
Finite State Automata – a concept for data representation

© Marian Mindek, Michal Burda

Department of Computer Science, FEI, VSB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, CZ

{marian.mindek, michal.burda}@vsb.cz

Abstract
In this paper, we introduce finite automata as a
tool for matrix specification and compression.
We also describe, how to get additional
interesting information from such automata. At
last, we focus on techniques for storing
resultant automata as matrices, tables of an
SQL database, or as XML document.

1 Introduction
Finite automata can be used as a tool for efficient
matrix storage with the possibility of compression.
Since matrices are general purpose data structures, this
approach could be used on images, text, sound files etc.
Storing suitable data as automaton brings up also the
benefit of obtaining the additional interesting
information about our data [1, 3, 4, 5, 7, 8].

Such technique is especially useful when dealing
with large binary matrices. A traditional approach
(compression using common algorithms) solves only a
part of the problem – they save a lot of space, but there
is no way how to make any changes on the compressed
matrix.

In the next chapter, we allege only the necessary
background of the automata theory. After that, we
describe simple algorithm for compressing matrices by
creating the finite state automata.

As one can see in the following sections, we can use
the created automaton to get additional interesting
information about the compressed data, namely the
patterns of similar parts of source matrix. Such patterns
may be used in special searching algorithms to find e.g.
similar parts of faces, medical pictures, buildings
tracing, parts of large sparse matrices, similar noise,
similar trends, pieces of text, etc.

Storing matrices as automata is not the read-only
compression. It is also possible to modify the
compressed matrix. However, this process is not very
straightforward, but there exist many variants how to
enable update of compressed matrices: we can do the
slow re-compression of the overall matrix to get best
compression ratio, it is also possible to re-compress the
changed part only, which is faster but saves less space.

More about it can be found in chapter Compression).
Tail of the paper is intended to discuss the methods

of storing automata to usual data tables, matrices or
XML documents.

2 How to represent matrix with automaton

2.1 Elementary theory

To understand the following, we allege here the
necessary background only. For more about automata
theory please read [1, 6].

In the subsequent, we work with images instead of
matrices. It is due to simplicity and better
understandability of this paper. To work with matrices,
no additional effort is needed, as one may realize. Also,
for more about using automata as a tool for specifying
image, please read [3, 4, 5, 7, 8].

A digitized image of the finite resolution m x n
consists of m x n pixels each of which takes a Boolean
value (1 for black, 0 for white) for bi-level image, or
real value (practically digitized to an integer value from
0 to 256) for a gray-scale image, or 24bit information
(RGB) for true-color image.

In the subsequent, we consider only square images
of resolution 2n x 2n. In order to facilitate the
application of finite automata to image description, we
can assign unique word (path through the automaton) of
length n over the alphabet

Σ={0, 1, 2, 3}
to each pixel of the 2n x 2n resolution image.

Each Σ’s symbol in the word represents the address
of a sub-square of the square addressed with the
preceding symbols of the word. We choose ε as an
address of the whole unit square.

Single digits, as shown in the left of figure 1,
address the quadrants. Thus, the four sub-squares of a
square with address w have address w0, w1, w2 or w3,
respectively. The middle of fig. 1 shows addresses of all
pixels of a 4 x 4 image. The sub-square (pixel) with
address 3203 is shown on the right of figure 1.

Proceedings of the Spring Young Researcher's
Colloquium on Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2005

Figure 1. The addresses of the quadrants, of the sub-
square of resolution 4 x 4, and the sub-square specified
by the string 3203.

We denote Σm the set of all words over Σ of the

length m, by Σ* the set of all words over Σ.
In order to specify a black-white image of resolution

2m x 2m, we need to specify a language L ⊆ Σm where
the word w belongs to L iff the coresponding sub-
square on the image is black.

The automaton coresponding to the given image
should be created as to recognize the language L. That
is, it must end in accept state iff the sub-square of given
address is black.

To be able to compress color images (multi-valued
matrices), each ending state of the automaton must
contain the color (value) of each pixel (cell) in the sub-
square.

Now, we are ready to give some examples. We
assume that the reader is familiar with the elementary
facts about finite automata and regular sets – see e.g.
[1, 6].

