research
grant No. 2004-459A and RFBR grant No. 04-01-00173

Proceedings of the Spring Young Researcher’s Colloquium

on Database and Information Systems SYRCoDIS, St.-Petersburg,

Russia, 2005

lational database has powerful interface for schema al-

tering, and relational databases are mostly used to store
large amounts of data. Other kinds of databases often

use relational engines behind their semistructured and/or

object-oriented interfaces to increase productivity.

Usually people think about real-world concepts like
entities, relations and attributes when modeling the data.

The same can be said about data schema evolution

controlled by human operator. Existing semistructured
database schema evolution techniques provide “low-

level” evolution operations over particular schema items

like tags, attributes, associations, etc. However some-
times operator thinks about more high-level operations

like splitting entities, moving attributes from one entity

to other, etc - which can be called “refactoring”.

This paper describes some investigations in area
of schema evolution and refactoring and possible ap-

proaches to it.

The remaining paper is organized as follows:

1. related work is analyzed;

2. basics for semistructured hierarchical data model-

ing are defined;

3. restrictions on XPath expressions are defined and

applied when modeling associations;

4. schema invariants are described;

5. declarative approach to invariants implementation is

presented;

6. declarative approach to refactoring is introduced,

refactoring operations are described;

7. some conclusions are presented.

2 Related Work

Schema evolution is an interesting problem for almost all
data modeling methodologies.

Object-oriented database schema evolution technique
for TIGUKAT ODBMS was proposed in [11]. This

model was selected as basic one to describe schema evo-

lution for hierarchical semistructured databases, particu-
larly, XML in [4].

Both [11] and [4] models are simple and illustrative.

To make them more flexible, they were modified to han-

dle regular expressions [5] and reference-based associa-
tions [10].

We already have results in extending existing
semistructured database model by adding associations to

it. Like [5], we base on [4] model for document tag struc-

ture. New rules for association evolution are also added.



Another interesting research area of research is
onthology evolution [18, 17]. Some onthology mod-

els, like conceptual graphs [16], can be considered a

conservative extension to first-order logic and used to
express XML data model too. Example Prolog inter-

preter with conceptual graph support can be obtained
at http://prologpluscg.sourceforge.net/
as a part of Amine Platform

(http://amine-platform.sourceforge.net/).

3 Evolution of Data Schema

3.1 Data Modeling Basics

Let us consider sample data model to be managed (fig. 1).

City

name : String

Document

Region

name : String

Square

name : String

Building

number : int

Street

name : String

Clinic0..*

0..*

0..*

0..*

Figure 1: Data Structure

Given data structure mostly consists of entities and

aggregations between them. Some associations are not

supported by XML syntax: in fact XML supports only
strong aggregation. Other kind of associations that is de-

scribed in [10] and in this paper are associations based on
XML references. Those associations are one-way navi-

gable.

The model needs some change to become realistic.
Modified model is shown on fig. 2. Here we have re-

solving entities for Street and Building. Two resolving

tags for entities those are to be referenced using “? → ∗”
associations are here added to the model. All associa-

tions are now references with single direction (as navi-
gability shows). By the way, resulting second model is

poorer than first one: for example, we can’t list Regions

containing given Street using revised data model.

3.2 Notations and Definitions

3.2.1 Basic Notations

Following notations are defined by [4]:
τ tag graph

s, t tags

a attribute
m tag or attribute

N(t) “native” attributes of t
Ne(t) essential “native” attributes of t

Document

City

name : String

Region

name : String

res_Street

streetref : Street

Street

name : String

Clinic

res_Building

buildingref : Building

Building

number : int

Square

name : String

0..*

0..*

Figure 2: Real (physical) Data Structure

P (t) set of immediate predecessors of
tag t

Pe(t) set of essential immediate prede-
cessors of tag t

PL(t) t predecessors graph

H(t) t inherited attributes
I(t) t interface - inherited and native

attributes

inst(s), inst(a) instances of tags s or a
val(inst(s)),
val(inst(a))

values of inst(s), inst(a)
respectively

A union of all tags’ native

attributes

αx(f, τ) = {f(x)|x ∈ τ} – the set of values of f
where x passes τ

Other definitions, dedicated for association modeling,

are introduced below.

