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Abstract 
In this paper, we introduce finite automata as a 
tool for matrix specification and compression. 
We also describe, how to get additional 
interesting information from such automata. At 
last, we focus on techniques for storing 
resultant automata as matrices, tables of an 
SQL database, or as XML document. 

1 Introduction 
Finite automata can be used as a tool for efficient 
matrix storage with the possibility of compression. 
Since matrices are general purpose data structures, this 
approach could be used on images, text, sound files etc. 
Storing suitable data as automaton brings up also the 
benefit of obtaining the additional interesting 
information about our data [1, 3, 4, 5, 7, 8]. 

Such technique is especially useful when dealing 
with large binary matrices. A traditional approach 
(compression using common algorithms) solves only a 
part of the problem – they save a lot of space, but there 
is no way how to make any changes on the compressed 
matrix. 

In the next chapter, we allege only the necessary 
background of the automata theory. After that, we 
describe simple algorithm for compressing matrices by 
creating the finite state automata. 

As one can see in the following sections, we can use 
the created automaton to get additional interesting 
information about the compressed data, namely the 
patterns of similar parts of source matrix. Such patterns 
may be used in special searching algorithms to find e.g. 
similar parts of faces, medical pictures, buildings 
tracing, parts of large sparse matrices, similar noise, 
similar trends, pieces of text, etc. 

Storing matrices as automata is not the read-only 
compression. It is also possible to modify the 
compressed matrix. However, this process is not very 
straightforward, but there exist many variants how to 
enable update of compressed matrices: we can do the 
slow re-compression of the overall matrix to get best 
compression ratio, it is also possible to re-compress the 
changed part only, which is faster but saves less space. 

More about it can be found in chapter Compression).  
Tail of the paper is intended to discuss the methods 

of storing automata to usual data tables, matrices or 
XML documents. 

2 How to represent matrix with automaton 

2.1 Elementary theory 

To understand the following, we allege here the 
necessary background only. For more about automata 
theory please read [1, 6].  

In the subsequent, we work with images instead of 
matrices. It is due to simplicity and better 
understandability of this paper. To work with matrices, 
no additional effort is needed, as one may realize. Also, 
for more about using automata as a tool for specifying 
image, please read [3, 4, 5, 7, 8]. 

A digitized image of the finite resolution m x n 
consists of m x n pixels each of which takes a Boolean 
value (1 for black, 0 for white) for bi-level image, or 
real value (practically digitized to an integer value from 
0 to 256) for a gray-scale image, or 24bit information 
(RGB) for true-color image. 

In the subsequent, we consider only square images 
of resolution 2n x 2n. In order to facilitate the 
application of finite automata to image description, we 
can assign unique word (path through the automaton) of 
length n over the alphabet 

Σ={0, 1, 2, 3} 
to each pixel of the 2n x 2n resolution image. 

Each Σ’s symbol in the word represents the address 
of a sub-square of the square addressed with the 
preceding symbols of the word. We choose ε as an 
address of the whole unit square. 

Single digits, as shown in the left of figure 1, 
address the quadrants. Thus, the four sub-squares of a 
square with address w have address w0, w1, w2 or w3, 
respectively. The middle of fig. 1 shows addresses of all 
pixels of a 4 x 4 image. The sub-square (pixel) with 
address 3203 is shown on the right of figure 1. 
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Figure 1. The addresses of the quadrants, of the sub-
square of resolution 4 x 4, and the sub-square specified 
by the string 3203. 

 
We denote Σm the set of all words over Σ of the 

length m, by Σ* the set of all words over Σ. 
In order to specify a black-white image of resolution 

2m x 2m, we need to specify a language L ⊆ Σm where 
the word w belongs to L iff the coresponding sub-
square on the image is black. 

The automaton coresponding to the given image 
should be created as to recognize the language L. That 
is, it must end in accept state iff the sub-square of given 
address is black. 

To be able to compress color images (multi-valued 
matrices), each ending state of the automaton must 
contain the color (value) of each pixel (cell) in the sub-
square. 

Now, we are ready to give some examples. We 
assume that the reader is familiar with the elementary 
facts about finite automata and regular sets – see e.g. 
[1, 6]. 
 
Example. Consider the 2 x 2 chess-board in the left of 
figure 2. Its automata could be described by a regular 
expression {1,2}Σ*. Please note, the regular set also 
describes the 2 x 2 chess board in arbitrary resolutions 
(concretely, 2n x 2n for any positive integer n). 