Example. Consider the 2 x 2 chess-board in the left of
figure 2. Its automata could be described by a regular
expression {1,2}Σ*. Please note, the regular set also
describes the 2 x 2 chess board in arbitrary resolutions
(concretely, 2n x 2n for any positive integer n).

The 8 x 8 chess-board in the right of figure 2 can be
described by the regular expression Σ2{1,2}Σ* or by
automaton A in Fig. 3.

Figure 2. 2 x 2 and 8 x 8 chess-boards
Notice that here we used the fact that the regular

expression Σ2{1,2}Σ* is the concatenation of two
regular expressions Σ2 and {1,2}Σ*.

Figure 3. Finite automaton A defining the 8 x 8 chess-
board.

Example. Clearly, L1 = {1,2}*0 are addresses of the
infinitely many squares illustrated at the left of Fig. 4. If
we place the completely black square defined by
L2 = Σ* into all these squares we get the image specified
by the concatenation L1L2={1,2}*0Σ* which is the
triangle shown in the middle of Fig. 4.

Figure 4. The squares specified by {1,2}*0, a triangle
defined by {1,2}*0Σ*, and the corresponding

automaton.

Example. By placing the triangle L= L1L2 from the
previous example into all the squares with addresses
L3={1,2,3}*0 we get the image L3={1,2,3}*0{1,2}*0Σ*
shown at the left of Fig. 5.

Zooming [5] is easily implemented for images

represented by regular expressions and is very
important for matrix compression shown in next
section.

Figure 5. The diminishing triangles defined by
{1,2,3}*0{1,2}*0Σ*, and the corresponding automaton.

2.2 Construction of Finite Automaton

We have just shown that a necessary condition for black
and white multi-resolution image (is evident, that the
same reads for binary matrices) to be represented by a
regular expression is that it must have only a finite
number of different sub-images in all the sub-squares
with addresses from Σ*. We will show that this
condition is also sufficient. Therefore, matrices that can
be perfectly (i.e. with infinite precision) described by
regular expressions (finite automata) are images of
regular or fractal character (matrices with many same
part). Self-similarity is a typical property of fractals.
Any image can by approximated by a regular
expression (finite automaton) however; an
approximation with a smaller error might require a
larger automaton.

Now we will give a theoretical procedure which,
given a multi-resolution image or multi-frequency
sound, finds a finite automaton perfectly specifying it, if
such an automaton exists. (Multi-resolution principle

can be applied to mathematical binary matrices, but
only occasionally. For text is not useful!)

Procedure Construct Automaton
For given matrix M, we denote Mw the zoomed part of
M in the square addressed w. The (sub) matrix
represented by state numbered x is denoted by ux.

Procedure Construct Automaton

i = j = 0
create state 0 and assign u0 = M
assume ui = M w
loop

for k ∈ {0,1,2,3} do
if M wk = uq for some state q then

create an edge labelled k
from state i to state q

else
j = j + 1
uj = M wk
create an edge labelled k
from state i to the new state j

end if
 end for

if i == j than
Stop (all states have been processed)

 else
 i = i + 1

end if
end loop

end procedure

The procedure Construct Automaton terminates if

there exists an automaton that perfectly specifies the
given matrix and produces a deterministic automaton
with the minimal number of states. Our algorithm for
non-binary matrix (e.g. grey-scale image, sound, text)
is based on this procedure, but it will use evaluated
finite automata (as like WFA) introduced in the next
section and only replacing binary information 0/1 to a
real value (e.g. 256 colour, or greyness image), no
creating loop and add some option for set-up
compression.

Example: For the Image diminishing triangles in Fig.
5, the procedure constructs the automaton shown at the
right-hand side of Fig. 5. First, the initial state D is
created a processed. For 0 a new state T is created, for
1,2 and 3 a loop to itself. Then state T is processed for 0
a new state S is created, for 1 and 2 a loop to T. There is
no edge labelled 3 coming out of T since the quadrant 3
for T (triangle) is empty. Finally the state S (square) is
processed by creating loops back to S for all 4 inputs.

In this example we can see, that state D does not

contain edge labelled 0 and state T edge labelled 0 and
3. If either one of them is not present several cases may
happen, as shown in figure 6. The same example, but
without loop is shown in figure 7. Where 0 ... X, X∈
{1,2,3,4} denote some state of automaton (not
necessarily adjoining), and a, b, c represent symbol

from word w (a, b, c ∈ {0,1,2,3} - represent sub-square
of matrices).

