
PapyrusRT: Modelling and Code Generation

Ernesto Posse
eposse@zeligsoft.com

Zeligsoft

Abstract. In this talk we introduce PapyrusRT, an open-source, in-
dustrial-strength model-driven development environment for real-time
and embedded systems, implementing UML-RT [2,3], a UML-based lan-
guage. PapyrusRT is implemented on top of Papyrus, an Eclipse mod-
elling tool for UML, SysML, and EMF models. We describe the moti-
vations for this project and in particular for the need of an open-source
environment. We provide a brief summary of the UML-RT language and
give a brief description of the tool itself. Then we give an overview of
the code generation process and its architecture, with emphasis on its
extensibility.

1 Introduction

Developing software for real-time and embedded systems (RTES) poses many
challenges and model-driven engineering (MDE) methods have been proposed
as a way to address them. UML [1] has become the de facto lingua franca
of the software modelling world, with many tools, both commercial and non-
commercial supporting parts of the language. Nevertheless, UML is a large and
complex language and mastering it is itself a difficult task. For this reason, more
specialized modelling formalisms and languages have been proposed, which are
better adapted to the needs of RTES. One such language is UML-RT.

UML-RT is a language that is based on UML (it is defined as a UML profile)
and simplifies it in order to tame software complexity, better capture high-level
system architecture, focus on the concurrent structure of a system, and improve
the analyzability and predictability of a system’s behaviour. This is achieved
mainly by restricting the language to two kinds of diagrams: composite structure
and state machine diagrams. These diagrams have additional restrictions over
general-purpose UML. In addition to these syntactic restrictions, UML-RT has
a more precise execution semantics, designed with the needs of soft-real-time
systems in mind.

Although based in UML, UML-RT predates it (and influenced the defini-
tion of the UML 2 standard). UML-RT has its roots at the Telos project at
Bell Northern Research (part of Nortel) in 1987. In 1992, this project led to
spin-off company called ObjectTime which released its namesake development
environment implementing the core language. In 1994, an influential book on
the language and the methodology was published [2], and the language became
known as ROOM. In 1998, the name UML-RT was coined for the UML profile



describing the ROOM language [3]. In 2000, Rational Software acquired Object-
Time and turned the tool into Rational RoseRT. In 2002, Rational was acquired
by IBM and in 2006 they migrated RoseRT to the Eclipse IDE where the
tool was rebranded as IBM Rational Software Architect Real Time Edition, or
RSA-RTE for short.

In all these incarnations, UML-RT has been successfully applied to large-
scale industrial projects. However, all these implementations have been propri-
etary. This has presented a challenge to its users. As with all proprietary software,
users are bound to the vendor for support, updates and customization. In the
context of RTES, users rarely want a one-size-fits-all solution. They typically
want tools that are better suited to their specific needs. This entails customiza-
tions and/or extensions to the tools which are difficult or impossible to make.
This requires a willingness on the vendor’s part to adapt a generic tool to each
user’s specific needs.

It is out of these considerations that the need for an open-source development
environment for UML-RT arose. Under the open-source framework, users don’t
depend on the vendor to adapt the tool. This is where PapyrusRT comes in. Pa-
pyrusRT is a new open-source implementation of a full UML-RT development
environment, including a graphical modelling environment, a code generator and
a runtime system. This full set makes UML-RT models executable.

PapyrusRT is implemented on top of Papyrus, a well-known UML mod-
elling environment on Eclipse. Papyrus was chosen as the basis because it
is open-source, it has a rich user-interface, it already supports the latest OMG
UML standard (2.5.1) and is part of the rich Eclipse ecosystem, from which a
wide range of components, tools and resources can be leveraged.

In this presentation we give a brief tour of the language, the tool and the
code generation process.

2 UML-RT

2.1 Capsules, ports, parts and state machines

The central concept in UML-RT is the capsule. A capsule is, as the name sug-
gests, an encapsulated entity. It is a class in the object-oriented sense, more
precisely an active class, meaning a class whose instances have autonomous be-
haviour, specified by a hierarchical state machine. Furthermore, capsules have
a well-defined interface consisting of a set or ports, and capsule instances can
communicate with their environment (other capsules) exclusively through these
ports. Each port is typed by a protocol which defines the kinds of messages or
signals allowed. Capsules may also define internal structure consisting of parts
(sub-capsules), which are properties (in the UML sense) typed by some other
capsule. Parts are connected by linking their ports with connectors. A connector
can link only two ports, but ports and parts can be replicated to obtain different
connection patterns. Figure 1 on page 3 shows a structure diagram depicting
a capsule called “Top” with two parts called “pinger” and “ponger”, typed by



some capsules named “Pinger” and “Ponger” respectively, each with a port and
a connector linking them.