The 8 x 8 chess-board in the right of figure 2 can be 
described by the regular expression Σ2{1,2}Σ* or by 
automaton A in Fig. 3. 
 

 
 

Figure 2.  2 x 2 and 8 x 8 chess-boards 
Notice that here we used the fact that the regular 

expression Σ2{1,2}Σ* is the concatenation of two 
regular expressions Σ2 and {1,2}Σ*.  

 

 
 

Figure 3. Finite automaton A defining the 8 x 8 chess-
board. 

 

Example.  Clearly, L1 = {1,2}*0 are addresses of the 
infinitely many squares illustrated at the left of Fig. 4. If 
we place the completely black square defined by 
L2 = Σ* into all these squares we get the image specified 
by the concatenation L1L2={1,2}*0Σ* which is the 
triangle shown in the middle of Fig. 4. 
 

 

 
 

Figure 4. The squares specified by {1,2}*0, a triangle 
defined by {1,2}*0Σ*, and the corresponding 

automaton. 
 

Example. By placing the triangle L= L1L2 from the 
previous example into all the squares with addresses 
L3={1,2,3}*0 we get the image L3={1,2,3}*0{1,2}*0Σ* 
shown at the left of Fig. 5. 

 
Zooming [5] is easily implemented for images 

represented by regular expressions and is very 
important for matrix compression shown in next 
section. 

 

 
 

Figure 5. The diminishing triangles defined by 
{1,2,3}*0{1,2}*0Σ*, and the corresponding automaton. 

 

2.2 Construction of Finite Automaton 

We have just shown that a necessary condition for black 
and white multi-resolution image (is evident, that the 
same reads for binary matrices) to be represented by a 
regular expression is that it must have only a finite 
number of different sub-images in all the sub-squares 
with addresses from Σ*. We will show that this 
condition is also sufficient. Therefore, matrices that can 
be perfectly (i.e. with infinite precision) described by 
regular expressions (finite automata) are images of 
regular or fractal character (matrices with many same 
part). Self-similarity is a typical property of fractals. 
Any image can by approximated by a regular 
expression (finite automaton) however; an 
approximation with a smaller error might require a 
larger automaton. 

Now we will give a theoretical procedure which, 
given a multi-resolution image or multi-frequency 
sound, finds a finite automaton perfectly specifying it, if 
such an automaton exists. (Multi-resolution principle 



can be applied to mathematical binary matrices, but 
only occasionally. For text is not useful!) 

 
Procedure Construct Automaton 
For given matrix M, we denote Mw the zoomed part of 
M in the square addressed w. The (sub) matrix 
represented by state numbered x is denoted by ux. 

 
Procedure Construct Automaton 

i = j = 0 
create state 0 and assign u0 = M 
assume ui = M w  
loop 

for k ∈ {0,1,2,3} do 
if M wk = uq for some state q  then 

create an edge labelled k 
from state i to state q 

else  
j = j + 1 
uj = M wk  
create an edge labelled k 
from state i to the new state j  

end if 
 end for 

if  i == j than 
Stop (all states have been processed) 

 else 
  i = i + 1 

end if 
end loop 

end procedure 
 
The procedure Construct Automaton terminates if 

there exists an automaton that perfectly specifies the 
given matrix and produces a deterministic automaton 
with the minimal number of states. Our algorithm for 
non-binary matrix (e.g. grey-scale image, sound, text)  
is based on this procedure, but it will use evaluated 
finite automata (as like WFA) introduced in the next 
section and only replacing binary information 0/1 to a 
real value (e.g. 256 colour, or greyness image), no 
creating loop and add some option for set-up 
compression. 

 
Example: For the Image diminishing triangles in Fig. 
5, the procedure constructs the automaton shown at the 
right-hand side of Fig. 5. First, the initial state D is 
created a processed. For 0 a new state T is created, for 
1,2 and 3 a loop to itself. Then state T is processed for 0 
a new state S is created, for 1 and 2 a loop to T. There is 
no edge labelled 3 coming out of T since the quadrant 3 
for T (triangle) is empty. Finally the state S (square) is 
processed by creating loops back to S for all 4 inputs. 

