
Partitioning Inverted Lists for Efficient Evaluation of
Set-Containment Joins in Main Memory

c© Dmitry Shaporenkov

University of Saint-Petersburg, Russia
dsha@acm.org

Abstract

We present an algorithm for efficient process-
ing of set-containment joins in main memory.
Our algorithm uses an index structure based on
inverted files. We focus on improving perfor-
mance of the algorithm in a main-memory envi-
ronment by utilizing the L2 CPU cache more ef-
ficiently. To achieve this, we employ some op-
timizations including partitioning the inverted
lists and compressing the intermediate results.

1 Introduction
Set-valued attributes have become more important in re-
cent years with growing distribution of object-relational
database systems (ORDBMS) and rapid development of
such application areas as information retrieval and data
mining. In practice it is often required to evaluate join
queries on set-valued attributes. In such cases the join
predicate is a set predicate, such as set containment or in-
tersection. Many real-world queries can be naturally ex-
pressed as set containment and intersection joins. For ex-
ample, a query that finds appropriate candidates among
job seekers includes a condition that the set of candi-
date’s skills contains the set of skills required for the job
as a subset. If we are interested in retrieving all docu-
ments containing the specified set of terms from the col-
lection, this again can be considered a set containment
query. A relationPeoplethat includes a set-valued at-
tribute Hobbies leads us to the problem of finding all
pairs of people sharing common hobbies that can be for-
mulated as a set intersection self-join.

Set-valued attributes are not directly supported in a
traditional relational DBMS, since already the first nor-
mal form explicitly requires an attribute to be atomic, i.e.
forbids the value of an attribute to be a set. However, set-
valued attributes in a relational DBMS can be simulated
using unnested external representation [3] that creates an
auxiliary relation connected to the original relation by a
foreign key, thus representing one-to-many relationship
between a record of the original relation and the elements
of the value of its set-valued attribute. It can be easily
noticed [7] that many complex joins on atomic attributes
that arise in relational DBMS in fact hide set predicates
behind sophisticated expressions involving aggregation.

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems SYRCoDIS, St.-Petersburg,
Russia, 2005

However, as study [3] shows, relational query optimizers
are generally unable to deal with such queries in an effi-
cient manner, since set predicates are unknown for them.

Given the growing practical importance of joins with
set predicates, efficient algorithms for performing such
joins are required. Nested-loops algorithm is the most
common way to handle joins with complex predicates.
However, in case of joins with set predicates nested
loops algorithm falls short, because its poor performance
makes it inappropriate [2]. The reason is that testing
predicates on sets is a very expensive operation. Its cost
in large extent depends on how the sets in question are
represented, but in general this cost is much higher than
the cost of simple join predicates on atomic attributes tra-
ditionally used in relational database systems.

Main-memory DBMS (MMDBMS) have attracted
much attention during recent decade. A MMDBMS
stores all the data and support structures (such as in-
dexes) in RAM of the database server. Constantly grow-
ing amount of memory in modern database servers al-
ready enables to store small and medium-size databases
directly in main memory. It has been shown that
MMDBMS provide huge performance gain over tradi-
tional, disk-based DBMS, since retrieving the necessary
data in MMDBMS usually does not involve disk access
at all. Slow disk device is used only for logging and re-
covery. Many researchers [11, 1] have recognized that
the crucial factor for performance of a MMDBMS is
CPU cache utilization, that is, how many cache misses
database operations incur. If the number of cache misses
is high, CPU will spend most of time waiting the data to
be fetched from RAM (so-called CPUstall).

In this paper we present an efficient algorithm based
on inverted files for set-containment joins in main mem-
ory. Inverted files are well-known and widely used tool
for indexing text documents. Our algorithm takes two
relationsR andS sharing a set-valued attributeA as pa-
rameters, scans the common inverted fileIFA

RS built on
the set-valued attributeA for R andS and processes the
inverted lists in such a way that the resulting structure ap-
pears to be the answer to the set-containment query. The
idea of the algorithm is fairly simple, and we focus our
study on tailoring the algorithm for MMDBMS by im-
proving CPU cache utilization. We achieve this by par-
titioning the inverted lists being processed. This enables
to fit the working set of the algorithm into the L2 CPU
cache and reduce the number of L2 cache misses. We
also study the effect of compressing the intermediate re-

sults which provides significant memory savings and al-
lows to join larger relations at the cost of more intensive
CPU usage and some loss in response time. We present
experimental results showing that our optimizations give
significant effect as compared with a straightforward im-
plementation. We also demonstrate that the algorithm
is superior to some other algorithms for set-containment
joins.