All desired invariants (schema axioms) are defined in
[4, 10].

3.2.2 Restrictions To XPath, Association Modeling

Here we constrain XPath expression class to be simple

enough to analyze. Some of described notions were al-
ready defined and used in [10], here they are described

broader.

Let us consider association to be reference from tag t
towards tag s. Tag s is identified by b attribute, tag t uses
a attribute to refer tag s. The reference is implemented

using XML key and keyref constructs.

Example XPath expression looks like
“ max(/Document/City/Street/Building
[parent::Street/@name="Smiths’"]/@number)”.

It contains attributes (@name, @number), axes (im-

plicit child:: and explicit parent::), predicate
(...="Smiths’") and term (max(...)). See[19] for

more information.

Although above XPath expression does not employ

every possible XPath functionality (e.g. “|”, other oper-
ations and advanced features), it is complicated enough.

Here we do not need to formalize every kind of XPath

expression.

http://prologpluscg.sourceforge.net/
http://amine-platform.sourceforge.net/


The biggest own subclass of XPath expressions de-
fined in this paper is a class of Simplified expressions.

Such expressions do not use axes (except child::),

predicates, terms and operations. The most powerful el-
ement of this class is “//” axis. This axis can be easily

simulated by substitution of “//” with all possible path
sections and then uniting search results. This operation

is finite because [4] does not use cycles in document

schemas.
Simplified expressions, like other XPath expressions,

are in real XML documents, not schemas. However

Simplified expression can be described using document
model terminology. It can be considered as a function

p : τ → 2τ because if we know what tag is an argument

instance of, we always know all possible tags which are
resulting values instances of.

We can constrain result set of Simplified expression

this way: ♯{p(t)} = 1, ∀p ∈ SP, t ∈ τ .
Members of such expressions class act as SP ∋ sp :

τ → τ . SP class is called Simple expressions here. We
here denote the set of simple XPath expressions as SP ,

so SP (t) is the set of tags s which can be reached from

t using simple XPath expressions. So αt(SP (t), υ) ⊂ τ
for υ ⊂ τ . We are also to define A as

⋃
t∈τ

N(t). So

notation now includes:
SP (t) subgraph of τ reached by simple XPath

expressions from t
A union of all tags’ native attributes

Above explanations’ goal is to make nature of SP
easy to understand. Formally we can define SP as
{s|t ∈ PL(s)} ∪ t.

Associations are represented with keys and references

[10]:

keydecl : τ × SP × (A ∪ τ) → K , so

K = {fk : {val(m)} → {inst(s ∈ τ)}},

fk is the key function

and

keyrefdecl : τ × SP × (A ∪ τ) × K → R, so

R = {fr : {inst(t)} → {val(m)}},

fr is the key reference function.

Finally, for instances of tags we require

fk = keydecl(t1, p1, m1), fr = keyrefdecl(t2, p2, m2, fk)

t1 ∈ PL(t2);

∀e2 ∈ {inst(p2(t2))} ∃e1 ∈ {inst(p1(t1))} :

(fk · fr)(e2) = e1.

3.2.3 Sets

Following notations for key and reference modeling are

introduced by [10]:
KC(fk) Coverage of key with function fk =

keydecl(t, p1, a1)
RC(fr) Coverage of reference with function

fr = keyrefdecl(s, p2, a2, fk′)
CK(t) Key declarations covering t ∈ τ
CR(t) Reference declarations covering t ∈ τ

NK(t) “Native” key declarations of t ∈ τ
NR(t) “Native” reference declarations of t ∈ τ

CRe(t) “Essential” reference declarations of
t ∈ τ . Here we mean reference declara-

tions which base on essential attributes

of referencing tag and it’s essential par-
ents

NRe(t) “Essential native” reference declara-

tions of t ∈ τ . Here we mean reference
declarations which base on essential at-

tributes of referencing tag

3.2.4 Invariants

The set of axioms (denoted as (1)–(9) here) given in [4]

is extended by following ones in [10]:

Axiom Formal representation

(KR1) NK(t) = alphas(keydecl(
s, p : p(s) = t, a ∈ N(t)), PL(t))