 
In this example we can see, that state D does not 

contain edge labelled 0 and state T edge labelled 0 and 
3. If either one of them is not present several cases may 
happen, as shown in figure 6. The same example, but 
without loop is shown in figure 7. Where 0 ... X, X∈ 
{1,2,3,4} denote some state of automaton (not 
necessarily adjoining), and a, b, c represent symbol  

from word w (a, b, c ∈ {0,1,2,3} - represent sub-square 
of matrices). 

 
 

Figure 6. Analysis of possible cases in constructed 
automaton. 

 

 
 

Figure 7. Analysis of possible cases in constructed 
automaton from figure 6 without loop. 

 
The cases (ii) and (iii) in figure 6 correspond with 

case (II) in figure 7. We can depress increasing count of 
state at approach where is not loop. 

 
Procedure for reconstruction matrix from automaton 

is very simple, than we describe only procedure 
Reconstruct matrix for compressed matrix at next 
section. 

3 Compression 

3.1 Basic compression 

In this part of chapter, we will demonstrate in brief a 
method for matrix compression / decompression 
applicable on construction of matrix storage, or matrix 
database. Our algorithm is based on algorithm shown in 
previous section. There lead 4 edges from each node at 
most and they are labelled with numbers representing 
matrix part. Every state can store information of 
average value of given sub-square. 

The procedure Construct Automaton for 
compression terminates if there exists an automaton that 
perfectly (or with the defined error) specifies the given 
matrix and produces a deterministic automaton with the 
minimal number of states. The number of states can be 
a little reduced or extended by changing error threshold. 
This principle is naturally useful only for matrices 
where it is possible to apply loss-compression. 
Changing the part (or only one matrix element) in 
source matrix changes the number of states in resultant 
automata.  

In the following, we propose one of the simpler and 
faster algorithms for reconstructing the matrix from the 
automata. It is recursive algorithm, but it does not dive 
very deeply. 



  
Procedure Construct Automaton for Compression 
For given matrix M, we denote Mw the zoomed part of 
M in the square addressed w. The matrix represented by 
state numbered x is denoted by ux. 

 
Procedure Construct Automaton for Compression 

i = j = 0 
create state 0 and assign u0 = M (matrix represented 
by empty word and define average value of M) 
assume ui = M w  
loop 

for k ∈ {0,1,2,3} do 
if M wk = uq (or with small error) or if 
the matrix Mwk can be expressed as a 
part or expanded part of the matrix uq  
for some state q then 

create an edge labelled k 
from state i to state q 

else  
j = j + 1 
uj = M wk  
create an edge labelled k 
from state i to the new state j  

end if 
 end for 

if  i == j than 
Stop (all states have been processed) 

 else 
  i = i + 1 

end if 
end loop 

end procedure 
 
The procedure Reconstruct Matrix stops for every 

automata computed by a procedure Construct 
Automaton (for Compression), or other similar 
algorithm. The procedure computes original matrix only 
if we process every word from input alphabet and 
alphabet was computed by loss free procedure. 
Otherwise, we obtain approximately same matrix. The 
percent similarity is in relation with length of processed 
word and original computed word. In figure eight is 
depicted other approach to storing and reconstructing 
the image (real evaluated matrix). 

 
Procedure Reconstruct Matrix (RC)  
For given automata A, make matrix Mw the zoomed part 
of M in the square addressed w. The matrix represented 
by state number x is denoted by ux. 

 

 
Figure 8. Reconstructing image from root to the leaf 

node. 

 
 
Procedure Reconstruct Matrix  

qo = w = {ε} = M (matrix represented by the empty 
word) 
i(qo)=1 
t(qo)=∅(ε) (average greyness of the matrix M) 
 
recursively for state q do 

for u = u0, u1, u2, u3do 
u = Mua  

if u = t(qo) and word has shorter then 
requested then 

RC q = uX 
else  

RC q = q(uY)  
  end if 
 end for 
 if u  = {ε} or u = {requested word} 

stop 
 end if 
end recursively 
 
where: X  denotes part of image 
  Y is a next part of image 
∅(x) is average value of the matrix part Mux, we can 

change to computed value, if we wont that. 
 
