Partitioning Inverted Lists for Efficient Evaluation of
Set-Containment Joins in Main Memory

(© Dmitry Shaporenkov

University of Saint-Petersburg, Russia
dsha@acm.org

Abstract However, as study [3] shows, relational query optimizers
_ N are generally unable to deal with such queries in an effi-
We present an algorithm for efficient process- cient manner, since set predicates are unknown for them.

ing of set-containment joins in main memory.
Our algorithm uses an index structure based on
inverted files. We focus on improving perfor-
mance of the algorithm in a main-memory envi-
ronment by utilizing the L2 CPU cache more ef-
ficiently. To achieve this, we employ some op-
timizations including partitioning the inverted
lists and compressing the intermediate results.

Given the growing practical importance of joins with
set predicates, efficient algorithms for performing such
joins are required. Nested-loops algorithm is the most
common way to handle joins with complex predicates.
However, in case of joins with set predicates nested
loops algorithm falls short, because its poor performance
makes it inappropriate [2]. The reason is that testing
predicates on sets is a very expensive operation. Its cost
. in large extent depends on how the sets in question are
1 Introduction represented, but in general this cost is much higher than
Set-valued attributes have become more important in rethe cost of simple join predicates on atomic attributes tra-
cent years with growing distribution of object-relational ditionally used in relational database systems.
database systems (ORDBMS) and rapid development of Main-memory DBMS (MMDBMS) have attracted
such application areas as information retrieval and datanuch attention during recent decade. A MMDBMS
mining. In practice it is often required to evaluate join stores all the data and support structures (such as in-
queries on set-valued attributes. In such cases the joiflexes) in RAM of the database server. Constantly grow-
predicate is a set predicate, such as set containment or ilng amount of memory in modern database servers al-
tersection. Many real-world queries can be naturally exteady enables to store small and medium-size databases
pressed as set containment and intersection joins. For eirectly in main memory. It has been shown that
ample, a query that finds appropriate candidates amongIMDBMS provide huge performance gain over tradi-
job seekers includes a condition that the set of canditional, disk-based DBMS, since retrieving the necessary
date’s skills contains the set of skills required for the jobdata in MMDBMS usually does not involve disk access
as a subset. If we are interested in retrieving all docu=at all. Slow disk device is used only for logging and re-
ments containing the specified set of terms from the colcovery. Many researchers [11, 1] have recognized that
lection, this again can be considered a set containmenhe crucial factor for performance of a MMDBMS is
query. A relationPeoplethat includes a set-valued at- CPU cache utilization, that is, how many cache misses
tribute Hobbiesleads us to the problem of finding all database operations incur. If the number of cache misses
pairs of people sharing common hobbies that can be foris high, CPU will spend most of time waiting the data to
mulated as a set intersection self-join. be fetched from RAM (so-called CP&all).

Set-valued attributes are not directly supported in a

traditional relational DBMS, since already the first nor- on inverted files for set-containment joins in main mem-

P?giz)rThE);pl:c'tly fre(gw;?r?bar: atttntl)aute totb|e_|a\tlfl)n\1/|cr, "e'tory. Inverted files are well-known and widely used tool
orbids the value of an attribute to be a Set. HOWEVET, Sl indexing text documents. Our algorithm takes two

valued attributes in a relational DBMS can be S'mmatedrelationsR and S sharing a set-valued attributeas pa-

using unnested external representation [3] that creates 3 meters. scans the common inverted ik, built on
auxiliary relation connected to the original relation by Aihe set—vélued attributd for & and.S and proScesses the
foreign key, thus representing one-to-many relationship o o jists in such away that the resulting structure ap-

between a record of the original relation and the elementf)ears to be the answer to the set-containment query. The
of the value of its set-valued attribute. It can be eaS|Iyidea of the algorithm is fairly simple, and we focus our

noticed [7] that many complex joins on atomic attributes i~ ; :
S Lo . . . X study on tailoring the algorithm for MMDBMS by im-
Lhar;c'a(rjlse mh.retl.at'?ngl DBMS in fact h"lje. set pred|cat'§es roving CPU cache utilization. We achieve this by par-
ehind sophisticated expressions involving aggregatio itioning the inverted lists being processed. This enables

