
Automated Model Transformation in MDA

© Mikhail Kuznetsov

Computational Mathematics and Cybernetics Faculty,
Moscow M.V.Lomonosov State University

mikle.kuz@mtu-net.ru
Ph.D. Advisor S.D. Kuznetsov

Abstract

Model Driven Architecture is a new and
promising approach to software development.
But its spread is hindered by the fact that one
of its parts - automated transformation of
software models – is not sufficiently
developed. In this paper a language is
presented that can be used to define such
transformations and a tool to automatically
execute them.

1 Introduction
Programmers use many different middleware platforms
and technologies, and in the future their number will
only increase because new technologies are being
developed constantly but old ones become obsolete very
slowly. All attempts to create a universal platform that
could replace all existing ones resulted only in
increased variety of technologies. The problem of
choosing a platform for a particular project becomes
more and more important, as well as problems of
interaction and integration of heterogeneous systems
and migration of existing systems to a new platform
when old platform becomes outdated and no longer
satisfies customer’s needs. The solution may be usage
of a new methodology of software development.

Object Management Group (OMG) offers a new
approach to software development called Model Driven
Architecture (MDA) [9]. MDA offers several
advantages compared to existing methodologies:
simplification of development of multi-platform
systems, ease of switching of a middleware platform,
increased speed of development and quality of products
and much more. But all of it is possible only when
development tools will support the MDA technology
and help to fully realize its potential. Unfortunately
currently most of commercial products, even those that
claim to support MDA, do not offer proper tools and
technologies, thus efficiency of MDA in real projects is
limited.

MDA is based on concepts of Platform-Independent
and Platform-Specific Models (PIMs and PSMs) [12].

First during development a PIM is created. PIM is a
model of a system that contains its business-logic,
usecases and view of a system from end user’s point of
view without details of its actual implementation. The
fact that PIM is not bind to any platform or technology
is most innovative and most important. When using
MDA it is recommended to develop platform-
independent model with a relatively high level of
details, up to using a high-level platform-independent
programming language to code system’s functionality
and creating an executable prototype.

Once PIM has sufficient details, a transition to
Platform-Specific Model is performed. This model
describes not only user-level system functionality, but
also details of implementation of the system on the
middleware platform chosen for a current project. More
details are being added to the model by developers, and
necessary changes are performed, until the model is
ready to be passed to the stage of code generation. Just
as in a common development process, a code can be
partially generated automatically from the model, and
then finalized manually and compiled.

Of course, actual development process is not so
straightforward. It is nearly impossible for a complex
project to make a platform-independent model that
would not require any modifications on later stages of
development. During development of platform-specific
model and even of code changes can be made in any
higher-level models. It does not contradict MDA
development process, but when making such changes
one should keep correspondence between models: a
change to one model should be properly reflected in all
others. So, when using MDA three models of the
systems are being developed simultaneously: PIM,
PSM and code, each reflecting its own level of
abstraction.

The idea that is placed in the core of MDA is
independent from modeling language and tools. But the
developer of technology, OMG consortium, assumes
that modeling will be done with UML (Unified
Modeling Language) [6]. Last changes and additions to
UML standard made this language much more
convenient for use with MDA. UML Action Semantics
[13] allows to describe system’s functionality on
platform-independent level, and UML Profiles make
creation of PSMs for specific middleware platforms
easier.

Proceedings of the Spring Young Researcher's
Colloquium on Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2005

mailto:mikle.kuz@mtu-net.ru

Separation of platform-independent and platform-
specific models offers major benefits for developers.
First of all, the process of transition between
middleware platforms and technologies becomes easier,
because PIM can be reused and only PSM has to be
created anew. A risk of early development mistakes
decreases, because it is much easier to find and correct
such mistakes on relatively simple model that is fully
based on customer’s requirements, then on sophisticated
low-level model that contains huge number of
implementation-specific details. Separation of the
models is also useful for fast creation of documentation,
integration, creation of heterogeneous systems and so
on.