Example: Original computed word is w = {3203}, see 
figure 1. The length of word is 4 ⇒ the number of 
elements of matrix is 256 (clearly x2 where x is y2 where 
y is z2 where z is 2). If we process all words we obtain 
all matrix elements, if we process only first 2 symbols 
from the word we obtain only matrix with 22 elements. 
The average value of element (if value is from interval 
0-255) with address w = {32} is approximately 16, then 
we obtain matrix, where sub-square with address w = 
{32} have every elements equal 16. This principle is 
useful only for images, sounds or el. signals. Text will 
be destroyed. The procedure Reconstruct Matrix can 
reconstruct all matrix elements (same dimension as 
original) with defined error if we use word with first 2 
symbol and append empty word w={32εε}.  

 

3.2 Compression and changes 

Now we describe, how to re-compress the matrix after 
some updates.  

If we compress the matrix with traditional algorithm 
and some element is changed, we must re-compress all 
matrices every time. But if we represent matrix as a 
Finite State Automata, we can change / re-compress 
only corresponding part with changed element.  

There exist at least three basic solutions for selection 
of corresponding part of Finite State Automata or 
corresponding sub-square of source matrix: 

 
1) Re-calculating the biggest corresponding sub-

square: 



This approach leads to a big quantum of data 
manipulation (as much as one quarter), but with this 
approach we can reach the high compression ratio. 
Method is useful for all types of source matrices. 

 
2) Re-calculating the least corresponding sub-

square: 
This approach re-calculates the least quantum of 

data (radix ten elements), but with this approach we 
gain very small compression ratio and often changes 
lead to the grow in size of the automata. Compression is 
after that disutility, but if we want only obtain the 
interesting information from our resultant automata, this 
method is useful too. This approach is useful for all 
types of source matrices. 

 
3) Re-calculating the optimal corresponding sub-

square: 
Retrieval of such sub-square may be difficult, but in 

most cases, it shows that it hasn't sense to work with 
sub-square greater than three or four least 
corresponding sub-squares. Naturally, it greatly depends 
on the character of the matrices. If we know that our 
matrices contain many equal blocks (e.g. wiring gate in 
microprocessor), we can state the amount of levels, 
which we should still take in consideration. This choice 
naturally has not influence on algorithm, but only on 
machine time and resultant size of compressed matrices. 

 

4 Resultant automata 

4.1 Coalescence 

There exist many methods for assembling matrices 
represented by finite automata. We will depict one of 
better ones, namely assembling resultant automata in 
direction from leaf node to the root. Suppose a couple 
of matrices and their representation by means of final 
state automata computed with procedure 1, depicted in 
figure 9. For simplicity, black and white pictures with 
resolution 8 × 8 pixel were used. Moreover, the states of 
automata contain also the average greyness of 
corresponding picture parts. These values are in interval 
0 − 255, where 0 represents black and 255 white colour. 

 
Example: It is clear that images in figure 9 have some 
common parts, highlighted in following figure 10. 
These common parts could be joined into the same state 
in composed resultant automata (see figure 10 on the 
bottom). The corresponding automata with images in 
figure 9 have some common state and edge labelled 
with same symbol. There exists some similar or the 
equal word w depicting the way from the root to the 
corresponding part represented by a state. 

 
This principle can be used for no-loss compression. 

Additional information can be obtained from the 
structure of the resultant automaton, for example the 
information about the similarity of the stored matrices, 
common lines, and alternatively equal parts in matrix. 

We can easily get the group of equal matrix parts. The 
algorithm for assembling resultant automata together is 
very simple. 

 
 

 
 

Figure 9. Two sample images with common parts and 
the corresponding automata. 

 
 

Procedure Composition Automaton for Storage 
For given automaton A and automaton B - resultant 

automaton from previously composition compute new 
resultant automaton B´ ∈ A∪B and combine similar 
parts of both. 

 
Procedure Composition Automaton (Automaton A, 
Stored automaton B) 

Assign state qx from A to the corresponding state in 
stored automaton B. 
If such case does not exists, assign a new state and 
take qx+1 from A. 
end if 
foa all state of automaton A do 

if not exist edge from state qi labelled with 
same word w as edge from correspond state in 
stored automaton then  

create a new edge labelled w to a new 
state i 

 otherwise 
  take next edge 
 end if 



if  all edge from actual state is processed, take 
next state 
end if 

end for 
end procedure 
 
 

 
 

Figure 10. Composite automata from figure 9 
respecting the common parts. 