Fig. 1. A UML-RT composite structure diagram for a capsule.

A port in the outer boundary of a capsule can be connected to an internal
part, in which case it is called a relay port, as it simply relays messages to and
from the internal part. A boundary port not connected to an internal part is
called an external port, and messages arriving there are handled by the capsule’s
state machine. Similarly, it is through external ports that the capsule’s state
machine can send messages outside. Non-boundary ports are called internal,
and are used by the capsule’s state machine to communicate with the capsule’s
internal parts.

Protocols define three kinds of messages: input, output and input/output.
Messages can be parametrized. This allows messages to carry data as a payload.
Ports can have two kinds of role: base or conjugated. A conjugated port is one
where the protocol messages’ direction is flipped: an input message in a base
port is an output message in a conjugated port, and vice-versa. This means that
messages from/to a base port at one end of a connector correspond to messages
to/from a conjugated port at the other end of the connector, unless one of the
ports is a relay port.

The behaviour of a capsule is described by a hierarchical state machine. Fig-
ure 2 on page 4 shows a state machine diagram. These state machines are like
UML state machines with some restrictions: there are no AND-states (orthog-
onal regions), that is, each composite state has exactly one region, so at any
point the state machine is in exactly one state or pseudo-state. Therefore, there
are no fork or join pseudo-states. The only pseudo-states allowed are initial,
deep-history, choice, junction, entry, and exit. Transitions cannot cross state
boundaries. Transitions can form a chain, but to enter or exit composite states
they must go through entry and exit points explicitly. States may have entry and
exit actions, but they do not have “do” actions. Shallow history is not supported
and neither are final states. Transitions arriving at the boundary of a composite
state are deemed to arrive at its deep-history pseudo-state.

Capsule parts can have one of three roles: fixed, optional or plug-in. Fixed
capsule parts are parts whose instance(s) are owned by the capsule that contains



Fig. 2. A (hierarchical) state-machine diagram for a capsule.

the part, and are created and destroyed at the same time as the containing cap-
sule is created and destroyed. Optional capsule parts are parts whose instance(s)
are also owned by the containing capsule, but are created and destroyed dynam-
ically, by some action in the capsule’s state machine. Plug-in capsule parts are
parts whose instances are not owned by the containing capsule. Rather, they
are created elsewhere, and are “imported” and “deported” by some action in
the capsule’s state machine. Since they are not necessarily owned by the cap-
sule importing them, plug-in capsule instances can be shared between different
capsules.

Another important feature is that of service ports. Ports can be marked as
service provision points (SPPs) or service access points (SAPs). These represents
ports that provide (resp. access) some service to other capsules, usually in a
different architectural layer. Unlike normal ports, service ports are connected
dynamically. This is, the connection between an SAP and an SPP is performed
at runtime by some action in the relevant capsule’s state machine.

2.2 Execution semantics

As mentioned above, capsules have autonomous behaviour and therefore it is
natural to think of them as threads, with each capsule instance executing con-
currently with other capsule instances. However, UML-RT makes a distinction
between capsules and threads. The concept of a capsule as an entity with au-
tonomous behaviour is a modelling concept, whereas the concept of thread is a
deployment concept. Each capsule is assigned to a thread, and more than one



capsule may be assigned to the same thread. The execution of a UML-RT model
is carried out by a runtime system (or RTS) which consists of one or more con-
trollers and a runtime services library. Each controller runs in its own thread
and maintains and executes the behaviour of the collection of capsules assigned
to its thread. Hence, when we assign a capsule to a thread, we are assigning it
to a controller. Assigning a capsule to a particular thread/controller can occur
at runtime in the case of optional and plug-in capsule parts.

A controller has, in addition to the collection of capsules assigned to it, a
message (priority) queue. Messages in the queue can come from capsules in other
controllers or in the same controller. The controller runs a main loop, extracting
the message with the highest priority from the queue (or the first one, if all
have the same priority), and directs the message to the target capsule, or more
precisely, passes the message to the target capsule’s state machine.

The execution semantics of state machines mandate a run-to-completion se-
mantics (RTC), that is, an incoming message is fully processed before the next
message is processed. This means that the state machine is always in a stable
state when a message arrives, and it follows a full transition chain, possibly go-
ing through several pseudo-states, and executing the corresponding transition
actions as well as exit and entry actions encountered along the way, until it
reaches a stable state, at which point the RTC step is finished and the state
machine is ready to process the next incoming message.

In addition to handling messages directed to its capsules, the controller is
in charge of managing the capsules’ lifetimes for capsules that are created, de-
stroyed, imported, or deported dynamically.

The runtime services library provides, as the name suggests, a set of common
services, in particular services related to logging, timing, and dynamic capsule
operations in addition to the messaging operations already discussed.