But the main advantage of MDA is its ability to
increase development speed, despite the fact that two
models are being made instead of one. This is achieved
by using automated generation of platform-specific
model by platform-independent one. The process of
transition from PIM to PSM that is based on a certain
technological platform is highly formalized. UML
Profiles that are developed for all popular middleware
platforms contain recommendations about mapping
various UML elements to forms that are specific to a
chosen technology – but those are recommendations for
a developer and not instructions for automated
execution. With a bit more efforts and more
formalization it is possible to convert loose form of
Profiles into exact instructions. Then it is no longer
needed to manually create PSMs, and development
speed will increase significantly, because many details
required by a certain technology will be added to the
model automatically. Besides, the number of mistakes
that are inevitable with manual modeling will decrease
as well. Description of automatic transition to a PSM
can be made once and thoroughly tested, and then used
in all projects that use this technology. So, when using
MDA and automatic transition to platform-specific
model, the development process consists of the
following stages:
- creation of the task, usecases, requirements and

other initial documents;
- creation of platform-independent model;
- automatic transition from PIM to platform-specific

model, using a standard transformation definition
developed earlier (and probably by other company)
for a chosen middleware platform and/or
implementation technologies;

- manual modification of both PIM and PSM,
addition of various details;

- automated code generation;
- manual coding of parts that could not be generated

automatically, compilation.
Transition from PSM to code is fairly well

developed. Before MDA it was called “code
generation” and to a certain degree can be performed by
almost any modeling tool for majority of programming
languages and technologies. But automated transition to
PSM is a new concept. Since PIM and PSM are both
models written on UML (at least with classic MDA
approach), transition is just a transformation of a UML-

model using a pre-defined transformation definition
(that contains formal description of details of a specific
technology or platform) [8]. This paper is dedicated to
development of a language and tool for defining and
executing such transformations.

There are several requirements that a transformation
language has to satisfy to be efficient when used in
MDA:
- Formalism of transformation description.

Transformation should be defined in a formal
language that has a good grammatical model, so
that the transformation tool could interpret this
language and automatically execute it.

- Universality. Transformation language should
permit creation of a wide range of transformations
that can cover a variety of middleware platform,
including those that will appear in the future. Then
it will always be possible to pick a standard
transformation definition and transform a PIM of a
project to a modern platform, even if the PIM was
made 10 years ago and the platform was developed
recently. It is desirable that the language contains
means for model parameterisation and tuning, so
that a single transformation definition can be used
in many different projects.

- Integrity preservation. During development all
models can be changed, even after transition from
PIM to PSM, meaning that there should be a way to
automatically keep conformity between
transformed models that has been achieved during
transformation. This means that information should
be kept about a course of transformation and about
mapping that was established between different
elements of the models. Then UML editing tool can
use this information to automatically map changes
done to one model to another one, or at least to
notify a programmer what elements are no longer
consistent.

- Intelligibility for a human reader. One
transformation definition can be used in many
projects, but all projects are different. This means
that it should be relatively easy to understand and
modify it to suit specific needs. The transformation
should be clear not only to the person who wrote it,
but also to other people who may have to alter it. It
is also desirable that the transformation is well-
structured, so that it is easier to understand what
effect a particular change will have on
transformation globally.

- Interconnected transformations. It is possible that
during MDA-based development multiple models
of one type exist in a project. In particular, if the
project uses multiple platforms, a separate PSM is
generated for each of them. Transformation
language should be able to operate with more then
one source and generated model, it should be
possible to transform multiple models within a
single transformation definition. It is much more
convenient than usage of a separate transformation
for each pair of models, since such approach allows

to easily track relation between model elements and
generate any necessary mediators and bridges.

2 Various approaches to model
transformation
There are multiple approaches to definition and
execution of transformation of UML models [3]. The
simplest solution is to imperatively define the procedure
of transformation using any algorithmic language. A
UML modeling toolset may contain modules that
contain predefined transformations that can later be
used when necessary. Unfortunately such an approach
is badly suited for MDA-style development. First of all,
users cannot add their own transformation definitions or
modify those provided by creators of a toolset. Also
each toolset will handle transformations differently
even for the same middleware platforms, meaning that
models created by different toolsets will likely be
incompatible with each other. Instead of being restricted
by choice of a middleware platform, a programmer will
be restricted by choice of a modeling toolset. Finally,
such an approach means that for each toolset a full
number of transformations should be developed for
each middleware technology. This is a huge work
compared to using a single set of transformation created
and thoroughly tested by a third party.