Figure 6. Analysis of possible cases in constructed
automaton.

Figure 7. Analysis of possible cases in constructed
automaton from figure 6 without loop.

The cases (ii) and (iii) in figure 6 correspond with

case (II) in figure 7. We can depress increasing count of
state at approach where is not loop.

Procedure for reconstruction matrix from automaton

is very simple, than we describe only procedure
Reconstruct matrix for compressed matrix at next
section.

3 Compression

3.1 Basic compression

In this part of chapter, we will demonstrate in brief a
method for matrix compression / decompression
applicable on construction of matrix storage, or matrix
database. Our algorithm is based on algorithm shown in
previous section. There lead 4 edges from each node at
most and they are labelled with numbers representing
matrix part. Every state can store information of
average value of given sub-square.

The procedure Construct Automaton for
compression terminates if there exists an automaton that
perfectly (or with the defined error) specifies the given
matrix and produces a deterministic automaton with the
minimal number of states. The number of states can be
a little reduced or extended by changing error threshold.
This principle is naturally useful only for matrices
where it is possible to apply loss-compression.
Changing the part (or only one matrix element) in
source matrix changes the number of states in resultant
automata.

In the following, we propose one of the simpler and
faster algorithms for reconstructing the matrix from the
automata. It is recursive algorithm, but it does not dive
very deeply.

Procedure Construct Automaton for Compression
For given matrix M, we denote Mw the zoomed part of
M in the square addressed w. The matrix represented by
state numbered x is denoted by ux.

Procedure Construct Automaton for Compression

i = j = 0
create state 0 and assign u0 = M (matrix represented
by empty word and define average value of M)
assume ui = M w
loop

for k ∈ {0,1,2,3} do
if M wk = uq (or with small error) or if
the matrix Mwk can be expressed as a
part or expanded part of the matrix uq
for some state q then

create an edge labelled k
from state i to state q

else
j = j + 1
uj = M wk
create an edge labelled k
from state i to the new state j

end if
 end for

if i == j than
Stop (all states have been processed)

 else
 i = i + 1

end if
end loop

end procedure

The procedure Reconstruct Matrix stops for every

automata computed by a procedure Construct
Automaton (for Compression), or other similar
algorithm. The procedure computes original matrix only
if we process every word from input alphabet and
alphabet was computed by loss free procedure.
Otherwise, we obtain approximately same matrix. The
percent similarity is in relation with length of processed
word and original computed word. In figure eight is
depicted other approach to storing and reconstructing
the image (real evaluated matrix).

Procedure Reconstruct Matrix (RC)
For given automata A, make matrix Mw the zoomed part
of M in the square addressed w. The matrix represented
by state number x is denoted by ux.

Figure 8. Reconstructing image from root to the leaf

node.

Procedure Reconstruct Matrix

qo = w = {ε} = M (matrix represented by the empty
word)
i(qo)=1
t(qo)=∅(ε) (average greyness of the matrix M)

recursively for state q do

for u = u0, u1, u2, u3do
u = Mua

if u = t(qo) and word has shorter then
requested then

RC q = uX
else

RC q = q(uY)
 end if
 end for
 if u = {ε} or u = {requested word}

stop
 end if
end recursively

where: X denotes part of image
 Y is a next part of image
∅(x) is average value of the matrix part Mux, we can

change to computed value, if we wont that.

Example: Original computed word is w = {3203}, see
figure 1. The length of word is 4 ⇒ the number of
elements of matrix is 256 (clearly x2 where x is y2 where
y is z2 where z is 2). If we process all words we obtain
all matrix elements, if we process only first 2 symbols
from the word we obtain only matrix with 22 elements.
The average value of element (if value is from interval
0-255) with address w = {32} is approximately 16, then
we obtain matrix, where sub-square with address w =
{32} have every elements equal 16. This principle is
useful only for images, sounds or el. signals. Text will
be destroyed. The procedure Reconstruct Matrix can
reconstruct all matrix elements (same dimension as
original) with defined error if we use word with first 2
symbol and append empty word w={32εε}.

3.2 Compression and changes

Now we describe, how to re-compress the matrix after
some updates.