3 The tool

Figure 3 on page 6 shows a screenshot of the tool. The central view has the main
canvas or model editor with a palette of elements on the right. The bottom view
includes a Properties view for the properties of the currently selected element.
This includes standard UML properties, UML-RT-specific properties, applied
stereotypes, advanced properties, etc. The bottom also has views for validation,
error reporting, etc. The top-left shows the project explorer to add and ma-
nipulate projects. The middle-left shows the model explorer which presents the
abstract syntax view of the model and imported libraries. The bottom-left shows
an outline view.

Code generation is triggered by selecting the root element in the model ex-
plorer and choosing either “UMLRT Code Generator” or “UMLRT Code Gener-
ator (regenerate)”. The first performs incremental generation (or full generation
if the model has not been previously generated). The second regenerates the
whole model.



Fig. 3. PapyrusRT screenshot.

In an application there must be a “top” capsule, which corresponds to the
“main” capsule. By default it is a capsule called “Top”, but the user may select
any other capsule as the top-capsule by right-clicking on it in the model explorer
and selecting “Set as Top” or “Generate as Top”.

If code generation succeeds, there will be a CDT project created (or updated)
in the workspace, named after the input project with the “_CDT_project” suf-
fix. This project includes the necessary Makefiles to compile the generated C++
sources and link it to the RTS, producing an executable application. The Make-
files use a variable called “UMLRTS_ROOT” for the location of this library. The
code generator attempts to assign it the correct value according to the installa-
tion, but in circumstances where this location cannot be determined, the user
may still specify it manually as an environment variable.

In its current version (0.7.1), the generated code compiles C++03 with GCC
4.6.3, targeting Linux, with some Windows support.

4 Code generation

PapyrusRT generates executable C++ code from the model. This includes both
structural and behavioural elements of the model. The code generator can run
either as a standalone application, or within the Eclipse environment. The input
is a UML model with the UML-RT profile applied, and possibly other profiles,
such as the RTCppProperties profile used to customize the generated C++ code.



The output is an Eclipse CDT project, including all generated source files and
Makefiles required for building (compiling and linking).

The generator supports incremental generation, that is, if code has already
been generated, then a run of the code generator will only generate those ele-
ments that have changed, and their dependent elements. For example, if a pro-
tocol changes, the code generator will regenerate the protocol, and all capsules
with a port typed by the protocol.

Model validation is performed by a separate operation. Nevertheless, the code
generator does perform some limited validation and sanity checks as it proceeds.
When errors in the model are encountered, these are reported to the user. Never-
theless, there are certain types of errors which cannot be easily detected during
code generation. These are errors, such as a model element missing a stereotype,
that would require the code-generator to know the modeler’s intentions.

4.1 Model transformation

The code-generation process is structured as a model transformation. More pre-
cisely, it is a sequence of model-to-model transformations with a final model-to-
text transformation. This is depicted in Figure 4 on page 7.

Fig. 4. Model transformation.

In the first phase, the UML model is translated into xtUMLrt, a simplified
intermediate representation which contains all the required UML-RT constructs.
The xtUMLrt meta-model is intended to simplify UML, in order to simplify
the generator itself, while allowing customization, isolating the generator from
the toolset, and providing a common language that allows its eventual extension
to support xtUML, and, potentially, other approaches.

Once the model has been translated into xtUMLrt, elements other than
state machines are translated into a simplified C++ meta-model, from which
the final phase of generating the actual source C++ files and CDT project is
done. The C++ meta-model isolates the generator from issues such as format-
ting, body/header file generation, file regeneration avoidance, CDT project and
makefile generation, etc. For example, if we need to generate a class in C++,
then the class must be declared in a header file and defined in the correspond-
ing implementation file. Using the C++ meta-model, we can simply create a
“CppClass” object (where CppClass is the meta-class used to represent C++
classes in the meta-model) without the need for separate rules to generate the
header and the implementation and keep them coordinated. Instead, the last
phase takes that CppClass object and writes the required declarations in the
header and definitions in the implementation file.



State Machines are also translated to the C++ meta-model but go through
several sub-stages that expand the inheritance hierarchy and flatten the state
machine.

During the translation from xtUMLrt to the C++ meta-model, the genera-
tor collects, for each element to be generated, the set of dependent elements. For
each kind of element to be generated, a specialized generator class implements
the specific translation. This is, there are specific generators for basic classes,
capsules, state machines, protocols and a special generator for deployment that
builds the deployed structure.

4.2 Architecture

The overall architecture if the generator is depicted in Figure 5 on page 8.

Fig. 5. Code generator architecture.