The structure of the paper is as follows. The section
2 presents a survey of related work in the area of al-
gorithms for joins with set predicates. In the section 3
we first describe the basic algorithm for set-containment
joins using inverted files, and then discuss various opti-
mizations aiming to improve its performance. The sec-
tion 4 summarizes the results of experimental evaluation
of the algorithm. The section 5 concludes the paper and
outlines directions for future work.

2 Related work

Helmer and Moerkotte [2] seem to be the first researchers
who addressed specifically set containment joins. They
evaluated several algorithms for set containment join in
main memory. The first group of algorithms includes
variations of nested-loops join which differ in how the
set comparison is implemented. Three implementations
of set comparison were considered: the naive algorithm,
an implementation based on sorting the sets and an ap-
proach that uses signatures. The latter turned out to be
the best among nested-loops joins. The second algo-
rithm employs signature-based approach by hashing all
the signatures of the relationR (assuming that the join
condition istR.A ⊆ tS .A, tR, tS are tuples ofR andS,
respectively,tR.A is a set that is the value ofA in tR),
enumerating subsets of each set of the relationS, and
matching each subset with hashed signatures ofR.

Melnik and Garcia-Molina [7] describe two algo-
rithms for set containment joins. Both algorithms ex-
ploit essentially the same idea, namely, partitioning the
relations being joined in such a way that the join result
can be computed by joining sets from each pair of cor-
responding partitions and then merging intermediate re-
sults. The main problem with this approach is that in the
case of set containment joins the partitions inevitably in-
tersect. The first method, Adaptive Pick-and-Sweep Join,
extends the Pick-and-Sweep algorithm proposed in [8].
The algorithm is parameterized by a set of{h1, ..., hk}
boolean hash functions that take sets as input. For each
tuple tR ∈ R the functionhi is randomly chosen such
that hi(tR.A) = true, andtR is assigned to the parti-
tion Ri. For each tupletS ∈ S all the functionshj such
thathj(tS .A) = true are chosen, andtS is assigned to
each of the partitionsSj . The second method, Adaptive
Divide-and-Conquer Join, progressively refines the par-
tition assignment. It starts with the single partition pair,
and on each step doubles the number of partitions by ap-
plying a hash function to either settR.A or tS .A. On
each step the partition assignment is modified to make
the condition that each set ofRi can be contained only in
sets of the correspondingSi true (details can be found in
[7]).

Mamoulis [4] considers several algorithms for set
containment, intersection and overlap join (two setss1

and s2 are said tok-overlap if they have at leastk el-
ements in common). He proposes Block Nested-Loops
algorithm (BNL) that uses inverted fileSIF built on the
relationS. The SIF is partitioned into blocks each of
which can fit into the main memory. The BNL algo-
rithm proceeds by reading each block ofSIF and scan-
ning the relationR to find qualifing tuples. Different
strategies for handling the intermediate results are eval-
uated. Mamoulis also discusses the algorithm IFJ (IFJ
- Inverted File Join) that joins two inverted filesRIF

andSIF , but rejects this algorithm as inefficient. While
IFJ and our algorithm are based on essentially the same
idea, our algorithm targets specifically MMDBMS and
exploits some important optimizations improving cache
performance like partitioning the processing to fit the in-
termediate results into the L2 CPU cache. Our partition-
ing method differs from that of Mamoulis, as he simply
reads the inverted files block by block, while our method
rather operates on the individual inverted lists and pro-
cesses only the part of each list relevant to the current
partition. The reason is that Mamoulis designed and
evaluated his algorithms in the context of a disk-based
DBMS where efficiency criteria differ significantly from
those in a MMDBMS.