. . , , to fit the working set of the algorithm into the L2 CPU
Proceedings of the Spring Young Researcher’s Colloquium .
on Database and Information Systems SYRCoDIS, St.-Petersburg, cache and reduce the number OT L2 Ca(_:he misses. We
Russia, 2005 also study the effect of compressing the intermediate re-

In this paper we present an efficient algorithm based

sults which provides significant memory savings and al-and s2 are said tok-overlapif they have at leask el-
lows to join larger relations at the cost of more intensiveements in common). He proposes Block Nested-Loops
CPU usage and some loss in response time. We presealgorithm (BNL) that uses inverted fil&; built on the
experimental results showing that our optimizations giverelation.S. The S;r is partitioned into blocks each of
significant effect as compared with a straightforward im-which can fit into the main memory. The BNL algo-
plementation. We also demonstrate that the algorithnrithm proceeds by reading each block$r and scan-
is superior to some other algorithms for set-containmenhing the relationR to find qualifing tuples. Different
joins. strategies for handling the intermediate results are eval-
The structure of the paper is as follows. The sectionuated. Mamoulis also discusses the algorithm IFJ (IFJ
2 presents a survey of related work in the area of al- Inverted File Join that joins two inverted filesR;r
gorithms for joins with set predicates. In the section 3andS;r, but rejects this algorithm as inefficient. While
we first describe the basic algorithm for set-containmeniFJ and our algorithm are based on essentially the same
joins using inverted files, and then discuss various optiidea, our algorithm targets specifically MMDBMS and
mizations aiming to improve its performance. The sec-exploits some important optimizations improving cache
tion 4 summarizes the results of experimental evaluatiorperformance like partitioning the processing to fit the in-
of the algorithm. The section 5 concludes the paper andermediate results into the L2 CPU cache. Our partition-
outlines directions for future work. ing method differs from that of Mamoulis, as he simply
reads the inverted files block by block, while our method
rather operates on the individual inverted lists and pro-
2 Related work cesses only the part of each list relevant to the current

Helmer and Moerkotte [2] seem to be the first researcherB@tition. The reason is that Mamoulis designed and
who addressed specifically set containment joins. Thegvaluated his algorithms in the context of a disk-based
evaluated several algorithms for set containment join in?BMS where efficiency criteria differ significantly from
main memory. The first group of algorithms includes those in @ MMDBMS. _

variations of nested-loops join which differ in how the ~ During the last decade, many algorithms commonly
set comparison is implemented. Three implementation&!Sed in DBMS in the course of many years were recon-
of set comparison were considered: the naive algorithmsidered from the viewpoint of their suitability and op-
an implementation based on sorting the sets and an apimality for main-memory DBMS. [11] was one of the
proach that uses signatures. The latter turned out to bSt works concerning this problem. It suggests cache-
the best among nested-loops joins. The second algdonscious versions of several well-known database al-
rithm employs signature-based approach by hashing aforithms such as h_ash-Jom, and also demonstrates some
the signatures of the relatioR (assuming that the join fundamental techniques that can be used for improving
condition istg.A C tg.A, tr, ts are tuples ofR andsS, performancg of mam—memory'algorlthms. One of the' re-
respectivelyt ;. A is a set that is the value of in tz), ~ Ccent works in the field, [6], discusses cache-conscious
enumerating subsets of each set of the relafiprand hash-join algorithms including projections on different
matching each subset with hashed signature. of storage models. These and other works have made great

Melnik and Garcia-Molina [7] describe two algo- contribution by increasing researchers’ and developers’
rithms for set containment joins. Both algorithms ex- 2wareness of cache performance issues. However, to

ploit essentially the same idea, namely, partitioning theth® best of our knowledge, more complex database al-
relations being joined in such a way that the join resultd0rithms like one discussed in this paper have not been

can be computed by joining sets from each pair of cor-eviewed from the viewpoint of their optimality on mod-

responding partitions and then merging intermediate re€™M hardware yet.
sults. The main problem with this approach is that in the
case of set containment joins the partitions inevitably in-3 Set-containment join algorithm using in-
tersect. The first method, Adaptive Pick-and-Sweep Join, i
. : . verted files

