
A Locking Protocol for Scheduling Transactions on XML 
Data♣ 

 
© Peter Pleshachkov 

Institute for System Programming RAS 
peter@ispras.ru

 

Petr Chardin 

Moscow State University 
pchardin@acm.org

 
Abstract 

In this paper we propose a new DataGuide-
based locking protocol for isolation of 
concurrent XML transactions. The protocol 
adopts DataGuide structure for locking 
purposes. We extend the multigranularity 
locking protocol by adding node and logical 
locks on DataGuide. This allows to enhance 
concurrency of XML-specific transactions, 
thereby increasing the overall system 
performance. 

1 Introduction 
The widespread use of eXtensible Markup Language 
(XML) [2] in scientific data repositories, digital 
libraries and across the Web prompted the development 
of a method for efficient synchronizing of concurrent 
updates and queries for XML-data. As XML continues 
to gain popularity and the amount of XML-data 
constantly grows, the proper scheduling of concurrent 
queries and updates becomes an important issue. 
When several transactions have access to the same 
document at the same time, we need to protect each of 
them against the others. To simplify this task, we 
usually want to serialize transactions. Serializability 
[10] requires the result of transactions processing to be 
equal to the one produced by some serial execution of 
the same transaction set. 
Most systems ensure serializability by controlling 
access to each data item according to some particular 
concurrency control scheme. Locking-based protocols 
are used most widely. In these methods a transaction 
must lock a data item before first access to the item, and 
unlock it when transaction is done with it. Locking 
protocols usually use two types of locks: exclusive 
locks and shared locks. Exclusive locks prevent any 
other lock to be held on a data item, while shared locks 

permit to acquire more shared locks on the same item. 
A locking protocol describes rules, according to which a 
transaction should lock and unlock the data pieces. 
Eswaran et al.[6], introduced the locking protocol, 
which is most popular by now, – the two phase locking 
protocol (2PL). This protocol specifies that no data item 
can be unlocked until all data items to be accessed have 
been locked. Eswaran et al. have also demonstrated that 
the two phase criterion is necessary and sufficient to 
ensure serializability. 
Another kind of protocols is tree-based protocols [14]. 
They are used in databases organized (logically or 
physically) as trees. However, the tree protocol is not 
adequate for XPath-like queries as the one only 
supports a top-down access to the document. And 
XPath [3] language supports queries with more complex 
navigational behaviour (via child, descendant, attribute, 
parent, preceding-sibling and following-sibling axes). 
Thus, the tree protocol does not support significant 
subset of XPath. 
In a short paper [13] we presented a novel locking 
method for XPath operations - XDGL. The paper 
presented very first results and incomplete in many 
extents.  
In this paper we investigate a more wide subset of 
XPath language including preceding-sibling and 
following-sibling axes, wildcards and predicates in 
location steps. Moreover, we examine a more complex 
update operations such as move, replace and rename. 
In XML-enabled DBMSs, XML data usually is not 
represented as a tree structure physically. This is why 
XDGL employs the DataGuide structure for locking. 
Because of this, our approach can be easily 
implemented on top of any system, which stores XML. 
It could be a Native XML DBMS, a relational or object-
oriented DBMS. 
Another advantage of our approach is that DataGuide is 
usually much smaller than the document itself. Hence it 
may be held in main memory even for large XML 
documents. This way, the locking overhead is small. 
In our locking method we employ two kinds of locks: 
tree locks and node locks. The tree locks are useful for 
protecting the whole subtrees addressed by XPath 
location paths. The node locks are useful for protecting 
single DataGuide’s nodes (note, that it may match many 