During the last decade, many algorithms commonly
used in DBMS in the course of many years were recon-
sidered from the viewpoint of their suitability and op-
timality for main-memory DBMS. [11] was one of the
first works concerning this problem. It suggests cache-
conscious versions of several well-known database al-
gorithms such as hash-join, and also demonstrates some
fundamental techniques that can be used for improving
performance of main-memory algorithms. One of the re-
cent works in the field, [6], discusses cache-conscious
hash-join algorithms including projections on different
storage models. These and other works have made great
contribution by increasing researchers’ and developers’
awareness of cache performance issues. However, to
the best of our knowledge, more complex database al-
gorithms like one discussed in this paper have not been
reviewed from the viewpoint of their optimality on mod-
ern hardware yet.

3 Set-containment join algorithm using in-
verted files

Inverted files are a well-known technique for index-
ing text documents. Essentially, an inverted file pro-
vides a mapping of a termT into the list of documents
D1, ..., Dk where this term occurs (Dj is an ID of the
document in the collection). [13] discusses in depth var-
ious methods for constructing inverted files. To reduce
storage cost, inverted files can be efficiently compressed
at almost no loss in search speed: the list of documents
D1, ..., Dk is ordered, and instead of storing document
IDs, the differencesDi − Di−1 are kept in an encoded
form. Given that the access to inverted list is mostly se-
quential, document IDs can be easily decoded ‘on the
fly’.

We apply inverted files in a different context but the
idea remains the same. Instead of collection of docu-
ments, we consider relationsR andS and the common
set-valued attributeA. We denoteDomain(A) the do-

main from which elements of values ofA in tuples ofR
andS are drawn. Tuples of relations are identified by
record ID (RID). Inverted fileRIF then maps an element
of theDomain(A) into the list of RIDs of tuples whose
value ofA contains this element.

We design our algorithm under assumption that all the
data and indexes are kept in main memory. This assump-
tion greatly affects the algorithm design, since main fo-
cus now shifts from minimizing the number of disk ac-
cesses (which we assume do not happen at all) to min-
imizing the number of cache misses. While both these
aims require good reference locality, the methods for
achieving them are somewhat different [6]. The first im-
portant difference between the CPU cache and file cache
in RAM is that the former is normally much smaller. The
second difference is that generally speaking CPU cache
cannot be directly controlled by the program.

Our algorithm employs the idea ofjoin indexes[12, 9]
to speed-up the join. Instead of building two separate
inverted filesRIF andSIF , we build one inverted file
(we denote itRSIF) that maps an elementv of the
Domain(A) into two lists of the RIDs,lvR andlvS , where
lvR andlvS consist of all RIDs of tuples fromR andS, re-
spectively, each of which contains the elementv among
the values of the set-valued attribute. In an actual im-
plementation,lvR andlvS can be merged into one list, but
there should be an efficient way to separate them. This
enables us to find all tuples fromR andS containing the
given element using only single lookup in the inverted
file. As noticed in [9], this property comes at the cost of
some loss in efficiency in case ifRSIF is used in role
of eitherRIF or SIF (that is, ifRSIF is used for finding
all tuples from eitherR or S containing an element). The
exact value of the decrease in search efficiency depends
on the implementation of the inverted file. In our im-
plementation it is quite affordable. On the positive side,
combining two inverted files into one gives us a very effi-
cient way for traversing all elements of theDomain(A)
and their corresponding inverted lists in both relations
without using index lookup.

3.1 Basic set-containment join algorithm

We present the basic version of the algorithm for set-
containment joins based on inverted files. We assume
that the join predicate isr ⊆ s wherer, s are values of the
set-valued attributeA in relationsR andS, respectively.
We denotetR, tS tuples of relationsR andS, tR.rid,
tS .rid RIDs of tuples, andtR.A, tS .A their values of
the attributeA. Let also|Result| be the cardinality of
the result relation that consists of pairs(tR.rid, tS .rid)
qualifying the containment predicatetR.A ⊆ tS .A. The
algorithm traverses the combined inverted fileRSIF , and
on each step processes inverted listslvR, lvS , wherev is an
element of theDomain(A) (both lists may be empty).
It maintains a mappingWorkmap that mapstR.rid into
a reference to the list ofLr = tS1 .rid, ..., tSn