If we compress the matrix with traditional algorithm
and some element is changed, we must re-compress all
matrices every time. But if we represent matrix as a
Finite State Automata, we can change / re-compress
only corresponding part with changed element.

There exist at least three basic solutions for selection
of corresponding part of Finite State Automata or
corresponding sub-square of source matrix:

1) Re-calculating the biggest corresponding sub-

square:

This approach leads to a big quantum of data
manipulation (as much as one quarter), but with this
approach we can reach the high compression ratio.
Method is useful for all types of source matrices.

2) Re-calculating the least corresponding sub-

square:
This approach re-calculates the least quantum of

data (radix ten elements), but with this approach we
gain very small compression ratio and often changes
lead to the grow in size of the automata. Compression is
after that disutility, but if we want only obtain the
interesting information from our resultant automata, this
method is useful too. This approach is useful for all
types of source matrices.

3) Re-calculating the optimal corresponding sub-

square:
Retrieval of such sub-square may be difficult, but in

most cases, it shows that it hasn't sense to work with
sub-square greater than three or four least
corresponding sub-squares. Naturally, it greatly depends
on the character of the matrices. If we know that our
matrices contain many equal blocks (e.g. wiring gate in
microprocessor), we can state the amount of levels,
which we should still take in consideration. This choice
naturally has not influence on algorithm, but only on
machine time and resultant size of compressed matrices.

4 Resultant automata

4.1 Coalescence

There exist many methods for assembling matrices
represented by finite automata. We will depict one of
better ones, namely assembling resultant automata in
direction from leaf node to the root. Suppose a couple
of matrices and their representation by means of final
state automata computed with procedure 1, depicted in
figure 9. For simplicity, black and white pictures with
resolution 8 × 8 pixel were used. Moreover, the states of
automata contain also the average greyness of
corresponding picture parts. These values are in interval
0 − 255, where 0 represents black and 255 white colour.

Example: It is clear that images in figure 9 have some
common parts, highlighted in following figure 10.
These common parts could be joined into the same state
in composed resultant automata (see figure 10 on the
bottom). The corresponding automata with images in
figure 9 have some common state and edge labelled
with same symbol. There exists some similar or the
equal word w depicting the way from the root to the
corresponding part represented by a state.

This principle can be used for no-loss compression.

Additional information can be obtained from the
structure of the resultant automaton, for example the
information about the similarity of the stored matrices,
common lines, and alternatively equal parts in matrix.

We can easily get the group of equal matrix parts. The
algorithm for assembling resultant automata together is
very simple.

Figure 9. Two sample images with common parts and
the corresponding automata.

Procedure Composition Automaton for Storage
For given automaton A and automaton B - resultant

automaton from previously composition compute new
resultant automaton B´ ∈ A∪B and combine similar
parts of both.

Procedure Composition Automaton (Automaton A,
Stored automaton B)

Assign state qx from A to the corresponding state in
stored automaton B.
If such case does not exists, assign a new state and
take qx+1 from A.
end if
foa all state of automaton A do

if not exist edge from state qi labelled with
same word w as edge from correspond state in
stored automaton then

create a new edge labelled w to a new
state i

 otherwise
 take next edge
 end if

if all edge from actual state is processed, take
next state
end if

end for
end procedure

Figure 10. Composite automata from figure 9
respecting the common parts.

The procedure Composition Automaton for Storage
stops for every automaton computed by a procedure
Construct Automaton for Compression or other similar
algorithm. Resultant automaton is in most cases smaller
than original automata and contains interesting
information from both automata. In some cases, the
resultant automaton could be larger, but if we will store
more and more matrices, the resultant automaton will
increase less and less. On the other side we can store
two (or more) almost same matrices in automaton with
almost non-increasing number of states. It is clear,
when we are storing matrices of the same domain (e.g.
medical super-sound radiograph, X-ray, pictures of
building, el. signal, similar noise, etc.) we could obtain
an interesting knowledge about stored matrices hand in
hand with saving the memory space.

4.2 Interesting information in matrix

If we store some similar matrices in one automaton,
we can obtain interesting information about changes in
resultant automaton. Concretely, if our resultant

automaton has more states then the new states represent
the differences between input matrices. With procedure
Construct Automaton for Compression, we can control
the type of acceptable (or unacceptable) changes, e.g.
trivial differences in value, small noise, etc. With this,
we can separate interesting changes from those that are
rather to be ignored.