Another approach to transformation is usage of
well-developed concepts and ideas from other areas of
science. In particular, it is possible to present a UML
model as a graph and use graph transformation
technologies. The main disadvantage of this approach is
the fact that it uses its own terms and definitions that are
not related to modeling. User of such transformation
tool will have to know not only UML modeling, but
also graph theory. And every time he wants to make a
change in transformation definition he will have to
make mental transition to graphs, and then back to
UML.

Another solution is to use transformations of XML
and XMI standard. XMI [10] (XML Metadata
Interchange) is a standard that allows to present UML
as an XML document, its main purpose is storage of
UML models and exchange of models between different
tools. There are several reliable technologies for XML
transformation, such as XSLT [14] and XQuery [1]. A
UML model can be converted to XML using XMI, then
this XML document can be transformed and converted
back to UML. But such double conversion makes the
transformation definition unclear for a human reader.
Also since we need to convert transformed XML
document back to UML, it has to comply with XMI. On
practice this means that nearly 90% of definition of
XML transformation is targeted not at actual model
transformation, but at ensuring that the result is a valid
XMI representation of a model. Of course it is very hard
to make and understand such transformations. Even a
relatively simple model transformation is defined by a
very large and bulky XML transformation.

UML language is considered to be a universal
modeling tool, and of course it contains its own means

to define transformations (not UML model
transformations, but transformations in general). In
particular CWM (Common Warehouse Metamodel)
standard has such functionality [2]. The idea to use
UML language to define UML transformations, just as
UML defines it’s own syntax, looks promising, but not
very practical. Unfortunately UML is just a modeling
language, it can be used to show the fact that there is a
mapping between certain model elements, but not to
define details of such a mapping in general with enough
precision to allow automated execution. Another
standard from UML family – QVT (Query, View,
Transformation) [7] – is meant to fill this niche and
looks much more promising for use in MDA.
Unfortunately, currently this standard is in early stages
of development, and it is not possible to say when it
will be ready or what exactly it will contain. The
standard should do several big tasks at the same time,
and is mostly targeted not on practical use but on
development of theoretical concept of
metametamodeling as part of MOF (Meta Object
Facility, the standard for representation of metamodels)
[11]. It is likely that this standard will be inefficient in
practice, and will not satisfy requirements of MDA.

One more solution is development of a specialized
high-level language for defining model transformations
and a tool for execution of such a language that would
be efficient for application in MDA. Probably such a
tool will be more convenient then an adaptation of a
certain generic standard. Below we’ll review one of
such languages that is developed by the author.

3 Fundamental scheme of the
transformation tool
Transformation tool can be a separate program or a part
of a larger software development toolkit. During MDA
development it is used for partial automation of
generation of a platform-specific model [4]. It receives
the following input data:
- one or more source models;
- metamodel for each model that takes part in the

transformation;
- transformation definition on a special

transformation definition language; the definition
depends on the metamodels and on number of
models that participate in the transformation, but is
independent from specific models.

The output data is:
- a set of source models with modifications added

during transformation;
- one or more (depending on transformation

definition, possibly zero) newly generated models
that were created during a transformation; each
generated model has to comply to one of the
metamodels supplied as input data;

- information about dependencies and mappings
between elements of models that was established
during transformation; it is needed to preserve
conformity of models after the transformation.

For the transformation tool there is no major
difference between source and generated models: both
can be modified during transformation, the difference is
only that generated model starts as empty model. So in
the future we’ll talk about set of models meaning source
and generated models combined.