.rid such
that each oftSk

.A contains all the elements oftR.A en-
countered so far. These lists shrink as the algorithm pro-
ceeds. After the final iterationWorkmap is exactly a
mapping oftR.rid into the list of tS1 .rid, ..., tSm .rid
where tR.A ⊆ tSk

.A, k = 1, ...,m. The average
length of theLr in the final result can be estimated as

Workmap : map : RID -> ref to list of RID;
foreach (Value v in RSIF)
{

lvR, lvS : ref to list of RID;
Initialize lvR and lvS;
foreach (tR.rid in ↑lvR)
{

Lr, result : ref to list of RID;
Lr = Workmap.Get(tR.rid); (!)
if (Lr = NULL)

result = lvS;
else

result = Intersect(↑Lr, ↑lvS); (!)
Workmap.Put(tR.rid, result);

}
}

Figure 1: Basic algorithm for computing set-containment
joins

L(R,S) = |Result|
|R| . The basic algorithm is presented in

the Figure 1.
For clarity, our notation uses↑ to mark dereferences

which cause cache misses. This facilitates identifying
sources of the cache misses in the algorithm.

The functionIntersect computes intersection of two
inverted lists. Given that lists are kept in ascending order
of RIDs, this function can be efficiently implemented
by synchronously traversing both inverted lists. For the
sake of simplicity, in our analysis we will ignore the
fact that lists shrink during processing. Then the cost
of computing the intersection in terms of elementary
operations (such that index increment and integer
comparison) does not exceedC(|Lr|+ |lS |), where|Lr|
is the average length of theLr and |lS | is the average
length of inverted list forS, and C is a constant. Let
|V| be the number of different values in the inverted
file RSIF , |R| and |S| - cardinality of relationsR and
S, and |r| and |s| - average cardinalities of values of the
set-valued attributeA in relationsR andS, respectively.
Assuming that the values are uniformly distributed
across tuples, the probability for a tupletS to have a
valuev among the elements of the settS .A is equal to
Pv∈s = 1− (1− 1

|V |)
|s|. Hence we have|lS | = |S|Pv∈s,

and the cost of the algorithm can be estimated as

|r||R|
(
C

(
|Result|

|R| + |S|Pv∈s

)
+ CWorkmap

)
where

CWorkmap is the cost of lookup into theWorkmap.
Our algorithm and cost estimation, however, do not

take into account that the memory access is not uniform
on modern architectures. Random memory access such
that access to theWorkmap becomes very expensive in
presence of several memory hierarchies like L1 and L2
caches, unless theWorkmap entirely fits into one of the
caches. Let us then take a closer look on the memory ref-
erence behavior of the algorithm. LetCmiss be the cost
of a L2 cache miss. The main sources of cache misses in
the basic algorithm are (in the Figure 1 the corresponding
lines are marked (!)):

• The Workmap is accessed in a random fashion,
and if the size of theWorkmap exceeds the size of
the L2 cache, we may consider that every access to
theWorkmap incurs at least one cache miss (The
exact number of cache misses depends on the imple-
mentation of theWorkmap. In case ifWorkmap

is implemented as a hash table, we expect the ac-
cess to this hash table to be as efficient as access to
an array, since the number of collisions in our situ-
ation is small). The total cost of these cache misses
is therefore|r||R|Cmiss.

• Dereferencing a reference toLr that happens in the
line result = Intersect(↑Lr, ↑lvS) incurs another
cache miss. The cost of these cache misses is(|r| −
1)|R|Cmiss, since the first access to theWorkmap
for the giventR.rid does not cause a cache miss.

• Computing the intersection of two lists of lengthsl1
andl2 sorted in ascending order incurs(|l1|+|l2|)

|CacheLine|
cache misses, where|CacheLine| is the size of the
L2 cache line.