extends the Pick-and-Sweep algorithm proposed in [8].
The algorithm is parameterized by a set{éf, ..., hj } Inverted files are a well-known technique for index-
boolean hash functions that take sets as input. For eadhg text documents. Essentially, an inverted file pro-
tupletr € R the functionh; is randomly chosen such vides a mapping of a teri# into the list of documents
thath;(tg.A) = true, andty is assigned to the parti- Dy, ..., D}, where this term occursj; is an ID of the
tion R;. For each tuplég € S all the functionsh; such document in the collection). [13] discusses in depth var-
thath;(ts.A) = true are chosen, antk is assigned to ious methods for constructing inverted files. To reduce
each of the partitions;. The second method, Adaptive storage cost, inverted files can be efficiently compressed
Divide-and-Conquer Join, progressively refines the parat almost no loss in search speed: the list of documents
tition assignment. It starts with the single partition pair, D1, ..., Dy, is ordered, and instead of storing document
and on each step doubles the number of partitions by apDs, the differenced; — D;_; are kept in an encoded
plying a hash function to either set.A or t5.A. On form. Given that the access to inverted list is mostly se-
each step the partition assignment is modified to makeuential, document IDs can be easily decoded ‘on the
the condition that each set & can be contained only in fly’.
sets of the correspondirtg true (details can be found in We apply inverted files in a different context but the
[71). idea remains the same. Instead of collection of docu-

Mamoulis [4] considers several algorithms for setments, we consider relatiorf$ and .S and the common
containment, intersection and overlap join (two sets set-valued attributel. We denoteDomain(A) the do-

Workmap : map : RID -> ref to list of RID;

main from which elements of values dfin tuples of R)
foreach (Value v in RSiFr)

and .S are drawn. Tuples of relations are identified by
record ID (RID). Inverted filek; then maps an element

. . 117lv . f to list of RID;
of the Domain(A) into the list of RIDs of tuples whose mols o T RO SSh O

Initialize l% and [%;

value of A contains this element. foreach (tg.rid in 11%)

We design our algorithm under assumption that all the {
data and indexes are kept in main memory. This assump- Ly,result : ref to list of RID;
tion greatly affects the algorithm design, since main fo- L. = Workmap.Get(tr.rid); M
cus now shifts from minimizing the number of disk ac- it (L, = NULL)

result =%
else

result = Intersect(TLy, 11%); (1)
Workmap.Put(tr.rid, result) ;

cesses (which we assume do not happen at all) to min-
imizing the number of cache misses. While both these
aims require good reference locality, the methods for
achieving them are somewhat different [6]. The first im- }
portant difference between the CPU cache and file cache
in RAM is that the former is normally much smaller. The
second difference is that generally speaking CPU cachgigure 1: Basic algorithm for computing set-containment
cannot be directly controlled by the program. joins

Our algorithm employs the idea jain indexeq12, 9] | Result|]]])
to speed-up the join. Instead of building two separatel(R,S) = —z— - The basic algorithm is presented in
inverted filesR;» and S;r, we build one inverted file the Figure 1.
(we denote itRS;r) that maps an element of the For clarity, our notation uses to mark dereferences
Domain(A) into two lists of the RIDs[% andl¥, where ~ which cause cache misses. This facilitates identifying
1%, andlY consist of all RIDs of tuples fronk and.S, re- sources of the cache misses in the algorithm.
spectively, each of which contains the elemem@mong The functionIntersect computes intersection of two
the values of the set-valued attribute. In an actual im4inverted lists. Given that lists are kept in ascending order
plementation/’, andl% can be merged into one list, but of RIDs, this function can be efficiently implemented
there should be an efficient way to separate them. Thi®y synchronously traversing both inverted lists. For the
enables us to find all tuples froR andS containing the sake of simplicity, in our analysis we will ignore the
given element using only single lookup in the invertedfact that lists shrink during processing. Then the cost
file. As noticed in [9], this property comes at the cost of of computing the intersection in terms of elementary
some loss in efficiency in case BS;r is used in role operations (such that index increment and integer
of eitherR;r or Sy (thatis, if RS is used for finding comparison) does not exce€d|L,| + |Is|), where|L, |
all tuples from either? or S containing an element). The is the average length of the,. and|is| is the average
exact value of the decrease in search efficiency dependgngth of inverted list forS, and C is a constant. Let
on the implementation of the inverted file. In our im- |V| be the number of different values in the inverted
plementation it is quite affordable. On the positive side,file RS;r, |R| and [S| - cardinality of relationd and
combining two inverted files into one gives us a very effi- S, and |r| and |s| - average cardinalities of values of the
cient way for traversing all elements of thi&main(A) set-valued attributel in relationsRk and S, respectively.
and their corresponding inverted lists in both relationsAssuming that the values are uniformly distributed
without using index lookup. across tuples, the probability for a tuple to have a
valuev among the elements of the ggt A is equal to
Pes=1—(1— %V‘)‘S'. Hence we havig| = |S|P,cs,
and the cost of the algorithm can be estimated as
We present the basic version of the algorithm for set-r||R| (C (‘R“““‘ + |S|Pv€s) + CWOrkmap> where