4 Transformation definition language
Transformation definition consists of one or more
modules. Each module has a unique name and consists
of a set of transformation rules. Header of the module
can also specify the sequence of execution of rules in
the module; this option will be explained later. Below
we can see a part of formal definition of the language
using extended Backus-Naur form (eBNF).

transformation::= <stage>*;
stage::= stage <name> [<sequence>]

{ <transformation_rule>* };
sequence::= [reversed]

(linear | loop | rollback | rulebyrule);

Each rule has a unique (in the scope of the module)

name and consists of select section that defines when
the rule can be applied, and generation section, that
specifies actions to execute when applying the rule.

transformation_rule::= rule <name>

{ <select_section> <generate_section> };

Select section contains a sequence of selection

operators. Each operator defines a new variable that is
called “selection variable”. The name of this variable
should be unique in the scope of the current rule, and
domain is a set of elements of a model specified by
navigation expression. Besides, select section can
contain qualifying conditions - logical expressions that
can contain selection variables declared by operators
that stand earlier in the rule.

select_section::= (<select_operator>|<constraint>)*;
select_operator::=forall <name>

 from <nav_expression>;
constraint::= where <condition>;

Navigation expression is a sequence of directions

that begins with a name of an existing variable (we’ll
call it a base variable of the expression), symbol ‘/’ is
used as a separator. Direction is a name of association
on a metamodel that corresponds to the model that is
being transformed (if more then one model participates
in the transformation, the metamodel can be determined
by a type of the base variable). Cardinality of a
direction is multiplicity of the corresponding
metamodel association.

nav_expression::=<name>

iteration_pair(/, <nav_direction>);

Computation of a navigation expression consists of
a sequential transition from one model element to
another using specified directions, starting from the
element that the base variable points at. If a cardinality
of a direction is greater then one, all corresponding
model elements are considered to be the result. This
means that the result of execution of a navigation
expression is a list of all model elements that can be
reached from the element indicated by base variable by
the specified set of directions. Navigation expression
has the following properties:
- Type: metamodel element that corresponds to

elements contained in the result. Since navigation is
performed via metamodel, all elements of the result
will always have the same type. Type can be
determined statically, it depends on the metamodel
but not to the actual model.

- Cardinality: maximum number of elements in the
result. Cardinality is determined statically.

- Value: a set of elements that were received as a
result during computation of the expression. Value
of an expression is calculated during its execution
at an actual model.

Navigation expression can begin with any local or
global variable declared earlier. Local variable is a
variable that is declared in one of operators of the same
rule. Global variables are names of models that
participate in the transformation. Obviosly navigation
expression of the first select operator of a rule always
begins with a global variable, since no local variables
are initialized yet.

Generation section is a sequence of operators that
modify models. Create operator allows to add a new
model element where a set of elements is possible
(where multiplicity of a corresponding metamodel
association is greater then one). Navigation expression
in this operator should point at the set, and its type
determines the type of created element. Delete operator
excludes a model element from a set. Modification
operator allows changing value of element’s attribute.
Two more operators allow adding existing element to a
set of elements or removing it from a set without
deleting it from the model; those operators are
necessary if metamodel contains loops or if the same
element is accessible via multiple associations.

generate_section::=(

<create_operator> |
 <update_operator> |
 <delete_operator> |
 <include_operator> |
 <exclude_operator>)*;

create_operator::=make <name>
in <nav_expression>; ;

update_operator::= <nav_expression> =
<expression>; ;

delete_operator::= delete <nav_expression>; ;
include_operator::=include <name>

in <nav_expression>; ;
exclude_operator::=exclude <name>

in <nav_expression>; ;

5 Execution of a transformation
Once a transformation tool receives a source model (or
models) and transformation definition, as well as
description of used metamodels, it can execute the
transformation. It consists of a sequential execution of
modules from the definition. Execution of a module is
sequential repetition of two steps: finding a rule that can
be applied and applying this rule.

Application of a rule is determined by its select
section. Each operator of that section declares a new
variable and defines a set of its possible values. The rule
can be applied to a set of model elements, where each
element is in the appropriate value set, and where all
conditions of the select section are true. This means that
if a select section has three selection operators and no
conditions, and the operators define variables v1,v2 and
v3 that can take on N1,N2 and N3 different values, then
the rule can be applied to N1*N2*N3 different value
sets; if the rule has any conditions then it can be applied
only to those value sets where all conditions are true. A
rule can be applied only to the same value set only
once.