Of course, there are other sources of cache misses in
the algorithm, for instance, dereferencing references to
the listslvR andlvS may also incur a cache miss. However,
provided that the |V| is small as compared with |R| and |S|
(we expect this to be true in practical cases), the cost of
those cache misses is negligible.

3.2 Partitioned version of the algorithm

Our method reduces amount of cache misses of all the
aforementioned kinds. In order to eliminate misses of the
first kind, we partition the processing to fitWorkmap
into the L2 cache. This can be done in an obvious way
- we modify the algorithm so that only a part of the tu-
ples ofR are considered at a moment, and other tuples
of R are ignored. This also reduces the number of cache
misses of the second kind, since the fewer inverted lists
are processed at a moment, the more likely they reside in
the L2 cache. The cache misses of the third kind are dealt
with by compressing theLr using one of many compres-
sion techniques for ascending sequences of positive in-
teger numbers [13]. The modified version of the algo-
rithm is presented in the Figure 2. To make presentation
clearer, we omit compression. In reality, if inverted lists
are already kept compressed in the inverted files, the al-
gorithm can be unaware of compression at all. The rea-
son is that the computation of intersection of inverted
lists is done by the same code regardless of whether the
arguments are compressed are not, since this computa-
tion accesses elements of lists in a sequential fashion.

The functionSelect selects the range of RIDs relevant
to the current partitionp from the (possibly compressed)
inverted list lvR. This function can be implemented in
various ways: using sequential scan of thelvR, the bi-
nary search inlvR or even the specialized index onlvR that
would enable to determine the first RID residing within
the interval[p.F irstID, p.LastID].

Let us now estimate the cost of the partitioned ver-
sion of the algorithm. We can proceed by analogy with
the case of the basic algorithm. For the partitioned ver-
sion of the algorithm we also need to take into account
the cost of theSelect function. Generalizing possible
implementations ofSelect, we denote this costCselect.
Thus we have an additional termNp|V |Cselect (where
Np is the number of partitions), and the overall cost in
terms of elementary operations can be estimated as:

PartBounds : array of
(FirstID:RID,LastID:RID);

Fill PartBounds by partition R into
|PartBounds| partitions;

foreach (PartBound p in PartBounds)
{

Workmapp = map : RID -> ref to list of
RID;

foreach (Value v in RSIF)
{

lvR, lvS , lvRp
: ref to list of RID;

Initialize lvR and lvS;
lvRp

= Select(↑lvR, p);
foreach (tR.rid in ↑lvRp

)
{

Lr, result : ref to list of RID
Lr = Workmapp.Get(tR.rid);
if (Lr == NULL)

result = lvS;
else

result = Intersect(↑Lr, ↑lvS);
Workmapp.Put(tR.rid, result);

}
}

}

Figure 2: Partitioned algorithm for computing set-
containment joins

|r||R|
(
C ′

(|Result|
|R|

+ |S|Pv∈s

)
+

CWorkmapp

)
+ Np|V |Cselect (1)

whereC ′ is a constant accounting for synchronous
traversal of (possibly compressed) lists, andCWorkmapp

is the cost of lookup into theWorkmapp. Comparison
with the basic algorithm shows that theCWorkmapp

≤
CWorkmap, and, in presence of a compression,C ′ > C.
So in terms of elementary operations we do not get clear
benefits. Let us now turn to the cost of memory refer-
ences. SinceWorkmapp now fits into the L2 cache, we
do not get misses of the first kind at all. Since the num-
ber of inverted lists processed in a partition is fewer than
that in the basic algorithm, we expect the cache misses
of the second kind to happen more rarely. The number
of misses of the third kind is also significantly reduced,
since compressed lists occupy much less space and uti-
lize cache lines more efficiently.

The question is therefore whether the better locality
of memory references of the partitioned algorithm out-
weighs the cost of some additional CPU-intensive pro-
cessing. As our experimental study reveals, under the
condition that the number of partitions is properly chosen
according to characteristics of the system, the partitioned
version provides a significant performance improvement
over the basic one.