3.1 Basic set-containment join algorithm

containment joins based on inverted files. We assumey . Cis t‘ﬁ(‘e cost of lookup into th& orkmap.
that the join predicate is C s wherer, s are values of the Our algorithm and cost estimation, however, do not
set-valued attributel in relationsiz and.S, respectively. aye into account that the memory access is not uniform
We denotel, ts tuples of relationsk and S, tr.7id, on modern architectures. Random memory access such
ts.rid RIDs of tuples, andg.4, ts.A their values of nat aecess to the orkmap becomes very expensive in
the attributeA. Let also|Result| be the cardinality of presence of several memory hierarchies like L1 and L2

the result relation that consists of paits:.rid, ts.rid) caches, unless th& orkmap entirely fits into one of the
qualifying the containment predicatg. A C ¢s.A. The caches. Let us then take a closer look on the memory ref-

algorithm traverses the combined inverted fl€;», and orance behavior of the algorithm. Lét,.;,, be the cost
on each step processes inverted liglss, wherevisan 4t 5 | 2 cache miss. The main sources of cache misses in
element of theDomain(A) (both lists may be empty). he pasic algorithm are (in the Figure 1 the corresponding

It maintains a mapping/ orkmap that mapg g.7id into |ines are marked ()):

a reference to the list af, = tg,.rid, ..., ts, .rid such

that each ot g, . A contains all the elements ¢f. A en- e The Workmap is accessed in a random fashion,
countered so far. These lists shrink as the algorithm pro- and if the size of thé/ orkmap exceeds the size of
ceeds. After the final iteratiofl/ orkmap is exactly a the L2 cache, we may consider that every access to
mapping oftr.rid into the list of tg, .rid, ..., ts,, .rid the Workmap incurs at least one cache miss (The
wheretp. A C ts,. Ak = 1,..,m. The average exact number of cache misses depends on the imple-

length of theL, in the final result can be estimated as mentation of théV orkmap. In case ifWorkmap

is implemented as a hash table, we expect the ac-_artBounds : array of
cess to this hash table to be as efficient as access {§ :75t1D:RID,LastID:RID); ,
. - . . Fill PartBounds by partition R into
an array, since the number of collisions in our situ- i
tion i . The total t of th h ; gPartBounds\ partitions;
?.IOI’] is small). The total cost of these cache misse foreach (PartBound p in PartBounds)
is therefordr|| R|Cyiss- {

) . Workmap, = map : RID -> ref to list of
e Dereferencing a reference g that happens in the Rgip;

line result = Intersect(1L,,1l%) incurs another foreach (Value v in RSip)
cache miss. The cost of these cache missfs|is- {
1)|R|Coniss, Since the first access to thEorkmap r)ls,lk, + ref to list of RID;
for the givent z.rid does not cause a cache miss. Initialize lp and [g;
r, = Select(1lr, p);
e Computing the intersection of two lists of lengths £°rea“h (trrid in 1lg,)
: - - La|+]l2])
andl, sorted in ascending order inc [CacheLine] Ly,result : ref to list of RID
cache misses, whet€acheLine| is the size of the L, = Workmap,.Get(tr.rid);
L2 cache line. if (L, == NULL)
result =1%;
Of course, there are other sources of cache misses in else l— Int PR,
the algorithm, for instance, dereferencing references to WZ:Z;;Q_ ;Lu:(tseii(; o Lﬁgj
the listsly, and/g may also incur a cache miss. However, } Pr- e ’

provided that the |V| is small as compared with |R| and |S|
(we expect this to be true in practical cases), the cost of }
those cache misses is negligible.
Figure 2: Partitioned algorithm for computing set-