(KR2) NR(t) = αs(keyrefdecl(
s, p : p(s) = t, a ∈ N(t), ∗), PL(t))

(KR3) ∀fr ∈ R ∃fk ∈ K :
fr = keyrefdecl(t ∈ τ, p ∈ SP,
m ∈ (A ∪ τ), fk)

(KR4) ∀t ∈ τ CR(t) ∈ αs(
keyrefdecl(∗, ∗, ∗, s), CK(t))

(KR5) NRe(t) = αs(keyrefdecl(
s, p : p(s) = t, a ∈ Ne(t)), PL(t), ∗)

They are named as axioms of -native keys, -native ref-
erences, -declaration, -coverage, -“essential” references

respectively.

Consistency and completeness of invariants (1)–(9)

are proved in [4] by following theorem:

Theorem 1 Schema axioms are sound and complete,

so if we have Pe(t) and Ne(t) defined for each tag

in schema our schema satisfies axiom set and making

changes to this schema is govered by the sets.

Proof

is given in[4]

End of Proof

Key and reference invariants and formulated in [10]
and proof idea can be expressed as follows:

Theorem 2 Schema axioms are sound and complete, so

if we have Pe(t), Ne(t), NK(t), NRe(t) defined for

each tag in schema our schema satisfies axiom set and

making changes to this schema is governed by the sets.

Proof

Theorem 1 says that schema without key and refer-
ence declarations satisfies axioms (1)–(9) when Pe(t)
and Ne(t) are defined for each tag. But axioms (1)–(9)
say nothing about keys and references so new model sat-

isfies those axioms. The same fact relates to model with-

out keys and references and axioms (KR1)–(KR5): no
proof needed.

Hence we are now to prove that keys and references

of document schema satisfy new axioms (KR1)–(KR5).



(KR1),(KR2) Those axioms are satisfied obviously
due to key and reference semantics

presented here.

(KR3) Every reference should base on corre-
sponding key.

(KR4) We have noted above that reference

coverage is always contained by key
coverage. Thus if we use reference

covering our tag, we are also to have

key declaration covering our tag.
(KR5) Like (KR1),(KR2) is satisfied due to

reference semantics. It is always able

to build NR(t) set using NRe(t) and
N(t) sets.

End of Proof

4 Declarative Approach

4.1 Description of Schema

All schema invariants are already defined using first-
order logic. Evolution is done by modifying governing

sets [4] and recalculating other ones.

Possible way to make the schema practically declar-
ative is to assume XML document schema stored in de-

ductive database.

Description below is equivalent to above schema in-
variants but can be programmed using Prolog [9] in

nearly unchanged form. However description is simpli-
fied here to make it more illustrative yet functional.

Note that next section describes data schema facts, but

does not describe any method to ensure schema is consis-
tent. It is not a vulnerability of the approach: evolution

operation set is full, any operation leaves correct schema

in correct state, so any correct schema can be “unrolled”
from empty one.

Example set of facts below can be interpreted as state

of schema at particular moment. Loading data schema
state “as-is” can also be useful, like restoring relational

databases from dumps with constraints disabled tem-

porarily for productivity.

4.1.1 Facts of Schema

Facts of deductive databases are used to store informa-

tion that can not be deduced. This is primary information
about data schema.

Illustration below defines subset of entities from data

model shown on fig. 2. Schema can be described as fol-
lows:

%--- EntityModel

tag(’:root’). tag(’:term’).

tag(’Document’). tag(’City’).
tag(’Square’). tag(’Street’).
tag(’Region’). tag(’res_Street’).

inPe(’City’, ’Document’).
inPe(’Square’, ’City’). inPe(’Square’, ’Region’).
inPe(’Street’, ’City’). inPe(’Region’, ’City’).

inPe(’res_Street’, ’Region’). % - non-essential

inPe(’:term’, ’Square’). inPe(’:term’, ’Street’).

Notes (here and below):

• Prolog syntax is somewhat changed to optimize pa-

per usage and to group some data;

• attributes are named uniquely for simplicity to dis-
tinguish them by name.