The optimal number of partitions can be estimated
as follows. Since it is desirable that allLr fit into the
cache, the number of tuples to be processed in each par-
tition should not exceed|CacheSize|

size(Lr) , and hence the num-
ber of partitions should be the minimal number that is
greater than|R|size(Lr)

CacheSize . |Lr| decreases as the algorithm
proceeds, but its average value remains in the bounds

[L(R,S), |lS |], whereL(R,S) and |lS |, as before, are
the average number of qualifying tuples ofS for a tuple
of R, and average length of inverted listslvS in RSIF , re-
spectively. This observation enables to get an upper and
a lower bounds for the number of partitions, but the in-
terval between them can be quite large. So in practice,
the number of partitions needs to be carefully tuned.

4 Experimental study

We have implemented both basic and partitioned version
of the algorithm in our research prototype MMDBMS
kernel Memphis. A short description of Memphis can be
found in [10]. The implementation is written in the C#
programming language [14] and runs on the .NET frame-
work. Inverted files are implemented using the standard
Hashtable class. We considered two variants of the
algorithm: the first does not use compression, and the
second compresses inverted lists by encoding differences
between subsequent elements inγ-code [13]. Unless ex-
plicitly mentioned, we assume that the version without
compression is used. Our implementation of theSelect
function uses sequential scan oflvR, since in the case of
compressed inverted lists binary search would be impos-
sible. Trying implementation of theSelect function in
the form of index on long inverted lists is left for future
research.

All experiments were conducted on a laptop with In-
tel P4 2.8 GHz CPU and 1 Gb RAM running under
Windows XP. This machine features Intel Pentium Mo-
bile processor with 2-level on-chip cache. The size of
the L2 cache is 512 Kb, and the size of the L2 cache
line is 128 bytes (these parameters were measured us-
ing Stefan Manegold’s Calibrator tool [5]). For mea-
suring the number of L2 cache misses we used the Intel
VTune Performance Analyser [15] that provides a graph-
ical user interface to various CPU counters. All reported
times were estimated usingQueryPerformanceCounter /
QueryPerformanceFrequencyWindows API that gives
a programmatic access to the high-resolution hardware
performance counter. To reduce noise, we present aver-
age times based on results of several runs. We do not
include in the results the time necessary for constructing
the inverted file (join index), since it is assumed to exist
in a practical situation.

In the most of experiments, synthetic datasets are
used. These datasets were generated by a program that
takes desired characteristics of the dataset (relations car-
dinalities, average set cardinality, distributions of set car-
dinalities and set elements, size of the element domain
etc.) as parameters and produces the resulting dataset in
the form of a text file. Each experiment starts with bulk-
loading the relevant relations from text files into memory.
We used VTune’sResumeSampling / SuspendSampling
API to profile only cache misses that happen during the
join execution and exclude other stages of the process.

4.1 Case Study 1: Tuning number of partitions

In this case study, we use a dataset containing two rela-
tions, each of which consists of two attributes - the first
is used as a primary key, and the second is a set-valued
attribute. The characteristics of relations are given in
the Table 1, the join selectivity is5007|R||S| = 1.2 ∗ 10−7.

Table 1: Relations characteristics for Case Study 1
Rel. Rel. Card. Avg. Set Card. |Domain(A)|
R 150000 5 5000
S 300000 5 5000

Partitions Time, sec L2 Cache Misses, *106

1 3.9 42
3 3.66 36
5 3.52 33
8 3.72 33
11 3.84 33
16 4.04 32

Table 2: Tuning the number of partitions

Running times corresponding to different values of the
Np, i.e. to different numbers of partitions, are presented
in the Table 2. Note that the basic version of the algo-
rithm is essentially the caseNp = 1. Looking at the
Table 2, it becomes obvious that 5 partitions (which cor-
respond to150000/5 = 30000 RIDs in a partition) give
the best results, providing the balance between the num-
ber of L2 cache misses and the amount of extra process-
ing caused by partitioning. As the number of partitions
grows further, the number of L2 cache misses reduces
only marginally. The observed dependency between run-
ning time and number of partitions is depicted in the Fig-
ure 3.