3.2 Partitioned version of the algorithm containment joins

Our method reduces amount of cache misses of all the

aforementioned kinds. In order to eliminate misses of the

first kind, we partition the processing to fit’ orkmap |7‘||R|(C/(‘RGSUH‘ +1S|P)+
into the L2 cache. This can be done in an obvious way |R| ves

- we modify the algorithm so that only a part of the tu-
ples of R are considered at a moment, and other tuples CW"’”’“”“PP) + Np|V|Coetecr (1)

of R are ignored. This also reduces the number of cache . i

misses of the second kind, since the fewer inverted lists WhereC” is a constant accounting for synchronous
are processed at a moment, the more likely they reside iff@versal of (possibly compressed) lists, @Rgto,kmap,

the L2 cache. The cache misses of the third kind are dealf € cost of lookup into thélorkmap,. Comparison
with by compressing thé,. using one of many compres- With the basic algorithm shows that t6&y o xmap, <

sion techniques for ascending sequences of positive inCW_orkmapa and, in presence of a_compre55|6h,> C.
teger numbers [13]. The modified version of the a|g0_So in terms of elementary operations we do not get clear

rithm is presented in the Figure 2. To make presentatioff€Nefits. Let us now turn to the cost of memory refer-
clearer, we omit compression. In reality, if inverted lists €NC€S: Sinc& orkmap, now fits into the L2 cache, we

are already kept compressed in the inverted files, the ad® not get misses of the first kind at all. Since the num-
gorithm can be unaware of compression at all. The reaber of inverted lists processed in a partition is fewer than
son is that the computation of intersection of invertedthat in the basic algorithm, we expect the cache misses
lists is done by the same code regardless of whether th@f the second kind to happen more rarely. The number

arguments are compressed are not, since this compth,f misses of the thir'd kind is also significantly reduced, _
tion accesses elements of lists in a sequential fashion. Since compressed lists occupy much less space and uti-

The functionSelect selects the range of RIDs relevant lize cache lines more efficiently.

to the current partitiop from the (possibly compressed) The question is therefore whet.h_er the bettgr locality
inverted listl%. This function can be implemented in of memory references of the partitioned algorithm out-

various ways: using sequential scan of the the bi- Welg_hs thiCOSt of some adtd'lt'oPa(; CPU—mltenswde prt(;]-
nary search i, or even the specialized index gjpthat ~ €€SSING. /AS Our expenmental study reveass, under the

would enable to determine the first RID residing within conditiqn that the ”“m'?ef of partitions is properly chpsen
the intervallp. FirstI D, p.LastID] according to characteristics of the system, the partitioned

Let us now estimate the cost of the partitioned ver.Version provides a significant performance improvement

: . —._over the basic one.
sion of the algorithm. We can proceed by analogy with . - :
the case of the basic algorithm. For the partitioned ver- The optimal number of partitions can be estimated

sion of the algorithm we also need to take into accountichr?gol’r‘:z nimf}i rlto:‘st Sszge&t))lg ;r;frlf) ilrs ;‘g O||ni:10 etgfh .
the cost of theSelect function. Generalizing possible ; . y
T, tition should not exceed 2<esize|

(&

. X) \

implementations oSelect, we denote this cost.jc.:. d size(Ly) f'”?d hence the num-

Thus we have an additional terti,|V'|Cyiect (Where ber of partitions should be the minimal number that is
N, is the number of partitions), and the overall cost ingreater tharZlsizellr) |L,.| decreases as the algorithm

CacheSize

terms of elementary operations can be estimated as: proceeds, but its average value remains in the bounds