♣ This work was partially supported by the grant of the 
the Russian Basic Research Foundation (RBRF) N 05-
07-90204. 
Proceedings of the Spring Young Researcher's 
Colloquium on Database and Information Systems 
SYRCoDIS, St.-Petersburg, Russia, 2005 

mailto:peter@ispras.ru
mailto:peter@ispras.ru


nodes in document). For example, node locks are used 
by insert operations. 
We introduce special logical locks and insert new node 
locks to avoid phantoms appearance. The logical lock 
could be set on the DataGuide’s node and specifies a 
node’s name which should be protected. I.e. the node 
with such name cannot be inserted under this node. A 
transaction which inserts a new node must obtain insert 
new node lock on each ancestor of the new node. This is 
needed as it may be a phantom for another transaction 
The remainder of the paper is organized as follows. 
Section 2 presents the XML query and update 
languages, which are of interest in this paper. In Section 
3 we define DataGuide structure and present the 
example of DataGuide for XML document. Section 4 is 
devoted to proposed locking protocol. It contains a 
number of small examples, which help to understand 
the protocol and its benefits. In Section 5 we give a 
brief overview of related work. Section 6 contains a 
summary of our work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2
T
la
q
d
D

2

W
X
se
o
lo
p
te
fo

with a set of context nodes (defined as result of the 
previous location step). An axis specifies the direction 
of movement from the context nodes, node-test 
specifies the type of the nodes to be selected and 
predicate filters the selected nodes. The result of 
location path is result of last location step 
In this paper we investigate only a subset of XPath. The 
following axes are of interest: child, descendant, 
attribute, following-sibling and preceding-sibling. 
Besides we take into consideration only simple 
predicates (comparison of node’s value with constant). 
Finally, let us consider a couple of queries for FS 
document. The query /file_system//catalog retrieves all 
catalog elements in FS. The location path 
/file_system/catalog[@name=’system’] consists of two 
location steps. It addresses system catalog element 
located under file_system element. Note, that 
@name=’system’ is a simple predicate. 

2.2 Update language 

To change the document one should use update 
operators. We examine five types of update operators: 
insert, delete, move, replace and rename operators. 
• Insert operator: 

INSERT constructor (INTO | BEFORE | AFTER) 
path-expr 

• Delete operator: 
DELETE path-expr 

• Move operator: 
MOVE path-expr1 (INTO | BEFORE | AFTER) 
path-expr2 

• Replace operator: 
REPLACE path-expr WITH constructor 

• Rename operator: 
RENAME path-expr AS NCNAME 

Here constructor is an element or attribute constructor. 
We specify an element constructor as element {elem-
name} {content}; meaning of the elem-name and 
content is straightforward. There are complex element 
<file_system> 
<catalog name = ‘home’> 
   <date>10 March, 2003</date> 
   <access>777</access> 
   <file>ls.cpp</file> 
   <file>ls.h</file> 
   <catalog name =’socol’> 
       <date>7 April, 2004</date> 
       <access>754</access> 
   </catalog> 
   <directory name=’barracuda’> 
         <date>9 April, 2005</date> 
         <access>750</access> 
   </directory> 
</catalog> 
<catalog name=’system’> 
   <date>1 January 2003</date> 
   <access>743</access> 
   <file>passwords</file> 
</catalog> 
</file system> 
Figure 1: an XML document FS 

 Data Manipulation Language 
his section gives an overview of query and update 
nguages. We also consider several examples of 
ueries and updates of the sample XML document FS 
epicted in Figure 1. The document conforms to the 
TD shown in Figure 3. 

.1 Query language 

e use XPath language to retrieve nodes from the 
ML documents. XPath defines the syntax and 
mantics for location paths. Each location path consists 

f a sequence of location steps separated by ‘/’. In turn, 
cation step consists of axis, node-test and optional 

redicate. Syntactically it looks like axis::node-
st[predicate]. XPath defines the following semantics 
r evaluation of location step. A location step starts 

constructors. In such constructor content itself is the 
nested element constructor. In a simple case content 
could be just a text. 
One can specify the attribute constructor as attribute 
{name} {text}; Here name and text specifies the name 
and the value of the attribute. 
We introduce three types of insert operators: insert-into, 
insert-before and insert-after. These operators insert 
new node defined by constructor as the last child, 
previous sibling and next sibling for each node selected 
by path-expr respectively. If constructor specifies an 
attribute constructor, then we could only use insert-into 
operator that adds new attribute to each node selected 
by path-expr. It also means that each of the selected 
nodes should be of element type. 
Delete operator removes subtrees of all nodes specified 
by path-expr from the document. That is to say, our 
delete operator uses the deep deletion semantics. 
 