4.2 Case Study 2: Varying element domain’s cardi-
nality

This experiment shows the impact of|V | on the running
time of the algorithm. In this case study we only con-
sider the partitioned version of the algorithm, the num-
ber of partition is chosen so thatWorkmapp fits into
the L2 cache, and the cardinalities of relationsR andS
are selected to keep all the processing in the main mem-
ory and avoid trashing as long as possible. We keep
|R| = 100000, |S| = 250000 and |r| = |s| = 5 fixed,
and vary |V |. The less|V |, the greater the expected
length of inverted lists|S|Pv∈s. On the other hand, the
weight of the termNp|V |Cselect decreases with the de-
crease of|V |. The results of the experiment given in the

Figure 3: Dependency of running time on number of par-
titions

|V | Time, sec
500 15
250 29
200 37
100 213

Table 3: Impact of element domain cardinality

Table 3 show that the cost of merging the inverted lists
dominates in the cost formula (1), and long inverted lists
dramatically reduce the performance of the algorithm.
This is where compression comes into play and enables
to process much larger relations by effectively reducing
memory space consumed by inverted lists.

4.3 Case Study 3: Effect of compression

The compression of inverted lists in the intermediate re-
sults (Workmapp) helps to reduce number of L2 cache
misses while intersecting inverted lists, at the cost of in-
creasing the constantC ′ in the formula (1). We vary
length of the inverted lists by changing average set cardi-
nalities and the size of the domain|V |. The cardinalities
of relations are kept fixed:|R| = 100000, |S| = 250000.
The dependency among running time, total memory used
by the program (to retrieve this value, the code was in-
strumented by a call to theGC.GetTotalMemory func-
tion from the .NET standard library. This function per-
forms garbage collection before calculating the size of
the heap), the average lengths of inverted lists and the
cardinality of the result|Result| is illustrated in the Ta-
ble 4. The table shows results for both versions of the
algorithm, with and without compression. The one cell
‘-’ is missed because the algorithm was not able to finish
due to exhaustion of all the available memory.

From these results it becomes clear that more compact
inverted lists in the ‘compressed’ version, though reduc-
ing the number of L2 cache misses, do not pay off the in-
crease in the cost of intersection operation. So the most
important goal for using compression is smaller mem-
ory footprint. As the third and the fourth rows of the
table demonstrate this effect is achieved only when all
lR, lS and |Result| are large enough. This fact quite
matches the intuitive expectations, since the less the car-
dinality of the result (in the extreme case of the third
row the result is empty), the shorter inverted lists in the
intermediate results, and the less benefits we give com-
pressing them. A more sophisticated algorithm could use
compression adaptively, predicting the cardinality of the
join and keeping track of the size of intermediate results.
More detailed development of such an algorithm is left
for future work.

4.4 Case Study 4: Comparison with other algo-
rithms

To demonstrate the efficiency of the proposed algo-
rithmm, we have compared its performance with some
other algorithms for set-containment joins. Those algo-
rithms include signature nested-loops join (SNL), parti-
tioned set join (PSJ) and the algorithm Index-SCJ based
on computing theintersection indexof the relations
which we discussed in [10]. To keep running times rea-
sonable we considered small relations:|R| = 15000,|S|
= 25000,|V | = 1000,|r| = |s| = 5, |Result| = 1147. The

Algorithm Time, sec
SNL 545
PSJ 146
Index-SCJ 12
IFJ 0.3

Table 5: Comparison with other algorithms

results are depicted in the Table 5, where the proposed al-
gorithm is denoted IFJ (Inverted File Join). Though this
measurement is not quite representative, it nevertheless
shows that the IFJ outperforms competitors on the or-
ders of magnitude. For fair comparison we should note,
however, that such a performance is achieved at the cost
of significant extra space needed for intermediate results.
Among other algorithms, SNL and PSJ have very mod-
erate space requirements, while Index-SCJ also needs
much memory for the intersection index.

