
Integrating Open-Source Modeling Projects:
Collaborative Modeling with Papyrus and EMF Compare

Maximilian Koegel and Philip Langer
EclipseSource Munich GmbH, Germany
{mkoegel|planger}@eclipsesource.com

Abstract. While many open-source modeling tools have traditionally been
mostly the basis for building commercial tools on top, we recently observe an
increasing direct adoption of those underlying open-source tools bundled to-
gether into industrial-ready modeling products. Adopters of those open-source
tools thereby gain independence from respective vendors and win flexibility
and the freedom to tailor and extend the open-source modeling tools to their
specific needs. When tying together a number of open-source tools in order to
build a modeling environment, however, adopters partly face a lack of seamless
integration among the diverse open-source tools, edgy usability, and heteroge-
neous user guidance – aspects which traditionally have been addressed by the
commercial tool providers in their final products. In this paper, we outline an
example of a challenging integration and sketch a technical solution. Based on
this example, we draw conclusions regarding organizational concerns that foster
the successful resolution of integration issues.

1. Introduction

Open-source software has played a major role in model-driven engineering (MDE)
since many years. In fact, many software components that are used under the hood of
MDE tools is available under the terms of business-friendly open-source licenses. In
many cases, tool vendors use open-source modeling frameworks as a basis for build-
ing their MDE products. This strategy allowed them to decrease the development
costs of those base components and benefit from bug fixes or extensions introduced
by others while not endangering their unique selling proposition; the value of their
products lies in seamlessly integrating and shaping those open-source frameworks ac-
cording to specific methodologies or needs, as well as a proprietary, consistent layer
on top. Also academia is successfully basing their research prototypes on top of those
open-source modeling frameworks, which not only speeds up the development of the
research prototypes but also increases the visibility and transferability of their re-
search results. As a consequence, active and diverse communities emerged around
open-source modeling tools, such as the Eclipse Modeling Framework (EMF)1, the

1 https://eclipse.org/modeling/emf/

mailto:%7Bmkoegel%7Cplanger%7D@eclipsesource.com
https://eclipse.org/modeling/emf/

Graphical Modeling Framework (GMF)2, Papyrus3, and EMF Compare4, to name just
a few. Moreover, the fact that these tools have been used for years as a basis of differ-
ent and diverse products nurtured their extensibility and flexibility.

In the last years, however, we observe an increased direct adoption of open-source
modeling tools. Instead of using off-the-shelf MDE products that may use open-
source modeling tools under the hood, more and more organizations aim to tie to-
gether their own modeling environment by using open-source modeling tools directly.
Thereby, they gain independence from the respective vendors and – often even more
importantly – they win flexibility and the freedom to tailor and extend the open-
source modeling tools to their specific needs. This strategy opens up an opportunity
for them to significantly increase innovation and to explore new ways of applying
MDE in their organizations. Organizations may control the speed of evolving their
modeling environments themselves and may benefit from working more closely to-
gether with academia and service providers, who maintain, customize, and extend the
open-source modeling tools [1].

However, when putting together available open-source modeling tools in order to
build a dedicated, complete modeling environment for an organization, adopters
partly face a lack of seamless integration among the diverse open-source tools, edgy
usability and heterogeneous user guidance – especially at interaction points with other
open-source tools. Traditionally, these aspects have been addressed by the commercial
tool providers in their final products, but with this new strategy, these issues need to
be sorted out in collaboration among adopting organizations and service providers of-
fering expertise in the used open-source projects.

In this paper, we outline challenges that may arise when tying together modeling
environments from different open-source modeling tools. In particular, we therefore
use an example of a challenging integration in the context of our work on a collabo-
rative modeling environment based on Papyrus and EMF Compare5. Moreover, we
sketch a technical solution for the discussed integration challenge and draw conclu-
sions regarding general organizational concerns that foster the successful resolution of
integration issues and edgy usability at the interactions with other open-source model-
ing tools.

2 http://www.eclipse.org/modeling/gmp/
3 https://eclipse.org/papyrus/
4 https://www.eclipse.org/emf/compare/
5 http://collaborative-modeling.org/

2. Background: Generic Model Versioning

When a model-based development process is applied in an industrial setting, models
have to be developed and evolved in teams. This usually means that models are
shared among team members who independently evolve these shared models. Parallel
model changes are inevitable and hence need to be managed and eventually consoli-
dated in order to obtain a new version of the shared models. In analogy to source code
versioning, this process is often referred to as model versioning.

In the past ten years, the research community achieved significant advances in de-
veloping dedicated methods and techniques for enabling proper model versioning
(cf. [2] for a survey). Theories and approaches emerged for computing the changes
that have been applied to a model between one model version and another, for analyz-
ing conflicts among the detected changes, and for merging those changes to build a
new consolidated version reflecting the union of all non-conflicting changes that have
originally been applied independently of another (e.g., [3,4,5]).