In case we can use model from fig. 1 directly (our
methodology allowed them), we should write a fact like

inPe(’Street’,’Region’). Moreover, Schema de-
fined is not complete in area of Region→Street ref-

erence because res_Street references Street via ref-

erence based on attribute streetref.
Attributes can be described as follows:

%--- AttribModel
inNe(’City’, ’City@name’).
inNe(’Street’, ’Street@name’).
inNe(’Region’, ’Region@name’).
inNe(’Square’, ’Square@name’).

inNe(’res_Street’, ’res_Street@streetref’).

Two sections of Prolog facts above define almost ev-

erything needed to describe model as [4] proposes, but
references defined in [10] are also to be defined in case

when we consider them as evolution object.

keydecl and keyrefdecl constructs require a bit more
explanation before defining them. Reference axiomatic

in [10] is based on key and reference functions which
allow us, when superposed, identify referred tag instance

for referring one including all references defined for it.

Those functions are “generated” by keydecl and
keyrefdecl which are, formally, functionals. Such a de-

scription with functionals and functions can be left al-

most unchanged when implementing XML DBMS using
a kind of functional language for it, but we use logical

language to describe data schema here.

keydecl construct can be used to identify resulting key
function keydecl(t, p, a) as:

%--- RefersModel
%---- Keys
inNK(’City’, [’Street’], ’Street@name’).

or, with other context:

inNK(’Document’, [’City’, ’Street’],
’Street@name’).

in case we want document-unique street name.
It is possible to reach key-covered tag by different

ways so we need a list (or other ordered container) to

represent path from SP here.
keyrefdecl functional gets keydecl result as an argu-

ment, but it is correct to say that keydecl can be identified

by it’s argument, so practically keyrefdecl gets 6 param-
eters in deductive database, e.g.:

%--- RefersModel
%---- Refs
inNRe(
’City’, [’Region’, ’res_Street’],
’res_Street@streetref’, ’City’,
[’Street’], ’Street@name’ ).

4.1.2 Goals of Schema

Sets which are not yet defined using Prolog are calcula-

ble and can be omitted theoretically, however [11, 4, 10]
defined them for simplicity, and we will also use those

definitions below.

In deductive database those sets should not be as-
serted during schema evolution, they can be considered

as “read-only” and calculated using schema invariants.

Thus they are defined using goals, not facts.



%--- Calculable Sets

% Pred. Graph
inPL(S, T) :-
inP(S, T).
inPL(S, T) :-
inP(S, U),
U=\=T,
inPL(U, T).
inPL(S,S).

% Immediate Pred.
inP(T, S) :-
inPe(T, S),
inPe(T, X),
X=\=S,
not(inPL(X,S)).

inP(T, S) :-
inPe(T, S),
tag(X),
X=\=S, %single Pe
not(inPe(T,X)).

% Inh. attributes
inH(T, A) :-
inP(T, S),
inI(S, A).

% Native Attributes
inN(T, A) :-
inNe(T, A),
not(inH(T, A)).

% Interface
inI(T, A) :-
inN(T, A).
inI(T, A) :-
inH(T, A).

% :root & term
inPL(_,’:root’).
inPL(’:term’,_).

Above Prolog goals can be used almost without
changes except recursive goals for PL sets. In experi-

ments they were optimized and allowed to check if any of

arguments are not free term and then decide how to recur.
For example, when we try to solve inPL(X, ’City’)
it is better to recur down from City tag, however ax-
ioms and goals above recur upwards only. Calculation

of P sets was also changed in practice: in [11, 4] in-

variants were defined to handle sets of unique elements,
however Prolog gives a number of non-unique solutions

for inP and inPL above goals (all variants) for any un-

bound arguments. Practically, some tricks with Prolog
cut-off were used. All those tricks and optimizations are

beyond this paper.

Detailed descriptions of sets above and formulae for
schema invariants are placed in [4]. Those formulae are

used “as-is” their calculation require no imperative de-

scription at all.

NK(τ) and NRe(τ) sets are governing sets for keys

and references, other are calculated. Invariants from [10]

can be described like this:

last(l, e) :-
eq(l, (h)), eq(e, h).
last(l,e) :-
eq(l, (h|t)), last(t,e).

inNR(Rtag, Rpath, Rattr, Ktag, Kpath, Kattr):-
inNRe(Rtag, Rpath, Rattr, Ktag, Kpath, Kattr),
last(Rpath, RRtag),
inN(RRtag, Rattr).