The UMLRTGenerator class on top is the “director” that executes the trans-
formations described in Figure 4 on page 7. It contains references to:



– UML2xtumlrtTranslator: the translator from UML to xtUMLrt.
– CppCodeGenerator: the core generator from xtUMLrt to the C++ meta-

model.
– CppCodePattern: the “C++ code pattern”, a class that provides a facade

to the C++ meta-model with multiple factory methods, and which caches
generated elements that can be shared by multiple parts of the generator. It
also contains the main model-to-text method.

The CppCodeGenerator also has a reference to the CppCodePattern, as well as
references to:

– GeneratorManager: the “generator manager”, which keeps track of the indi-
vidual element-specific generators.

– Collector: the “collector”, which creates element-specific generators for each
element and their dependent elements.

– UML2ChangeTracker: the “change tracker”, which keeps track of which ele-
ments have already been generated and which have changed.

CppCodeGenerator first invokes the collector to build a list of applicable genera-
tors. The collector obtains element-specific instances from the generator manager
which provides instances from the built-in generator classes, or from genera-
tors provided as extensions. Generators for elements which have already been
generated but have not changed are pruned from the list. All element-specific
generators are subclasses of AbstractCppGenerator.

Once all the generators for elements to be generated are collected, and the
list pruned according to which elements have changed, the code generator in-
vokes the generate method for each element-specific generator instance. This
will result in the specific generator leaving the resulting C++ model elements
in the CppCodePattern instance. Finally the code generator will instruct the
CppCodePattern instance to perform the model-to-text transformation by in-
voking its write method.

The code generator can be extended with the standard Eclipse extension
mechanism: the org.eclipse.papyrusrt.codegen.cpp plugin contains an ex-
tension point called generator which has two parameters: a type and a class,
which must be provided by a user extension. The type parameter is one of the
following: ClassGenerator, EnumGenerator, CapsuleGenerator, StateMachine-
Generator, EmptyStateMachineGenerator, ProtocolGenerator, StructuralGen-
erator, or ArtifactGenerator. The class parameter is a class implementing the
AbstractCppGenerator.Factory interface which has a create method return-
ing an instance of a subclass of AbstractCppGenerator for a given model ele-
ment. This is, a user-provided generator must subclass AbstractCppGenerator,
and must provide a factory method that creates its instances for a given model el-
ement. The AbstractCppGenerator class defines an abstract generate method
that must be implemented by its concrete subclasses. For example, a custom
StateMachineGenerator must inherit from AbstractCppGenerator, and pro-
vide its factory method which will receive as input a state-machine instance. The
generator manager will invoke this factory method during the collection process
described above, overriding built-in generators.



5 Final remarks

Open-source software presents both challenges and opportunities for software
developers in general, and for the MDE community in particular. While an OSS
project may not necessarily have the same resources as a commercially-backed
product, the transparency and ability of the community to contribute to it,
may provide an edge leading to greater adoption. Both industry and academia
benefit from such endeavor. Industrial users gain unrestricted access and that
allows them to develop their own custom and domain-specific variants without
incurring on the costs of developing a fully fledged product from scratch. Aca-
demics can develop their ideas and proofs of concept on an industrial-strength
platform where they may reach a larger audience. One of the major obstacles
for the adoption of MDE is the lack of access to mature and robust tools. While
PapyrusRT is still in its early stages of development, its open-source nature pro-
vides a natural ground to grow into an environment that yields some of the core
promises of MDE. It is with this philosophy that PapyrusRT was conceived.

Acknowledgements

This project is a collaboration between Zeligsoft (2009) Ltd., CEA LIST, Malina
Software, and Ericsson. Bran Selic (Malina) has provided the UML-RT profile,
its documentation, as well as substantial consulting in clarifying the semantics of
the language. Peter Cigéhn from Tieto has provided invaluable input regarding
requirements, as well as extensive testing. Andreas Henriksson from Ericsson
has also provided requirements as well as contributing the RTCppProperties
profile for C++ generation. IncQuery Labs contributed part of the xtUMLrt
intermediate meta-model. At Zeligsoft, the project is led by Simon Redding,
with Charles Rivet as Product Manager and Ernesto Posse as Software Developer
working on code generation. Andrew Eidsness has been the principal software
developer working on code generation and the runtime system (RTS). The RTS
has been implemented mostly by Barry Maher. Other Zeligsoft contributors
include Young-Soo Roh, Tim McGuire, Toby McClean and Stephanie Chafe. The
group at CEA LIST, headed by Sébastien Gérard with Rémi Schnekenburger as
project lead, also including Ansgar Radermacher, Camille Letavernier, Önder
Gürcan and Céline Janssens from All4tec has worked on the tooling, validation
import and CDT integration.

References

1. Object Management Group. UML Superstructure Specification v2.5.
http://www.omg.org/spec/UML/2.5/, September 2012.

2. B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object Oriented Modeling. Wiley
& Sons, 1994.

3. B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.
Whitepaper, Rational Software Corp., 1998.