file_system

catalog

@ name date access catalog file

n1

n2

n3 n4 n5 n6 n7

directory

@ nam e

n10

date

n11

access

n12

@ nam e

n13

date

n14

access

n15

n8

 

Figure 2: DataGuide of the document FS 

 
Move operator transfers subtrees from the place 
specified by path-expr1 to the place specified by path-
expr2. The semantics of INTO, AFTER and BEFORE 
keywords is the same as in insert operator. 
Replace operator substitutes node defined by 
constructor for the subtrees specified by path-expr. 
Rename operator gives a new name (NCNAME) for the 
nodes specified by path-expr. 
Let us consider a couple of examples. The following 
update operator adds new file element to system 
catalog: INSERT element{file}{‘hosts’} INTO 
/file_system/catalog[@name=’system’]. The operator 
RENAME /file_system//catalog AS directory gives a 
directory name for all catalog elements in FS 
document. 

3 DataGuide 
DataGuide [7] is a data structure that summarizes an 
XML document. It is concise and accurate because 
DataGuide describes every unique label path of a 
document exactly once, regardless of the number of 
times it appears in that document, and encodes no label 
path that does not appear in that document. Figure 2 
shows the DataGuide of FS document. 
 
 
 
 
 
 
 
 
 
 

Figure 3: DTD of the document FS 

4 Locking Protocol on DataGuide 
A transaction must lock a data item before the first 
access to that data item, and unlock it when all accesses 
to the item are complete. Our protocol requires 

transaction to follow strict two-phase locking protocol 
(S2PL) [1]. According to S2PL a transaction, acquired a 
lock, keeps it until the end. 
While traversing or modifying an XML document, a 
transaction has to acquire a lock in an acceptable mode 
for each node before accessing it. Since the nodes in an 
XML document are organized as a tree-like structure, 
the principles of multigranularity locking scheme 
(MLS) [9] may be exploited. The MLS introduces 
intention locks which prevent a subtree t from beeing 
locked in a mode incompatible to locks already granted 
to t or subtrees of t. However, the straightforward 
adoption of MLS for synchronization concurrent XML 
transactions may result in a low concurrency. For 
instance, one transaction might need to lock some 
intermediate node n of an XML document in a read 
mode, while another transaction may wish to perform 
an update of some node in the subtree of n. However, 
MLS's share and exclusive locks implicitly lock the 
entire subtree which is too restrictive. Example1 studies 
some drawbacks of multigranularity locking scheme 
adopted for XML. 
Example 1: Let us suppose that transaction T1 has 
issued the XPath query /file_system/catalog/access. It 
should be possible for transaction T2 to insert an empty 
element <catalog/> as a child of file_system element. 
According to MLS, the entire DataGuide’s access 
subtree is to be locked in the shared mode by T1. At the 
same time, catalog subtree has to be locked in the 
exclusive mode by T2. And since catalog subtree 
includes access subtree (see Figure 2) and shared lock 
held by T1 is not compatible with exclusive lock held 
by T2. Therefore, T1 and T2 cannot be executed 
concurrently. 

<!ELEMENT file_system (catalog | directory )*> 
<!ELEMENT catalog (((date, access)| (file)*), 
(catalog)*)> 
<!ATTLIST catalog name CDATA #REQUIRED> 
<!ELEMENT directory catalog> 
<!ELEMETN date #PCDATA> 
<!ELEMENT access #PCDATA> 
<!ELEMENT file #PCDATA> 

In fact, transactions T1 and T2 do not conflict. They 
would conflict if T2 inserted 
<catalog><access>777</access></catalog> element 
inside file_system element. 
In this paper we introduce granular locking protocol on 
DataGuide. To cope with hierarchical nature of XML 
documents we use IX and IS intention locks. Besides, 
we introduce node and tree locks for locking the 
DataGuide’s node and DataGuide’s subtree 



respectively. Moreover, we use node locks to prevent 
document order conflicts during execution of 
concurrent insert operations. For instance, the document 
order conflict arises if one transaction inserts new node 
as the last child into a node, while another transaction 
also inserts new node as the last child into the same 
node. 
To cope with phantoms appearance we use logical 
locks. They allow to lock node’s name in the 
DataGuide’s subtree. These locks are useful for such 
queries as //file. According to the DTD of document FS, 
file element could appear at any level in FS document. 
Therefore, FS’s DataGuide could potentially contain 
arbitrary number of the file nodes. The logical lock on 
the file name set on DataGuide’s root denies other 
transactions from inserting of any element with the 
name file. 