4.2 Declarative Approach to Evolution

Basic operations which were initially defined in [4] for

the data model without associations are modified to han-
dle references. Evolution operations from [10] are here

defined considering schema as deductive database de-

scribed above.

Note that we use some ISO Prolog goals like

findall(Var, Term, Result) [6]. However Prolog

code below can be used as-is, this code is dedicated to il-
lustrate main ideas of possible schema evolution engine

implementation. Some checks are here omitted and evo-

lution operations are defined as simply as possible.

Evolution operations are labeled «evo.M.N» below.

evo.1.1. adding new attribute

Rule described in [4]. No additional requirements and

activities needed.

addAttribute(Tag,Attr) :-
tag(Tag),
assert(inNe(Tag,Attr)).

evo.1.2. deleting attribute

When deleting attribute a of tag t, all key declarations

in NK(t) and references in NR(t) are deleted. See op-

eration of key removal (3.2) below.

As noted in [4], an ability to add deleted attribute to

Ne of tags in SP (t) is useful. Implementation of this

functionality should also redeclare keys in NK(t) and
references in NR(t). Sample implementation is cum-

bersome and omitted here.

evo.2.1. adding aggregation between two tags

Rule described in [4]. No additional requirements and
activities needed.

addAggregation(Tag,Parent) :-
tag(Tag), tag(Parent),
assert(inPe(Tag,Parent)).

evo.2.2. removing aggregation between two tags

This operation is relatively complicated in both [4]

and here.

Let us call aggregated tag t.

All key declarations in NK(t) are modified to satisfy

(KR4) axiom. This means that declarations move upward

unless they cover all references again. Note that if t is
no more aggregated by other tags it implicitly becomes

child of root tag ⊤, and all corresponding key declara-

tions move to ⊤.

All reference declarations in NR(t) are deleted if they

become invalid. All reference declarations in t move up

to save references in αs(NR(s), SP (t)).
A sample code (qualitatively simplified) here executes

key redeclaration according to (KR4).

leastCommonEPL(Tag1,Tag2,Pred,Path1,Path2) :-
... .
% finds least common predecessor in both
% PL(Tag1)\{Tag1} and PL(Tag2)\{Tag2} and
% pathes to it. Trivial but cumbersome.

retractDependentRefs(Child, Parent, DKP) :-
findall((RT,RP,RA,KT,KP,KA),
(inNRe(RT,RP,RA,KT,KP,KA),
member(Child, KP),member(Parent, [KT | KP]),
retract(inNRe(RT,RP,RA,KT,KP,KA)) ), DKP).

correctKeyRefs(Child, Parent, DK) :-
findall(inNRe(RT,RP,RA,KT,KP,KA),
(inNRe(RT,RP,RA,KT,KP,KA),
member(Child, KP),
member(Parent, [KT | KP]),
retract(inNRe(RT,RP,RA,KT,KP,KA)),
retract(inNR(KT,KP,KA)),
leastCommonEPL(Parent,Child,LKE,PPath,CPath),
addKey(LKE,CPath,KA),
addReference(RT,RP,RA,LKE,PPath,KA)
), DK).

Then we can invoke them:

removeAggregation(Child,Parent) :-
retractDependentRefs(Child, Parent, _),
correctKeyRefs(Child, Parent, _),
retract(inPe(Child,Parent)).



evo.2.3. adding new tag

The rule is described in [4]. No additional require-

ments and activities needed. Prolog goal below also il-

lustrates some checks of bound variables. Those checks
are useful live applications.

addTag(Tag, PeList) :-
findall(X, (member(X, PeList),
not(tag(X))), BadList), %only sample check
length(BadList, 0), % they all are tags
assert(tag(Tag)),
findall(X, (member(X, PeList),
addAggregation(Tag, X)), Successfull),
addAggregation(’:term’, Tag).

evo.2.4. removing a tag

The rule is described in [4] for basic structure without

keys and references. Removed tag is called t. Like in
operation (1.2) of attribute removal, the reference decla-

rations in NRe(t) can be modified to cover all children
of t. For all such reference declarations we are to create

corresponding reference attributes in children of t. Sam-

ple Prolog implementation is not placed here because of
its awkwardness.