Application of a rule to a value set is execution of
all operators in the generation section.

The order of application of rules is determined by a
special parameter in the module’s header. If its value is
‘linear’ then rules are applied sequentially from first in
module’s definition to the last; search for the next rule
to apply starts from the last applied rule. The module is
considered to be finished once the last rule in the
module is executed for all possible value sets. If the
value of the parameter is ‘loop’, the transformation
works in the same way, but upon reaching the last rule
the search for applicable rules continues from the first
rule. The module is finished if no more rules can be
applied. If the value of <sequence> parameter is
‘rollback’, then after each application of a rule the
search starts from the first rule in the module; the
transformation is over if no more rules can be applied.
If the value is ‘rulebyrule’, then search is also
performed from the first rule in the module, but once an
applicable rule Is found it is applied to all possible
value sets – and only then the search starts anew from
the top. All values of parameters mentioned above can
also be used with a keyword ‘reversed’, meaning that
the order of rules in the module is reversed and all
searches are performed from the last element from
module definition to the first. If no value of <sequence>
parameter is specified, it is considered to be ‘rulebyrule’
by default, since it allows fastest execution of the
transformation. Transformation is over once the last
module is finished.

It should be noted that it is not possible to warrant
that a transformation will ever be finished for any
model. In some transformations infinite loops may
appear, especially when using ‘create element’ operator.
Users of the transformation definition language should

keep it in mind when defining and executing a
transformation.

6 Transformation bond and its usage in
transformation definition
Every time a rule is applied a special data structure
called ‘transformation bond’ is created in addition to
any actions contained in the generation section. A name
of this structure is the same as rule’s name, and its
attributes have the same names and types as rule’s local
variables. Values of those attributes are equal to values
of corresponding variables calculated during application
of the rule.

Transformation bonds are stored during entire
process of a transformation, and possibly even after the
transformation is finished. They contain information
about a course of the transformation, about application
of any rule and about relations between model elements
established by the transformation. This information can
be used to maintain consistency between models in the
process of transformation and after it. Besides,
transformation bonds may be used by a transformation
tool so that it can warrant that any rule is applied only
once to any set of values of selection variables.

It is possible to use transformation bonds explicitly
in the transformation definition to establish
dependencies between rules. Just as navigation
expressions are used to select elements from models,
they can be used to select bonds created by rules that
were applied before the current rule. Such special
navigation expressions begin not with a local variable
or a name of a model, but with a name of a
transformation module, followed by a name of a rule
and then a name of a variable in that rule. Since any rule
can be applied more then one time during a
transformation, creating more then one instance of a
corresponding bond, cardinality of such navigation
expression is always ‘many’. Just as with an ordinary
navigation expression, it returns a set of model elements
as a result – a set of elements that were values of a
specified variable in all applications of a specified rule.

<special_nav_expression>::=<block_name>/

<rule_name>/<variable_name>;

Instead of the name of a module a keyword ‘rules’

may be used that is equal to the name of a current
module.

Explicit use of transformation bonds in
transformation definition gives a powerful tool for a
programmer. It allows to define very complex rules in a
short and easy to understand way.

7 Rule extension and templates
It is possible to define a new rule as an extension of
existing rule. To do so one has to write a name of the
rule that is being extended after the name of extending
rule in that rule’s header. It is possible to extend
extensions and to make several extensions of the same

base rule, creating multi-layer hierarchy. Operators in
the extending rule can use all variables from base rule
along with their own variables (select operators can use
variables only from select section and not from
generation section).

transformation_rule::= rule <name> [: <name>] {

<select_section> ; <generate_section> };

Extension rule is applicable to a certain value set if:

- base rule is applicable to this value set (actually for
its corresponding subset);

- value set satisfies the select section of extending
rule;

- the extending rule was not applied to this value set
before.

Execution of an extending rule is execution of its
generation section. But unlike an ordinary rule it does
not create a new transformation bond; instead it extends
the bond created by application of the base rule with
variables declared in the extension. It works similarly to
inheritance in common programming languages: old
attributes remain intact and new ones are added. Such
bonds will be shown as results of calculation of
navigation expressions that scan for applications of the
base rule as well as applications of extending rule.