For example, in medicine, we can obtain many
similar images and only medical specialist can mark an
interesting parts. We can help him or her to reduce the
number of non-interesting changes and of course notice
him or her to some small differences, which can be
important, but hard to find.

With procedure Composition Automaton for
Storage, we can increase the ability to make the
difference between interesting and non-interesting parts
of the resultant automaton. We can even do it by
involving the tolerance in value (average value), or
similarity of words, etc.

If we store our source matrix in more than one
automaton, we can focus on our interesting part of the
matrix and there compute the profundity automaton. On
other part of matrix, we can compute automaton with
less number of states. For this purpose, we can use the
pattern matrix shown in table 1, where the values in
cells are the counts of profundity of automaton, which
represents that part of matrix. This principle can be used
only for loss compression (e.g. images, signals, etc.).
The part with less count of states stores much fewer
information than the part with more states.

 It is clear, with this principle we can save much
more space and also preserve high information value of
our data. We can transfer only interesting part of matrix
or any nearest part and save machine time or network
capacity. It is sufficient to choose a state from resultant
automata, which represents our interesting part of the
matrix, and operate with this as with the root. This
principle is used with the principle automata
composition. Pattern may be arbitrary.

Now we have a background for using finite state
automata as a database with included information.

3 3 3 3 3 3
3 5 5 5 5 3
3 5 10 10 5 3
3 5 10 10 5 3
3 5 5 5 5 3
3 3 3 3 3 3

Table 1: Pattern of approach with 36 automata.

4.3 Representation

In this chapter we introduce ideas how to represent
Finite State Automata as a matrix, as a table for SQL
database and as a XML structure.

1) Matrix representation

Suppose automata as depicted in figure 5. Such
automata could be transformed into matrix with at least

four columns. The first to four columns contain
destination for each transition. We can append fifth
column with the source state. If the matrix is encoded
then the average value is usually stored in the sixth
column. To support additional features we may store
subsequent information but for basic functionality, it is
enough. The matrix itself is built using following
procedure:

Procedure Store Automaton to Matrix
Input is resultant automaton from procedure Construct
Automaton for Compression or other similar algorithm.

Procedure Store Automaton to Matrix (automaton A)

for all qi ∈ Q do
create new line in matrix and assign value i in
source if appended

 for all edge ej outgoing from qi do
 assign value i in column j *
 end for
end for

end procedure

where: Q is se of states of automaton A
 j starts from 0 but 3 at most
 * unused transitions leave empty
 source - number of processed state

The matrix representation of the automata presently
used is straightforward encoding of states and
transitions that could be supplied with additional
information.

For automaton in figure 5:

state D = 1
 T = 2
 S = 3 and S is final state

2 1 1 1
3 2 2
3 3 3 3

Table 2: Matrix representation

Simple resultant matrices without additional

information contain only integral numbers from interval
(0 - count of state). To reconstruct the source matrix
from such representation is very simple and fast. We
can use procedure Reconstruct Matrix above-mentioned
or other similar procedure. This representation of FSA
is useful for direct hardware-based processing or for
running on machines with simple operating system. It is
easy to convert it to any other representation and to
manipulate with it. Computation costs no many
machine time and space. Over all this advantages, the
matrix representation is not so good for database
manipulation (e.g. searching, updating, etc.).

For such purposes, there are some other
representations.

2) Table representation

Table representation is very similar to matrix
representation. Instead of matrix, we use common table
to store all information needed to describe the
automaton. We store simply the source state, average
value, etc. in the table. Procedure Store Automaton to
Table is adequate to procedure Store Automaton to
Matrix then we describe only resultant table at Table 3.

The first to fifth columns contain information about
the state and the sixth column contains the average
value (in our example it contains the average colour of
sub-square in image depicting the diminishing triangles,
where background of image is black colour denoted
with 0 and other colour is only white - 255.

0 1 2 3 source a. value
T D D D D 96
S T T T 128
S S S S S 255

Table 3: Table representation of automaton in fig. 5

This representation is best for storing in SQL

database particularly if we append additional interesting
information in additional column (e.g. average value,
state depth, most similar state, etc.) witch emphasise
included benefit. It is very fine for indexing and
facilitates manipulating very large resultant structure
(composed FSA).