4.1 Node and Tree Locks 

Below we describe a set of all node and tree locks, 
employed by our method. 
• SI (shared into), SA(shared after) and SB(shared 

before) locks. These node shared locks are used by 
insert operations. It is set on the DataGuide’s nodes 
defined by path-expr of insert operator. This lock 
prevents any modifications of the node and 
insertion of another nodes into the node by 
concurrent transactions. SA and SB locks are 
defined in a similar way. 

• X (exclusive) lock. This node lock must be obtained 
for the node to be modified. Note, that the nested 
nodes of the locked node may be read by another 
transactions. 

• ST (shared tree) lock. This tree lock sets on a 
DataGuide’s subtree to protect the whole subtree 
from any updates. XPath queries require this kind 
of locks. Due to the semantics of XPath the results 
of the location path are the subtrees selected by the 
last location step. It implies the request of the ST 
lock for subtrees retrieved by location path. 

• XT (exclusive tree) lock. This tree lock sets on a 
DataGuide’s subtree to protect the subtree from 
reading and modifications.  

• IS (intention share) lock. According to the granular 
locking protocol we have to obtain these lock on 
each ancestor of the node which is to be locked in a 
shared mode.  

• IX (intention exclusive) lock. According to the 
granular locking protocol we have to obtain these 
locks on each ancestor of the node which is to be 
locked in an exclusive mode. 

 
Figure 4 shows compatibility matrix for the lock modes 
defined above. A compatibility matrix indicates whether 
a lock of mode M1 may be granted to a transaction, 
while a lock of mode M2 is presently held by another 
transaction. 
Note, that IX and X locks are compatible since IX lock 
on a node only implies the intention to lock the 
descendants of the node. But it does not imply the lock 

on the node itself. SI (SA, SB) lock is not compatible 
with SI (SA, SB) lock, which prevents concurrent insert-
into (insert-after, insert-before) operations upon the 
same node. 

SI SA SB X ST XT IS IX

SI

SA

SB

X

ST

XT

IS

IX

-
+
+

+
-
+

+
+
-

+ + +

+
+
+

+

+
+
+

+

+ + + + +

+
+
+
+

+
+

+

+

-
-
-
-

+
+

-
-
-
-
-
-
-
-

-
--

-

-

-

-
-

-

-

+

-

-

++

-

-

requested

granted

 
Figure 4: Lock compatibility matrix 

4.2 Predicates 

To cope with the value-based constraints on the node’s 
content (extracted from location path) each node lock 
and tree lock are annotated with predicate. In this case, 
the lock compatibility matrix does not contain strict 
incompatibilities. Two locks are compatible if one of 
the following condition hold: (1) the mode of the one 
lock is compatible with the mode of another lock due to 
the lock compatibility matrix, (2) the predicates of these 
locks do not conflict (i.e. the conjunction of predicates 
is not satisfiable). Thus, taking into consideration the 
predicates on the node’s value allows to reduce the 
number of conflicts between transactions significantly 
thereby increasing concurrency. 
We will regard that location step without predicate has 
the true predicate. Besides, IS and IX locks are always 
annotated with true predicate. 