evo.3.1. declaring new key

Key declaration is canceled if it does not satisfy one or
more of (KR1)-(KR5). Sample Prolog code omits checks

because they are cumbersome and can be considered as

unnecessary technical details here. It requires almost no
checks in theory, either.

addKey(ContextTag, Path, KeyAttr) :-
% no checks
assert(inNK(ContextTag, Path, KeyAttr)).

evo.3.2. removing a key

During key declaration fk = keydecl(t, p, a) removal,

all reference declarations fr = keyrefdecl(t′, p′, a′, fk)
are also removed. Sample Prolog implementation is not

interesting enough to place here.

With current key-reference model is is the only way
to perform such an operation. However if we support

Simplified XPath expressions instead of Simple ones, we

can identify instances of many tags with one key. In this
case we potentially can redeclare the key by adding it to

NK sets of t tag’s children. This will keep references to

fk unchanged. But this case is not considered here.
evo.4.1. declaring new reference

Reference declaration is canceled if it does not satisfy

one or more of (KR1)-(KR5). Sample Prolog implemen-
tation is not interesting enough to place it here.

evo.4.2. removing reference

This operation does not require any additional opera-

tions. Like operation (1.2), it can be compensated with

declaration of references belonging to NR sets of some
child tags. Sample Prolog implementation is not inter-

esting enough to place here.

In case when we support simplified XPath expres-
sions, we can cover some child tags with one reference

declaration instead of declaring new references, but we

do not consider this way here as it was noted for (3.2)
operation.

4.3 Declarative Approach to Refactoring

Human-language description of evolution operations is

cumbersome and complicated. However this is only a

set of possible low-level schema modification operations.
Refactoring operations are rather more complicated than

ones above. Imperative description of refactoring oper-

ations should be even more complicated and unclear so
defining them in declarative way seems to be a way to

simplify them.

Here some possible refactoring operations are

listed and sample implementation ideas pro-

vided. Wider operation list can be found at
http://www.agiledata.org/ in Database Refactor-

ing Catalog section.

Refactoring operations listed below are mostly pro-

jected into sequences of schema evolution operations.

Some of refactoring operations require analysis of real
data corresponding to given schema. Some of them are

unapplicable yet because XML Schema support in data

model above is not yet powerful enough.

4.3.1 Refactoring Operations over Existing Data

Model

Refactoring operations defined and described below are

labeled «rft.N» below.

rft.1. consolidating attributes representing single con-

cept

For attributes, which represent single concept, consol-
idation can be executed. For example, address is some-

times represented by two strings and can be consolidated

into one string.

rft.2. consolidating tags

Sometimes two model tags can be consolidated be-
cause they can be interpreted as the same entity.

rft.3. splitting an attribute

Splitting an attribute is useful when the model is

growing from more simple one or from a prototype. Ex-

ample above can be reversed: if we know particular ad-
dressing system, we can divide attribute into smaller ones

representing more atomic values.

rft.4. splitting a tag

Splitting a tag can be useful, for example, when we

would like to detach a child tag from parent (instead of
adding attributes to all instances of existing tag).

rft.5. adding a key to data schema

Adding new key operation is basic evolution opera-

tion and it is already defined. Although in real databases

adding a key to schema can be also combined with in-
tegrity checking and index creation. Automating of those

tasks can lead to complicated refactoring operation.

rft.6. adding new attribute to avoid referencing

Instead of dereferencing other entity to obtain the

value of single attribute, we can store this attribute in the
referencing entity. Although productivity can be essen-

tially improved, this approach can lead us to inconsistent
data.

rft.7. moving an attribute

Moving from one tag to another lets us to:

• avoid possible referencing when accessing at-
tributes of different entities;

• separate seldomly-used attributes to improve pro-

ductivity;

• separate read-only attributes if DBMS has no per-

mission support below entity level or when it helps

DBMS to optimize its work.

http://www.agiledata.org/


Figure 3: Refactoring Model fragment

rft.8. moving a tag within τ

This operation is very common and affects the whole

schema. It should be decomposed into sequence of ag-

gregation removal and creation.

rft.9. safe-deleting entity

This refactoring operation is already supported as el-

ementary evolution operation.

rft.10. replacing existing natural key with surrogate one

This operation declares new key and probably re-
moves existing one (existing key becomes simply an at-

tribute). It can also try to maintain references to initial

key and switch them to new one.