5 Conclusion

We have proposed an efficient algorithm for set-
containment joins in main memory. Our algorithm ex-
ploits inverted files which are combined into single join
index allowing very efficient traversal of the set elements
and the corresponding RIDs. The algorithm maintains a
mapping of RIDs of the first relation to the list of RIDs
of the second relation each of which contains all the el-
ements of the set of the first relation encountered so far.
After the final iteration, this mapping is exactly the join
result. We have focused on the cache efficiency and dis-
cussed a partitioning method that improves memory ref-
erences locality of the algorithm. As our experimental
evaluation shows, the partitioning reduces the number of
L2 cache misses by10−15%. We have also applied com-
pression to inverted lists in the intermediate results. The
compression may decrease space requirements of the al-
gorithm 4 times at the cost of performance deterioration.
Its effectiveness in large extend depends on such param-
eters of the input relations as average lengths of the in-
verted lists in the index and join selectivity.

Future research on this algorithm should focus on ap-
plying compression adaptively. An adaptive version may
keep inverted lists compressed or not depending on the
length of the list, predicted join selectivity and current
memory usage. Another possible direction for future
work is a parallel algorithm for set-containment joins.
The partitioned version of the algorithm can be easily
parallelized, since there is no any data dependency be-
tween processing of different partitions. Running the
algorithm in a multi-processor environment opens new
possibilities for improving its response time. A more ac-
curate cost model should be developed, since the current
one does not take into account the fact that the inverted
lists shrink during processing. We are now working on
these problems and hope to present detailed results in the
next paper.

References

[1] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database Architecture Optimized for the New Bot-
tleneck: Memory Access. InProceedings of the
25th VLDB Conference, pages 54–65, 1999.

Uncompressed Compressed
|lR| |lS | |Result| Time, sec Mem. Usage, Mb Time, sec Mem. Usage, Mb
20 50 137 1.5 110 3.2 113
75 188 1759 1.8 113 3.9 90
3000 7500 0 73 144 115 146
500 2250 50 ∗ 106 - 300 151 91

Table 4: Effect of compression

[2] Sven Helmer and Guido Moerkotte. Evaluation
of main memory join algorithms for joins with set
comparison join predicates. InProceedings of the
23rd VLDB Conference, pages 386–395, 1997.

[3] Sven Helmer and Guido Moerkotte. Compiling
away set containment and intersection joins (tech-
nical report), 2002.

[4] Nikos Mamoulis. Efficient processing of joins on
set-valued attributes. InProceedings of the SIG-
MOD 2003 Conference, pages 157–168, 2003.

[5] Stefan Manegold. The Calibrator, a
Cache-Memory and TLB Calibration Tool.
http://homepages.cwi.nl/˜manegold/Calibrator/.

[6] Stefan Manegold, Peter Boncz, Niels Nes, and Mar-
tin Kersten. Cache-conscious radix-decluster pro-
jections. InProceeding of the SIGMOD 2004 Con-
ference, 2004.

[7] Sergey Melnik and Hector Garcia-Molina. Adap-
tive Algorithms for Set Containment Joins.ACM
Transactions on Database Systems, 28:56–99,
2003.

[8] Karthikeyan Ramasamy et al. Set containment
joins: The good, the bad and the ugly. InProceed-
ings of the 26th VLDB Conference, pages 351–362,
2000.

[9] Dmitry Shaporenkov. Multi-indices - a tool for
optimizing join processing in main memory. In
Proceedings of the Baltic DBIS 2004 Conference,
pages 105–114, 2004.

[10] Dmitry Shaporenkov. Performance comparison of
main-memory algorithms for set containment joins.
In Proceedings of the SYRCoDIS’04, pages 17–21,
2004.

[11] Ambuj Shatdal, Chander Kant, and Jeffrey F.
Naughton. Cache Conscious Algorithms for Re-
lational Query Processing. InProceedings of the
20th VLDB Conference, pages 510–521, 1994.

[12] Patrick Valduriez. Join Indices.ACM Transactions
on Database Systems, 12:218–246, 1987.

[13] Ian Witten, Alistair Moffat, and Timothy Bell.
Managing Gigabytes : Compressing and Indexing
Documents and Images. Morgan Kaufmann pub-
lishers, second edition, 1999.

[14] C# Language Specification. ECMA-334 Interna-
tional Standard, 2001.

[15] Intel VTune Performance Analyzer.
http://www.intel.com/software/products/vtune/.