4.3 Logical Locks 

Now we turn to the discussion of logical locks which 
are used to prevent phantoms appearance. For example 
the transaction which issued //file query may suffer 
from phantoms since another transaction may insert 
new file element at some deep level of the document FS 
(see FS’s DTD). Generally speaking, phantoms can 
appear when (a) insert operation extends the DataGuide 
(adds new path to DataGuide), (b) the insertion of a new 
node changes a target node of some operation 
performed by another transaction. 
Thus, we introduce two locks. The first lock is logical 
(L) lock, which must be set on DataGuide’s node to 
protect subtrees from a phantom appearance. A logical 
lock specifies a set of properties. L lock prohibits the 
insertion of new nodes which possesses these 
properties. The second lock is insert new node (IN) 
lock, which specifies the properties of new node. The L 
and IN locks are compatible if the properties of L lock 
differs from the properties of inserted node. The 
properties may includes the node name, node value, 
child name and child value. For example the transaction 
which issued //file[.=’ls.cpp’] query must obtain L lock 



on the DataGuide’s root with properties: node-
name=’file’, node-value=’ls.cpp’. 

4.4 Locking Rules 

In this subsection we describe a list of locking rules. 
These rules define which locks must be obtained for 
which operations. Each operation contains at least one 
path-expr which defines the operation’s target nodes. 
Then the operation is applied to the target nodes. 
Let DP be a data path set of all label paths in DataGuide 
that lead to data queried or updated. Then we may 
compute a set NP of all nodes in DataGuide (and 
associate predicates with them) which match any label 
path from DP. Moreover, let PH be a set of pairs (n, 
properties);here n defines the DataGuide’s node where 
a phantom could appear, properties specifies the 
conditions on the nodes to be logically locked. 
 
• Rule for XPath query. For each node from NP 

performs (1) obtain (ST, p) lock (p is the associated 
predicate) on the node, (2) obtain IS lock (with true 
predicate) for each ancestor of the node and all 
nodes traversed via preceding-sibling and 
following-sibling axes. We denote such nodes as 
ANCSIBL nodes. 

• Rule for insert-into operator. For each node from 
NP performs (1) if the node matches target nodes 
of insert operator then obtain (SI, p) lock on the 
node and IS lock on its ANCSIBL nodes, (2) if the 
node matches additional branches of path-expr then 
obtain (ST, p) lock on the node and IS lock on its 
ANCSIBL nodes, (3) if the node matches the new 
inserted node then obtain (X, p) lock on the node 
and IX lock on its ANCSIBL nodes. The rules for 
insert-after and insert-before operators are 
analogous. 

• Rule for delete operator. For each node from NP 
performs (1) if the node matches the target nodes of 
delete operator then obtain (XT, p) lock on the node 
and IX lock on its ANCSIBL nodes, (2) if the node 
matches the additional branches of path-expr then 
obtain (ST, p) lock on the node and IS lock on its 
ANCSIBL nodes. 

• Rule for rename operator. For each node from NP 
performs (1) if the node matches the target nodes or 
the new subtree of rename operator then obtain 
(XT, p) lock on the node and IX lock on its 
ANCSIBL nodes, (2) if the node matches the 
additional branches of path-expr then obtain (ST, p) 
lock on the node and IS lock on its ANCSIBL 
nodes. 

• Rule for move-into operator. For each node from 
NP performs (1) if the node matches the target 
nodes of path-expr2 (see definition of move 
operator) then obtain (SI, p) lock on the node and 
IS lock on its ANCSIBL nodes, (2) if the node 
matches the target nodes of path-expr1 (i.e. subtree 
to be deleted) or the new subtree (i.e. subtree to be 
inserted) then obtain (XT, p) lock on the node and 
IX lock on its ANCSIBL nodes,(3)if the node 

matches the additional branches of path-expr1 or 
path-expr2 then obtain (ST, p) lock on the node and 
IS lock on its ANCSIBL nodes. The rules for 
move-after and move-before operators are 
analogous. 

• Rule for replace operator. For each node from NP 
performs (1) if the node matches the target nodes of 
path-expr then obtain (XT, p) lock on the node and 
IX lock on its ANCSIBL nodes, (2) if the node 
matches the additional branches of path-expr then 
obtain (ST, p) lock on the node and IS lock on its 
ANCSIBL nodes, (3) if the node matches the new 
inserted node (defined by constructor) then obtain 
(X, p) lock on the node and IX lock on its 
ANCSIBL nodes. 

• Rule for phantoms prevention. For each node from 
PH the (L, properties) lock must be obtained. 
Besides each operation which extends the 
DataGuide must obtain (IN, properties) lock on 
ANCSIBL nodes of new node. 