The purpose of this operation is to change key seman-

tics.

rft.11. replacing “1 → ∗” aggregative association with

“∗ → ∗” one

As an example we can imagine that we are going

to let the streets to pass across several cities (fig. 2).
In this case Street becomes a child of Document and

new resolver between City and Street is constructed

as shown at fig. 3.

For this refactoring operation sample implementation

is provided. It is quite simple (some supplementary goals
are also defined, obvious goals are used without defini-

tion):

useOrCreateKey(Tag, PathWithoutLast,
KeyTag, KeyAttr, MustReferTag):-
concat(PathWithoutLast, [KeyTag], Path),
inNK(Tag, Path, KeyAttr),
inPL(MustReferTag, Tag),
!. %one is enough

useOrCreateKey(Tag, PathWithoutLast,
KeyTag, KeyAttr, MustReferTag):-
leastCommonEPL(KeyTag,MustReferTag,
Tag,Path,RPath),
KeyAttr = Keytag + ’@idFor_’ + MustReferTag,
addAttribute(KeyTag, KeyAttr),
addKey(Tag, Path, KeyAttr),
removeLast(Path, PathWithoutLast).

replaceAggregationWithResolver
(Child, Parent, ResName) :-
ResName = ’res_’ + Parent + ’_’ + Child,
addTag(ResName, [Parent]),
removeAggergation(Child, Parent),
RefAttrName = ResName + ’@’ + Child + ’ref’,
addAttribute(ResName, RefAttrName),
useOrCreateKey(Tag, PathWithoutLast,
Child, KeyAttr, ResName),
concat(PathWithoutLast, [KeyTag], Path),
onePathFromTo(ResName, Tag, ResPath),!,
%gives one, cuts off.
addReference(
Tag, ResPath, RefAttrName,
Tag, Path, KeyAttr
).

4.3.2 Refactoring Operations over Advanced XML

Data Structures and Models

rft.12. renaming anything

This refactoring operation is placed in “advanced”

section because current data model does not handle such
advanced XML naming facilities as namespaces, etc.

If these facilities are appropriately supported, renaming

tag, attribute, key or any other entity in XML data model
becomes complicated task.

rft.13. restore standard types for attributes

Theoretically, this operation is very interesting.
Refactoring engine should analyze user types defined in

data schema, perform some calculations of correspond-

ing domains and decide if some of types can be replaced
by built-in (like integer) types. Moreover, merging sim-

ilar types (and type fragments of compound types) and

simplifying type description is very interesting computer
science problem. This interesting operation is beyond

current work.

rft.14. adding cascade delete for weak entities

This operation creates implicit triggers in underlying

DBMS in case one exists to delete weak entities when

their parents are destroyed.

rft.15. discover groups and turn them into entities

Existing data can be analyzed to discover repeating

values of attributes and tags. Some of them can be
merged and then replaced with references to newly cre-

ated merged groups.

5 Conclusion

Given association evolution model makes a contribu-

tion to existing XML schema evolution models. Al-

though given model does not provide full support of
XML Schema or even DTD constructions, it seems to be

enough powerful for usage with real XML documents.

Model can be modified if needed. For example, sup-
port of simplified XPath expressions can make model

much more flexible. New association model can be also

integrated into document model described in [5] instead
of [4]. Both solutions increase model flexibility and DTD

or XML schema support, but resulting model will be still

not enough powerful to support complete DTD and XML
schema. Both solutions lead to complicated model that

is not so illustrative as given one, so they are to be used
in cases when their techniques are useful for particular

applications.

It can be sensible to combine some other set calcula-
tion models together with Prolog goal approvals. Sample

sample system is term rewriting engine [13] available at

http://www.gradsoft.com.ua/.