The concept of rule extension allows to structure the
set of rules as well as the set of transformation bonds
created by those rules. It allows easier development,
modification and understanding of complex
transformations.

Template is a special rule that begins with a key
word ‘abstract’. Such rule is never applicable, no matter
the select section. But it can be used as a base rule to
create extensions that can be applied as normal rules. A
template can extend another template but not an
ordinary rule. Just as normal extensions, templates
allow to structure transformation bonds and then use
navigation expressions that query those bonds to define
complex transformations.

8 Example of transformation definition
A simple transformation module with several rules is
shown below. This transformation definition is meant to
be used for transformation of a pair of models (‘source’
and ‘target’), both of which use UML class diagram
metamodel. First model is a source data, and second is
generated during the transformation. A simplified
metamodel of UML class diagram used in this
transformation definition is shown on the scheme:

Model
name : Name

Attribute
name : Name
type : Type

Association
name : Name
stereotype : Stereotype
Association_type

1
0..n

1
+associations

0..n

AssociationEnd
name : Name
cardinality : Cardinality
Association_end_type
visibility : Visibility

1

2

+base 1

+ends 2

1

1

+otherEnd

1

1

Class
name : Name
stereotype : Stereotype

0..n

1
+classes0..n

1

1

0..n

1

+attributes
0..n

1
0..n

+class
1

+associations
0..n

Parameter
name : Name
type : Type

Operation
name : Name
type : Type

1

0..n

1

+operations
0..n

+parameters

1 0..n1 0..n

Simplified metamodel of UML class diagram.

block example_transform {

rule class_mapping {
forall src from source/classes
make trgt in target/classes;
trgt/name=src/name;
}

This is module’s header and its first rule. The rule

‘class_mapping’ for each class of source model creates
a class in the target model with the same name. Each
application of this rule creates an instance of a
transformation bond with name ‘class_mapping’ and
attributes ‘src’ and ‘trgt’ that point to a class in source
model and newly generated class correspondingly.

rule private_to_private {
forall a from source/classes
forall b from a/attributes
where b/visibility="private"
forall c from target/classes
forall d from rules/class_mapping
where (d.src=a) and (d.trg=c)
make e in c/attributes;
e/name=b/name;
e/type=b/type;
e/visibility="private";}

This rule copies private attributes from source to

target model. The select section of this rule uses
transformation bond created by application of previous
rule. Because of this bond an attribute is copied exactly
to the class that is generated by the class that contains
this attribute, without the bond we would not know
what class of target model to choose.

rule public_to_private {
forall a from source/classes
forall b from a/attributes
where b/visibility="public"
forall c from target/classes
forall d from rules/class_mapping
where (d.src=a) and (d.trgt=c)
make e in c/operations; // "get_elt()"
e/name="get_"+b/name;
e/type=b/type;

e/visibility="public";
make f in c/operations; // "set_elt(type)"
f/name="set_"+b/name;
f/type="void";
f/visibility="public";
make g in f/parameters;
g/name=make_unique_name(b/name);
g/type=b/type;
make h in c/attributes; // "private elt"
h/name=b/name;
h/type=b/type;
h/visibility="private";
}

This rule maps public attributes to private and

creates corresponding ‘get’ and ‘set’ pairs of operations.
A function “make_unique_name” that is used in this
rule is a built-in function with a relatively simple
functionality: it returns a string-name that is warranted
to be unique in the scope of a model. Exact
implementation of this function may differ in different
transformation tools.

abstract rule all_inherited {
forall inherit_trgt from source/classes
forall inherit_src from source/classes;
}
rule directly_inherited:all_inherited {
forall assoc from inherit_trgt/associations
where ((assoc/stereotype=”generalization”) and
 (assoc/otherend=inherit_src))
}
rule indirectly_inherited:all_inherited {
forall r1 from rules/directly_inherited
where r1/inherit_trgt=inherit_trgt
forall r from rules/all_inherited
where ((r/inherit_trgt=r1/inherit_src) and