4.5 Examples 

Now let us consider several examples to illustrate the 
locking rules. Let us return to example1. Now we will 
show that both transactions from the example can 
proceed with proposed locking protocol. According to 
it, transaction T1 must obtain IS lock on nodes n1, n2 
and (ST,#t) lock on node n5; here #t is the true 
predicate. At the same time T2 must obtain IX lock on 
n1 and (X,#t) lock on n2. As all locks are compatible 
transactions T1 and T2 could be executed concurrently. 
This is illustrated in Figure 5. 
 

file_system, n1

catalog, n2

access, n5

...

T1
T2

T1
T2

T1

IS

IS

(ST,#t)

IX

(X,#t)

 
Figure 5: Locking rules for example1 

Example 2 (conflict of two insert operations): 
Let us suppose that transaction T1 inserts new access 
element: INSERT <access/> INTO 
/file_system/catalog[name=’home’]/date/following-
sibling::catalog, while transaction T2 inserts new date 
element: INSERT <date/> INTO 
/file_system/catalog/catalog. 
Figure 6 shows that transactions T1 and T2 cannot run 
concurrently since SI lock is not compatible with itself. 
Example 3 (phantoms prevention): 
Let us suppose that transaction T1 retrieves all file 
elements found at any level inside catalog elements 
which can be found themselves inside file_system 
element. In XPath such a query looks like this: 
/file_system/catalog//file. At the same time transaction 



T2 inserts new file element into the catalog element by 
the following statement: 
INSERT element{catalog}{} INTO 
/file_system/catalog/catalog 
 

file_system, n1

catalog, n2

date, n4

T1
T2

T1

IS, IX

IS

IS, IX

@name, n3
T1 (ST,name=’home’ )

T1
T2

IS, IX
IS, IX

catalog, n6

date, n11 access, n12

T1
T2

(SI,#t), IX
(SI, #t), IX

T1 (X,#t)T2 (X,#t)

 
Figure 6: Incompatibility of insert operations 

It is easy to see that the second transaction might add a 
phantom node for the first one. However, our locking 
rules prevent this situation. This is shown in the Figure 
7. (L, file) lock is not compatible with (IN, file) lock. 
Thus, the insertion of the file element is denied. 
 

file_system, n1

catalog, n2

catalog, n6

T1
T2

IS
IS, IX, (IN, file)

T1
T2

IS, (L, file)

T2 IX, (SI,#t), (IN, file)

IS, IX, (IN, file)

file, n8

file, n9

T1 (ST,#t)

T2 (X,#t)

 
Figure 7: Logical locks 

4.6 Unordered XML Documents 

For some applications document order is not important. 
Our locking method could be easily modified to deal 
with unordered XML documents. In this case we do not 
need SI, SA and SB locks. Instead, conventional S lock 
is needed. It is a common shared lock. By definition S 
lock is compatible with itself. I.e. two insert operations, 
adding elements with different names into the same 
element do not conflict. 

5 Related Work 
There were proposed several locking schemes for 
synchronizing concurrent XML operations. Here is a 
brief overview of these methods. 
Grabs et. al. [8] proposed a DGLOCK protocol, which 
is a combination of well-known granular and predicate 
locking on the DataGuide. This work has much in 
common with our one. But DGLOCK has several 
disadvantages: (1) as a consequence of granular locking 
we have a conflict in the example 1, (2) DGLOCK does 
not guarantee serializability and has no phantom 

prevention mechanism, (3) the query language does not 
support the descendant axis, which is very important for 
querying semistructured data. 
In [11], the synchronization of concurrent transactions 
is considered in the context of DOM API. The authors 
present three types of locks: node locks, navigational 
locks and logical locks. Node and navigational locks are 
acquired for context nodes and virtual navigation edges 
respectively. In turn, logical locks are introduced to 
prevent phantoms. Authors offer variety options to 
enhance transaction concurrency. But synchronization 
of other APIs (e.g. XPath) is part of the future work. 
There are a number of isolation protocols for the DOM 
API proposed in the work [12]. Unfortunately, these 
locking protocols were developed for DOM API only, 
and it is not clear whether they could do for XPath 
expressions. 
Dekeyser et al. [4, 5] proposed the fine-grained (node-
level) XPath-based locking protocol, which ensures 
serializability. But this method does not use the 
DataGuide. Instead all the locks are obtained on the 
document itself. Disadvantages of this approach have 
been already noted in this paper. 