 
The procedure Composition Automaton for Storage 
stops for every automaton computed by a procedure 
Construct Automaton for Compression or other similar 
algorithm. Resultant automaton is in most cases smaller 
than original automata and contains interesting 
information from both automata. In some cases, the 
resultant automaton could be larger, but if we will store 
more and more matrices, the resultant automaton will 
increase less and less. On the other side we can store 
two (or more) almost same matrices in automaton with 
almost non-increasing number of states. It is clear, 
when we are storing matrices of the same domain (e.g. 
medical super-sound radiograph, X-ray, pictures of 
building, el. signal, similar noise, etc.) we could obtain 
an interesting knowledge about stored matrices hand in 
hand with saving the memory space. 
 

4.2 Interesting information in matrix 

If we store some similar matrices in one automaton, 
we can obtain interesting information about changes in 
resultant automaton. Concretely, if our resultant 

automaton has more states then the new states represent 
the differences between input matrices. With procedure 
Construct Automaton for Compression, we can control 
the type of acceptable (or unacceptable) changes, e.g. 
trivial differences in value, small noise, etc. With this, 
we can separate interesting changes from those that are 
rather to be ignored. 

For example, in medicine, we can obtain many 
similar images and only medical specialist can mark an 
interesting parts. We can help him or her to reduce the 
number of non-interesting changes and of course notice 
him or her to some small differences, which can be 
important, but hard to find.  

With procedure Composition Automaton for 
Storage, we can increase the ability to make the 
difference between interesting and non-interesting parts 
of the resultant automaton. We can even do it by 
involving the tolerance in value (average value), or 
similarity of words, etc. 

If we store our source matrix in more than one 
automaton, we can focus on our interesting part of the 
matrix and there compute the profundity automaton. On 
other part of matrix, we can compute automaton with 
less number of states. For this purpose, we can use the 
pattern matrix shown in table 1, where the values in 
cells are the counts of profundity of automaton, which 
represents that part of matrix. This principle can be used 
only for loss compression (e.g. images, signals, etc.). 
The part with less count of states stores much fewer 
information than the part with more states. 

 It is clear, with this principle we can save much 
more space and also preserve high information value of 
our data. We can transfer only interesting part of matrix 
or any nearest part and save machine time or network 
capacity. It is sufficient to choose a state from resultant 
automata, which represents our interesting part of the 
matrix, and operate with this as with the root. This 
principle is used with the principle automata 
composition. Pattern may be arbitrary. 

Now we have a background for using finite state 
automata as a database with included information. 

 
 

3 3 3 3 3 3 
3 5 5 5 5 3 
3 5 10 10 5 3 
3 5 10 10 5 3 
3 5 5 5 5 3 
3 3 3 3 3 3 

Table 1: Pattern of approach with 36 automata. 
 

4.3 Representation 

In this chapter we introduce ideas how to represent 
Finite State Automata as a matrix, as a table for SQL 
database and as a XML structure. 

 
1) Matrix representation 

Suppose automata as depicted in figure 5. Such 
automata could be transformed into matrix with at least 



four columns. The first to four columns contain 
destination for each transition. We can append fifth 
column with the source state. If the matrix is encoded 
then the average value is usually stored in the sixth 
column. To support additional features we may store 
subsequent information but for basic functionality, it is 
enough. The matrix itself is built using following 
procedure: 
 
Procedure Store Automaton to Matrix 
Input is resultant automaton from procedure Construct 
Automaton for Compression or other similar algorithm. 
 
Procedure Store Automaton to Matrix (automaton A) 

for all qi ∈ Q do 
create new line in matrix and assign value i in 
source if appended 

 for all edge ej outgoing from qi do 
  assign value i in column j  * 
 end for 
end for 

end procedure 
 
where:  Q is se of states of automaton A 
 j starts from 0 but 3 at most 
 * unused transitions leave empty 
 source - number of processed state 
 

The matrix representation of the automata presently 
used is straightforward encoding of states and 
transitions that could be supplied with additional 
information. 

 
For automaton in figure 5: 

state  D = 1 
 T = 2   
 S = 3 and S is final state 
 

2 1 1 1 
3 2 2  
3 3 3 3 

Table 2: Matrix representation 
 
Simple resultant matrices without additional 

information contain only integral numbers from interval 
(0 - count of state). To reconstruct the source matrix 
from such representation is very simple and fast. We 
can use procedure Reconstruct Matrix above-mentioned 
or other similar procedure. This representation of FSA 
is useful for direct hardware-based processing or for 
running on machines with simple operating system. It is 
easy to convert it to any other representation and to 
manipulate with it. Computation costs no many 
machine time and space. Over all this advantages, the 
matrix representation is not so good for database 
manipulation (e.g. searching, updating, etc.). 