3) XML representation

This representation is very useful for using Finite
State Automata as means to database with added
interesting information (e.g. multimedia database,
database of medical images, el. signals, trends, etc.) and
is best for sharing resultant FSA on internet/intranet. It
is very easy to manipulate with only a part of the
automaton, in this structure. There are many approaches
of how to solve the problem and we offer the on of the
simpler. For more about XML please read [9].

Example: The automaton representing a diminishing
triangles in figure 5 represented by simplified XML
structure.

<automaton>
 <root>
 <state average="96" w0="1">
 <state average="128" w0="1" w3="0">
 <state average="255">
 </state>
 </state>
 </state>
 </root>
</automaton>

Example: The exemplary composed automaton
represented by simplified XML structure.

<automaton>
 <root>

 <state average="X" w0="S" w1="S" w2="S"
w3="S">
 <state average="X " w0="S" . . . w3="S">
 <state . . . >
 . . .
 <state average="X ">
 <!-- final state for average X -->
 </state>
 . . .
 <state average="Y">
 <!-- final state for average Y -->
 </state>
 . . .
 </state>
 </state>
 </state>
 <!-- one family of matrices -->
 </root>
. . .
 <root>
 <state average="X" w0="S" w1="S" w2="S"
w3="S">
 <state>
 . . .
 . . .
 . . .
 </state>
 </state>
 <!-- other family of matrices -->
 </root>
. . .
 <!-- other family of matrices -->
</automaton>

Where:

X is average value of part of matrix
wC, C∈{0,1,2,3} is sub-square (pixel), if wC is not

present, then sub-square with symbol C is represented
itself (with the state witch represent - recursively)

S is value: 0 - not present, 1 - present

In this structure we can store every automata

computed by procedure Construct Automaton for
Compression or Composition Automaton for Storage or
other similar algorithm. Final state can obtain other
information e.g. following automaton increasing deep.

5 Conclusions and future work
In this paper we have presented a Finite State Automata
for storing and compressing data represented as a
matrix. FSA allow us to capture a large class of data
represented as matrices and obtaining interesting
information without using other algorithm to compute
it. Additionally, data stored in FSA save more space,
make it possible to access and manipulate with them
without the decompressing process. Storing data in
automaton allows us to send via network only the part
of data of our interest. We do not need to have available
the whole matrix (e.g. picture) if we are interested in a
small part of it only. Additional benefit is included.

Composition allows us to use FSA as a database of
matrices (e.g. multimedia database) with the ability to
search of interesting parts of our data.

In our future work, we focus on manipulating with
data in database (at various structures, e.g. table or
XML), describe language or a set of tools that is able to
query stored data.

References
[1] Alur, R. and Dill, D. L. A Theory of Timed
Automata. In Theoretical Computer Science,
126(2):183–235, 1994.
[2] Daniela BERARDI, Fabio DE ROSA, Luca DE
SANTIS and Massimo MECELLA. Finite State
Automata as Conceptual Model for E-Services. In
Integrated Design and Process Technology, IDPT-
2003, June 2003.
[3] K. Culik II and J. Kari. Image compression using
weighted finite automata. In Computers & Craphics,
17:305–313, 1993.
[4] K. Culik II and V. Valenta. Finite automata based
compression of bi-level and simple color images. In
Computers & Craphics, 21:61–68, 1997.
[5] K. Culik II and J. Kari. Image compression Using
Weighted Finite Automata, in Fractal Image
Compression. In Theory a Techniques, Ed. Yuval
Fisher, Springer Verlag, pp 243-258, 1994.
[6] J.E.Hopcroft and J.D.Ullman. Introduction to
automata theory, languages and computation. In
Addison-Wesley, 1979.
[7] Marian Mindek. Finite State Automata and Images.
In WOFEX 2004, PhD Workshop, Ed. V. Snášel, ISBN:
80-248-0596-0, 2004
[8] Marian Mindek. Finite State Automata and Image
Recognition. In DATESO 2004, Ed. V. Snášel, J.
Pokorný, K. Richta, pp 132-143, ISBN: 80-248-0457-3,
2004
[9] W3C (2004) XML Protocol. XML Protocol Web
Page (link checked January, 10th 2005):
http://www.w3.org/XML/