6 Conclusions 

In this paper we have presented a new locking protocol 
for concurrent processing of XML data. Our method is 
based on the XDGL protocol proposed in our earlier 
work [13]. The method is not limited to native XML 
DBMS. It could be implemented on top of existing 
relational or object-oriented database system. Another 
important benefit of our protocol is the size of the 
locking structures. Unlike in most other locking 
protocols, the size of the XML document does not 
affect the number of locks needed for consistent 
execution of transaction directly. This happens because 
of the DataGuide structure properties. When a new node 
is added to a big document, the DataGuide usually does 
not change. The explanation of this feature is that the 
DataGuide provides only information for the kinds of 
paths. And usually, the set of different paths is rather 
small, since we insert nodes of the same type. In our 
method DataGuide is used for locking. As a 
consequence, the lock manager works with a relatively 
small structure, which is very likely to fit into the main 
memory even for the huge documents. 

References 
[1] P. Bernstein, V. Hadzilacos and N. Goodman, 

“Concurrency Control and Recovery in Database 
System”, Addison-Wesley, 1987. 

[2] N. Bray, J. Paoli. Extensible markup language 
(XML) 1.0 (second edition). W3C 
Recommendation, October 2000. 

[3] J. Clark, S. DeRose, “XML path language (XPath) 
version 1.0”, World Wide Web Consortium (W3C) 
Recommendation, Nov. 1999. 



[4] S. Dekeyser, J. Hidders “Path Locks for XML 
Document Collaboration”, In Proceedings of the 
Third WISE Conference, 2002. 

[5] S. Dekeyser, J. Hidders, “A Commit Scheduler for 
XML Databases”, In proceedings of the fifth Asia 
Pacific Web Conference, Xina, China, 2003. 

[6] K. P. Eswaran, J. Gray, R. Lorie and I. Traiger, 
“The notions of consistency and predicate locks in 
a database systems”, Comm of ACM, Vol. 19, No 
11, pp. 624-633, November 1976. 

[7] R. Goldman and J. Widom, “DataGuides: Enabling 
Query Formulation and Optimization in 
Semistructured Databases”, In Proceedings of 23rd 

International Conference on Very Large Data 
Bases, 1997, Athens, Greece, pp. 436-445, Morgan 
Kaufmann, 1997. 

[8] T. Grabs, K. Bohm and H. Schek, “XMLTM: 
efficient transaction management for XML 
documents”, In Proceedings of the ACM 
International Conference on Information and 
Knowledge Management, McLean, Virginia, pp. 
142-152. 

[9] J. Gray, R. Lorie, “Granularity of locks in a large 
shared databases”, Proceedings of the International 
Conference on Very Large Databases, 1975. 

[10] J. Gray and A. Reuter, “Transaction processing: 
concepts and techniques”, Morgan Kaufmann, 
1993. 

[11] M. P. Haustein, and Theo Haerder, “taDOM: a 
Tailored Synchronization Concept with Tunable 
Lock Granularity for the DOM API”, In 
Proceedings of ADBIS Conference, LNCS 2798, 
Springer, 2003. 

[12] S. Helmer, C.-C Kanne and G. Moerkotte, 
“Evaluating lock-based protocols for cooperation 
on XML documents”, SIGMOD Record 33(1): 58-
63, 2004. 

[13] P. Pleshachkov, P. Chardin, S. Kuznetsov, ”XDGL: 
XPath-Based Concurrency Control Protocol for 
XML Data”, To appear in Proceedings of 22nd 
British National Conference on DataBases. 

[14] A. Silberschatz and Z. Kedem, “Consistency in 
hierarchical database systems”, Journal of the 
ACM, 27(1), pp. 72-80, 1980. 