[L(R,S),|ls|], where L(R, S) and|ls|, as before, are

the average number of qualifying tuples®for a tuple Table 1: Relations characteristics for Case Study 1

of R, and average length of inverted ligtsin RS;r, re- | el | Rel. Card.| Avg. SetCard.| [Domain(A)|

spectively. This observation enables to get an upper al AL 150000 > 000

a lower bounds for the number of partitions, but the in- S 300000 S 000

terval between them can be quite large. So in practic _ i .

the number of partitions needs to be carefully tuned. ;’artltlons ;‘Qe’ sec 222 Cache Misses, 10°
; 3 3.66 36

4 Experimental study = 353 3

We have implemented both basic and partitioned version 8 3.72 33

of the algorithm in our research prototype MMDBMS [11 3.84 33

kernel Memphis. A short description of Memphis can be[16 4.04 32

found in [10]. The implementation is written in the C#

programming language [14] and runs on the .NET frame- Table 2: Tuning the number of partitions

work. Inverted files are implemented using the standard

Hashtable class. We considered two variants of the Running times corresponding to different values of the
algorithm: the first does not use compression, and théVp, i.€. to different numbers of partitions, are presented
second compresses inverted lists by encoding difference8 the Table 2. Note that the basic version of the algo-
between subsequent elementsinode [13]. Unless ex- fithm is essentially the cas&), = 1. Looking at the
plicitly mentioned, we assume that the version withoutTable 2, it becomes obvious that 5 partitions (which cor-
compression is used. Our implementation of fh¢ect respond tal50000/5 = 30000 RIDs in a partition) give
function uses sequential scanigf, since in the case of the best results, providing the balance between the num-
compressed inverted lists binary search would be imposPer of L2 cache misses and the amount of extra process-

sible. Trying implementation of th8elect function in ing caused by partitioning. As the number of partitions
the form of index on long inverted lists is left for future grows further, the number of L2 cache misses reduces

research. only marginally. The observed dependency between run-

All experiments were conducted on a laptop with In- ning time and number of partitions is depicted in the Fig-
tel P4 2.8 GHz CPU and 1 Gb RAM running under ure 3.
Windows XP. This machine features Intel Pentium Mo- _))
bile processor with 2-level on-chip cache. The size of4.2 Case Study 2: Varying element domain’s cardi-
the L2 cache is 512 Kb, and the size of the L2 cache nality

line is 128 bytes (these parameters were measured Ushis experiment shows the impact|df| on the running
ing Stefan Manegold’s Calibrator tool [5]). For mea- ime of the algorithm. In this case study we only con-
suring the number of L2 cache misses we used the Intédjger the partitioned version of the algorithm, the num-
VTune Performance Analyser [15] that provides a graphyer of partition is chosen so that orkmap,, fits into

ical user interface to various CPU counters. All reportedihe | 2 cache, and the cardinalities of relatiddgnd S
times were estimated usirigueryPerformanceCounter / gre selected to keep all the processing in the main mem-
QueryPerformanceFrequencyVindows API that gives o1y and avoid trashing as long as possible. We keep
a programmatic access to the high-resolution hardwar?m = 100000, |S| = 250000 and|r| = |s| = 5 fixed,
performance counter. To reduce noise, we present avefng vary|V/|. The less|V|, the greater the expected
age times based on results of several runs. We do nqgngth of inverted list$S|P,c,. On the other hand, the
include in the results the time necessary for constructmg,veight of the termN,,|V |Ccscct decreases with the de-

the inverted file (join index), since it is assumed to existrease ofV|. The results of the experiment given in the
in a practical situation.

In the most of experiments, synthetic datasets ar¢
used. These datasets were generated by a program tf 410
takes desired characteristics of the dataset (relations ca 200
dinalities, average set cardinality, distributions of set car- '
dinalities and set elements, size of the element domai/| & 280 {
etc.) as parameters and produces the resulting dataset | = sz |
the form of a text file. Each experiment starts with bulk- | &
loading the relevant relations from text files into memory. | & 370
We used VTune'ResumeSampling / SuspendSamplin¢| 2 = zp
API to profile only cache misses that happen during the -
join execution and exclude other stages of the process. -

3,40 T T T

4.1 Case Study 1: Tuning number of partitions 1] 5 10 15 20
In this case study, we use a dataset containing two rele Number of Fartifons
tions, each of which consists of two attributes - the first

is used as a primary key, and the second is a set-valued
attribute. The characteristics of relations are given inFigure 3: Dependency of running time on number of par-
the Table 1, the join selectivity i% =12%10"". titions