Although above paper describes schema evolutions,

one of possible applications of given evolution rules is

automatic transformation of XML documents content.
For example, two versions of database can have different

XML representation of their data. On-the-fly transfor-

mations of XML content can help legacy applications to
access new database and can also make legacy database

available for new applications. Transformation itself can

be composed using operations described in this paper.
For real world application this transformation can be exe-

cuted by XSLT [20] generated from evolution operations

list.

http://www.gradsoft.com.ua/


For XML document with complicated structure it is
easier for human operator to think about more “high-

level” transformations, than most of primitive evolution

operations defined in [4, 5, 10] and here. Such opera-
tions, like splitting entity or moving attribute from one

entity to another, etc. should be considered schema refac-
toring, because in their case simple local changes often

induce global changes to whole schema. Some of possi-

ble schema refactoring operations are described here and
are also objects of future investigations.

References

[1] Relax ng compact syntax, November 2002. Speci-
fication.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen

(Eds). Extensible markup language (XML) 1.0

(2nd edition). W3C Recommendation, 2000.

[3] Surajit Chaudhuri, Raghav Kaushik, and Jeffrey F.
Naughton. On relational support for XML publish-

ing: Beyond sorting and tagging.

[4] S. Coox. Xml database schema evolution axiom-

atization. Programming and Computer Software,
29(3):140–146, 2003.

[5] Sergey V. Coox and Andrey A. Simanovsky. Regu-

lar expressions in xml schema evolution. Kharkiv,

Ukraine, June 2003. ISTA.

[6] DEIS, Universit‘a di Bologna a Cesena, Italy.
tuProlog User’s Guide, 1st edition, Sep 2002.

[7] D. Florescu and D. Kossmann. A performance eval-

uation of alternative mapping schemes for storing

XML data in a relational database. Technical Re-
port 3684, INRIA, 1999.

[8] D. Florescu and D. Kossmann. Storing and query-

ing xml data using an rdbms. In Data Engineering

Bulletin, volume 22, pages 27–34. IEEE, 1999.

[9] J.Doores, A.R.Reiblein, and S.Vadera. Prolog –

Programming for Tomorrow. Sigma Press, Wilm-

slow, UK, 1987.

[10] Dmitry V. Luciv. Semistructured database scheme

evolution and refactoring. In SYRCoDIS, pages 71–
74, May 2004.

[11] M. Tamer Oszu Randal J. Peters. Axiomatization

of dynamic schema evolution in objectbases. 1997.

[12] Erik T. Ray. Learning XML. O’Reilly, 2001. pp.

143-189.

[13] R. Shevchenko and A. Doroshenko. The system of
symbolic computing for programming the dynamic

applications. Interntet publication, 2003. (in rus-

sian).

[14] A. Simanovsky. Evolution of schema of xml-
documents stored in a relational database. In pro-

ceedings of Baltic DB&IS, Riga, Latvia, 2004. As-

sociation for Computing Machinery. To appear.

[15] Andrew A. Simanovsky. Applying the
reconfiguration-design formalism to xml stored in

a relational database. In SYRCoDIS, pages 75–77,

May 2004.

[16] John F. Sowa. Conceptual graphs. ISO/JTC1/SC
32/WG2, April 2001. Standard Draft.

[17] L. Stojanovic, A. Maedche, N. Stojanovic, and

R. Studer. Ontology evolution as reconfiguration-

design problem solving. In proceedings of Inter-

national Conference on Knowledge Management,

2003.

[18] M. Stumptner and F. Wotawa. Model-based recon-

figuration. In proceedings Artificial Intelligence in

Design, Lisbon, Portugal., 1998.

[19] W3C. XML Path Language (XPath), 1.0 edition,

November 1999.

[20] W3C. XSL Transformations (XSLT), 1.0 edition,

November 1999. Recommendation.

[21] W3C. XML Schema Part 0: Primer, May 2001.
Recommendation.


	Introduction
	Related Work
	Evolution of Data Schema
	Data Modeling Basics
	Notations and Definitions
	Basic Notations
	Restrictions To XPath, Association Modeling
	Sets
	Invariants


	Declarative Approach
	Description of Schema
	Facts of Schema
	Goals of Schema

	Declarative Approach to Evolution
	Declarative Approach to Refactoring
	Refactoring Operations over Existing Data Model
	Refactoring Operations over Advanced XML Data Structures and Models


	Conclusion