(r/inherit_src=inherit_src))
}

This set of a template and two rules defines the

concept of “indirect inheritance” (if by inheritance we
mean generalization association). The rules themselves
do not modify the model, but they create transformation
bonds that can be used by other rules. For example, here
is a rule that generates a generalization association
between a class and all its direct and indirect ancestors:

rule inheritance {
forall a from rules/indirectly_inherited
make b in a/inherit_src/associations;
b/cardinality=”1”;
make c in a/inherit_trgt/associations;
c/cardinality=”1”;
c/stereotype=”generalization”;
b/other_end=c;
c/other_end=b;
make assoc in target/associations;
include b in assoc/ends;
include c in assoc/ends;
b/base=assoc;

c/base=assoc;
}
} //example_transform

The last brace marks an end of the module

“example_transform”.

9 Conclusion.
MDA technology has a potential to become a new

stage in evolution of software development toolkits and
methods. But it is possible only if tools are created that
are specially developed to support this technology and
utilize its full potential. Existing tools that claim to
support MDA are mostly minor modification of old
tools that do not provide necessary functionality. One of
the main problems that slow down appearance of new
generation of tools is automated model transformation.
Existing approaches from other areas of mathematics
and informatics are inefficient for practical tasks of
MDA-based development. That’s why development of a
new system and language is important.

This work offers a transformation definition
language that is mostly meant to be used for automated
transformation of UML models. During development of
this language a special attention was paid to make it
suitable for MDA tasks, and to make it easier to
understand for a human. A prototype tool is being
developed that supports this language and executes
model transformations.

References:
[1] D. Chamberlin. XQuery: An XML query language.

IBM systems journal, no 4, 2002.
[2] Common Warehouse Metamodel (CWM)

Specification. OMG Documents, Feb. 2001.
http://www.omg.org/cgi-bin/apps/doc?formal/03-
03-02.pdf

[3] Krzysztof Czarnecki, Simon Helsen. Classification
of Model Transformation Approaches. University
of Waterloo, Canada, 2003.

[4] Keith Duddy, Anna Gerber. Declarative
Transformation for Object-Oriented Models.
Transformation of Knowledge, Information, and
Data: Theory and Applications, 2003.

[5] M. Kuznetsov. Model Driven Architecture and
Transformation of UML Models. In SYRCoDIS,
pages 82-86. May 2004.

[6] Martin Flower. UML Distilled: A Brief Guide to
the Standard Object Modeling Language, Third
Edition. Addison Wesley, 2003.

[7] Tracy Gardner, Catherine Griffin A review of
OMG MOF 2.0 Query / Views / Transformations
Submissions and Recommendations towards the
final Standard. http://www.omg.org/docs/ad/03-08-
02.pdf

[8] Anna Gerber, Michael Lawley, Kerry Raymond,
Jim Steel, Andrew Wood. Transformation: The
Missing Link of MDA. Proceedings 1st

International Conference on Graph Transformation
(ICGT 2002), 2002.

[9] Anneke Kleppe, Jos Warmer, Wim Bast. MDA
Explained. The Model Driven Architecture:
Practice and Promise. Pearson Education, 2003.

[10] Jernej Kovse, Theo Härder. Generic XMI-Based
UML Model Transformations. ZDNet UK
Whitepapers, 2002.

[11] Meta-Object Facility (MOF) specification, version
1.4 . OMG Documents, Apr. 2002.
http://www.omg.org/cgi-bin/apps/doc?formal/02-
04-03.pdf

[12] Joaquin Miller and Jishnu Mukerji(eds.). MDA
Guide Version 1.0. OMG document, 2003.
http://www.omg.org/mda/mda_files/MDA_Guide_
Version1-0.pdf

[13] Daniel Varro, Andras Pataricza. UML Action
Semantics For Model Transformation Systems.
Periodica Polytechnica, no. 3-4, 2003.

[14] XSL Transformations (XSLT) v1.0. W3C
Recommendation, Nov. 1999.
http://www.w3.org/TR/xslt