V| | Time, sec Algorithm | Time, sec
500 | 15 SNL 545
250 | 29 PSJ 146
200 | 37 Index-SCJ| 12
100 | 213 IFJ 0.3
Table 3: Impact of element domain cardinality Table 5: Comparison with other algorithms

Table 3 show that the cost of merging the inverted listsresults are depicted in the Table 5, where the proposed al-
dominates in the cost formula (1), and long inverted listsgorithm is denoted IFJ (Inverted File Join). Though this
dramatically reduce the performance of the algorithm.measurement is not quite representative, it nevertheless
This is where compression comes into play and enableshows that the IFJ outperforms competitors on the or-
to process much larger relations by effectively reducingders of magnitude. For fair comparison we should note,

memory space consumed by inverted lists. however, that such a performance is achieved at the cost
_ of significant extra space needed for intermediate results.
4.3 Case Study 3: Effect of compression Among other algorithms, SNL and PSJ have very mod-

erate space requirements, while Index-SCJ also needs

The compression of inverted lists in the intermediate re . S
much memory for the intersection index.

sults (¥ orkmap,) helps to reduce number of L2 cache
misses while intersecting inverted lists, at the cost of in-)
creasing the constart’ in the formula (1). We vary 5 Conclusion
length of the inverted lists by changing average set cardi: - .
nalities and the size of the domdii|. The cardinalities \ci\tl)?ltzar:?r/neen?r%ri)r?;ie: mégiln ?rfelzcrlneonrt a(IDgL?r“gI]rT)ri{ﬁ:n Se?(t_'
of relations are kept fixedR| = 100000, | S| = 250000. ! Y- 9

The dependency among running ime, ol memoryuseff 1S Thered fes whch e combnes o Snole o,
by the program (to retrieve this value, the code was in- g very

and the corresponding RIDs. The algorithm maintains a
strumented by a call to theC'.GetT otal M emory func- ; . ; :
tion from the .NET standard library. This function per- mapping of RIDs of the first relation to the list of RIDs

forms garbage collection before calculating the size Ofo:r;tgﬁt:eoiotﬂg rsi?g??hgiﬁ;orfegzgg gﬁggﬁ'g& f;ldtgﬁ ?a|1-r
the heap), the average lengths of inverted lists and th fter the final iteration, this mapping is exactly the join .
cardinality of the resultResult| is illustrated in the Ta- ' ppIng y the |

ble 4. The table shows results for both versions of thereSUIt' We have focused on the cache efficiency and dis-

algorithm, with and without compression. The one Ce”cussed a partitioning method that improves memory ref-

- s missed because he aigofm s not abie o sk %> 0SOIY Of e AT, Ao our Sperena
due to exhaustion of all the available memory. ' P 9

From these results it becomes clear that more compacL’(2 caghe MISSES bwfw%' We _have alsq applied com-
pression to inverted lists in the intermediate results. The

inverted lists in the ‘compressed’ version, though reduc-Com ression mav decrease space requirements of the al-

Ing the number of L 2 cache misses, do not pay off the in\ orit?nm 4 times a¥[the cost of pen‘orm(;lmce deterioration

crease in the cost of intersection operation. So the mo . . P ‘
s effectiveness in large extend depends on such param-

important goal for using compression is smaller MEM- o ters of the input relations as average lengths of the in-
ory footprint. As the third and the fourth rows of the (he input o ge leng
verted lists in the index and join selectivity.

table demonstrate this effect is achieved only when all . .
y Future research on this algorithm should focus on ap-

Lr, Ls and |Result| are large enough. This fact quite lying compression adaptively. An adaptive version ma
matches the intuitive expectations, since the less the ca 2ying pres: PUVETY. P . y
eep inverted lists compressed or not depending on the

dinality of the result (in the extreme case of the thirdI nath of the list. predicted ioin selectivity and current
row the result is empty), the shorter inverted lists in the ength ot the 1ist, predicted join selectivity curre
emory usage. Another possible direction for future

intermediate results, and the less benefits we give com! Ki el aloorithm f A tai t ioi
pressing them. A more sophisticated algorithm could us sr IS a..paf% €l algon fmh or Ise _'C?]n ammek? Jo'nfci'
compression adaptively, predicting the cardinality of the € partitioned version of the algorithm can be easily
join and keeping track of the size of intermediate results parallelized, since there is no any data dependency be-