For such purposes, there are some other 
representations. 

 
2) Table representation 

Table representation is very similar to matrix 
representation. Instead of matrix, we use common table 
to store all information needed to describe the 
automaton. We store simply the source state, average 
value, etc. in the table. Procedure Store Automaton to 
Table is adequate to procedure Store Automaton to 
Matrix then we describe only resultant table at Table 3. 

The first to fifth columns contain information about 
the state and the sixth column contains the average 
value (in our example it contains the average colour of 
sub-square in image depicting the diminishing triangles, 
where background of image is black colour denoted 
with 0 and other colour is only white - 255. 

 
0 1 2 3 source a. value
T D D D D 96 
S T T  T 128 
S S S S S 255 

Table 3: Table representation of automaton in fig. 5 
 
This representation is best for storing in SQL 

database particularly if we append additional interesting 
information in additional column (e.g. average value, 
state depth, most similar state, etc.) witch emphasise 
included benefit.  It is very fine for indexing and 
facilitates manipulating very large resultant structure 
(composed FSA). 

 
3) XML representation 

This representation is very useful for using Finite 
State Automata as means to database with added 
interesting information (e.g. multimedia database, 
database of medical images, el. signals, trends, etc.) and 
is best for sharing resultant FSA on internet/intranet. It 
is very easy to manipulate with only a part of the 
automaton, in this structure. There are many approaches 
of how to solve the problem and we offer the on of the 
simpler. For more about XML please read [9]. 

 
Example: The automaton representing a diminishing 
triangles in figure 5 represented by simplified XML 
structure. 
 

 
<automaton> 
   <root> 
      <state average="96" w0="1"> 
         <state average="128" w0="1" w3="0"> 
            <state average="255"> 
            </state> 
         </state> 
      </state> 
   </root> 
</automaton> 

 
Example: The exemplary composed automaton 
represented by simplified XML structure. 

 
<automaton> 
   <root> 



      <state average="X" w0="S" w1="S" w2="S" 
w3="S"> 
         <state average="X " w0="S" . . .  w3="S"> 
            <state . . . > 
               . . . 
                   <state average="X "> 
                       <!-- final state for average X --> 
                   </state> 
               . . . 
                   <state average="Y"> 
                       <!-- final state for average Y --> 
                   </state> 
               . . . 
            </state> 
         </state> 
      </state> 
   <!-- one family of matrices --> 
   </root> 
. . . 
   <root> 
      <state average="X" w0="S" w1="S" w2="S" 
w3="S"> 
         <state ....> 
               . . . 
               . . . 
               . . .  
         </state> 
      </state> 
   <!-- other family of matrices --> 
   </root> 
. . . 
   <!-- other family of matrices --> 
</automaton> 
 
Where: 

X is average value of part of matrix 
wC, C∈{0,1,2,3} is sub-square (pixel), if wC is not 

present, then sub-square with symbol C is represented 
itself (with the state witch represent - recursively) 

S is value: 0 - not present, 1 - present 
 
In this structure we can store every automata 

computed by procedure Construct Automaton for 
Compression or Composition Automaton for Storage or 
other similar algorithm. Final state can obtain other 
information e.g. following automaton increasing deep. 

5 Conclusions and future work 
In this paper we have presented a Finite State Automata 
for storing and compressing data represented as a 
matrix. FSA allow us to capture a large class of data 
represented as matrices and obtaining interesting 
information without using other algorithm to compute 
it. Additionally, data stored in FSA save more space, 
make it possible to access and manipulate with them 
without the decompressing process. Storing data in 
automaton allows us to send via network only the part 
of data of our interest. We do not need to have available 
the whole matrix (e.g. picture) if we are interested in a 
small part of it only. Additional benefit is included. 

Composition allows us to use FSA as a database of 
matrices (e.g. multimedia database) with the ability to 
search of interesting parts of our data. 

In our future work, we focus on manipulating with 
data in database (at various structures, e.g. table or 
XML), describe language or a set of tools that is able to 
query stored data. 
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