More detailed development of such an algorithm is Iefttweer.‘ processing Qf different partitions. Running the
for future work. algorithm in a multi-processor environment opens new

possibilities for improving its response time. A more ac-
curate cost model should be developed, since the current
one does not take into account the fact that the inverted
lists shrink during processing. We are now working on
To demonstrate the efficiency of the proposed algothese problems and hope to present detailed results in the
rithmm, we have compared its performance with somenext paper.

other algorithms for set-containment joins. Those algo-

rithms include signature nested-loops join (SNL), parti-

tioned set join (PSJ) and the algorithm Index-SCJ base(ltl:zeferenCes

on computing theintersection indexof the relations [1] P. A. Boncz, S. Manegold, and M. L. Kersten.
which we discussed in [10]. To keep running times rea- Database Architecture Optimized for the New Bot-
sonable we considered small relatioh&| = 15000,|5] tleneck: Memory Access. IfProceedings of the
=25000,|V| =1000,|r| = |s| =5, |Result| = 1147. The 25th VLDB Conferenggpages 54—65, 1999.

4.4 Case Study 4: Comparison with other algo-
rithms

Un‘compressed Ct‘)mpressed
llrl | |ls] |Result| | Time, sec| Mem. Usage, Mb| Time, sec| Mem. Usage, Mb
20 50 137 15 110 3.2 113
75 188 | 1759 1.8 113 3.9 90
3000| 7500 | O 73 144 115 146
500 | 22501 50 % 10° | - 300 151 91

Table 4: Effect of compression

[2] Sven Helmer and Guido Moerkotte. Evaluation [15] Intel VTune Performance Analyzer.
of main memory join algorithms for joins with set http://www.intel.com/software/products/vtune/
comparison join predicates. Proceedings of the
23rd VLDB Conferengepages 386—395, 1997.

[3] Sven Helmer and Guido Moerkotte. Compiling
away set containment and intersection joins (tech-
nical report), 2002.

[4] Nikos Mamoulis. Efficient processing of joins on
set-valued attributes. IRroceedings of the SIG-
MOD 2003 Conferenggpages 157-168, 2003.

[5] Stefan Manegold. The Calibrator, a
Cache-Memory and TLB Calibration Tool.
http://homepages.cwi.nl/"manegold/Calibrator/

[6] Stefan Manegold, Peter Boncz, Niels Nes, and Mar-
tin Kersten. Cache-conscious radix-decluster pro-
jections. InProceeding of the SIGMOD 2004 Con-
ference 2004.

[7] Sergey Melnik and Hector Garcia-Molina. Adap-
tive Algorithms for Set Containment JOIinNACM
Transactions on Database System28:56—99,
2003.

[8] Karthikeyan Ramasamy et al. Set containment
joins: The good, the bad and the ugly. Proceed-
ings of the 26th VLDB Conferenggages 351-362,
2000.

[9] Dmitry Shaporenkov. Multi-indices - a tool for
optimizing join processing in main memory. In
Proceedings of the Baltic DBIS 2004 Conferegnce
pages 105-114, 2004.

[10] Dmitry Shaporenkov. Performance comparison of
main-memory algorithms for set containment joins.
In Proceedings of the SYRCoDIS,(ghges 17-21,
2004.

[11] Ambuj Shatdal, Chander Kant, and Jeffrey F.
Naughton. Cache Conscious Algorithms for Re-
lational Query Processing. IRroceedings of the
20th VLDB Conferenggages 510-521, 1994.

[12] Patrick Valduriez. Join IndiceACM Transactions
on Database Systemk2:218-246, 1987.

[13] lan Witten, Alistair Moffat, and Timothy Bell.
Managing Gigabytes : Compressing and Indexing
Documents and ImagesMorgan Kaufmann pub-
lishers, second edition, 1999.

[14] C# Language Specification. ECMA-334 Interna-
tional Standard, 2001.