The model versioning community was strongly influenced by the differencing and
merging techniques available for source code. However, as opposed to programmers,
who interact with source code directly, modelers interact with models and usually do
not see the underlying textual serialization of model. Thus, one of the basic ideas in
model versioning was to raise the level of abstraction from characters and lines, as in
source code versioning, to the elements a model consists of, e.g., use cases and actors
in UML Use Case Diagrams. To avoid the necessity to define dedicated algorithms for
detecting, representing, and merging model changes for each modeling language, such
as UML or BPMN, again and again, the idea of generic model versioning gained pop-
ularity. Generic model versioning exploits the information specified in a modeling
language's metamodel to obtain the knowledge on which modeling concepts exist
(such as UML Use cases and Actors), which properties those modeling concepts may
hold, and which relationships they may have. This knowledge in combination with a
powerful reflection mechanism, as available in EMF, is enough to allow algorithms
for detecting changes among model versions, determining incompatible changes, and
merging changes to build a consolidated new version to operate generically.

Many of those ideas from academia, such as generic model versioning, have been
successfully transferred to practice. Remarkable frameworks and tools are now avail-
able that enable, for instance, generic model versioning of all EMF-based models, in-
dependently of which modeling language they conform to. Those tools not only offer
standalone model comparison and merging capabilities, but are often also shipped
with dedicated operation-based model repositories, such as EMFStore, or are inte-
grated with source code versioning tools, as for instance with EMF Compare and Git.

3. Challenging Integration: Model Versioning and Modeling
Editors

While generic model versioning was a significant achievement, it soon becomes clear
that the metamodel of modeling languages indeed allows to learn about the structure
of a modeling language and hence enables to compute and process structural changes
of models, but it does not provide the necessary information on the model editing dy-
namics of a modeling language (cf. [6] for more discussions on generic vs. language-
specific model versioning). The model editing dynamics are implemented in modeling
editors and, for instance, define typical concepts that users may add with one click,
even though these concepts may consist of several connected and pre-configured
modeling elements under the hood. They also define typical changes that affect sev-
eral model elements at once, or even abstract from how information is expressed in
the model underneath with dedicated user interface widgets, such as tables or con-
nected lists. An example for such an abstraction is the language and body properties
of UML's Opaque Actions. In the UML metamodel, they are defined to be two inde-
pendent multi-valued String-typed properties. However, their editing dynamics is
rather an index-based map, whereas the language value on position n defines language
of the corresponding body value on position n. Thus, user-friendly modeling editors,
such as the Papyrus UML editor, provide user interfaces that logically connect the val-
ues of those two properties and provide user-friendly ways of editing those two value
lists in combination.

Obviously, generic model versioning systems will not be able to respect such an
editing dynamics and will provide users with comparison results that are not compre-
hensible for users, who otherwise interact only with the potentially sophisticated user
interfaces of modeling editor. In fact, users will only understand changes easily that
are presented in the same way as they can perform them in the modeling editors they
are familiar with. Thus, if model changes are performed in a diagramming editor,
modeling versioning tools must represent those changes in a diagrammatic representa-
tion, irrespectively of whether only the diagram layout or also the underlying model
has been changed by the user's interaction with the diagram. If model changes are per-
formed in a form-based user interface, which is common for properties of model ele-
ments, model versioning tools must then represent those changes in a form-based user
interface that look and behave exactly as the forms of the modeling editor, users are
familiar with. Accordingly, also changes have to be merged by the model versioning
tool at the same level of granularity (atomic versus grouped changes) as they usually
can be performed in a modeling editor.

In summary, there is a gap between how users interact with and change models
and how model versioning systems handle, represent, and merge changes based on the
underlying metamodel of the respective modeling language. This gap is one of the
main causes for misleading or incomprehensible representations of model changes,
leads to inefficiency and frustration of users during manual merge sessions, and often
even causes incorrect merge decisions [7].

4. Bridging the Gap: Seamless Model Versioning

In EMF Compare, this issue is well known and recently several of the negative effects
of generic model versioning have been mitigated with dedicated customizations. For
instance, EMF Compare integrates with the EMF.Edit framework, which is used by
modeling editor developers to customize the labels and icons that are being depicted
for modeling concepts and their features. As a result, the look and feel of model ele -
ments and their features in comparison and merge viewers of EMF Compare is closer
to the look and feel of the models in the modeling editor, as they both share the same
underlying definitions concerning labels and icons.

Another significant improvement is the integration with GMF6, a framework that
is frequently used to implement diagramming editors. With GMF, the diagram layout
information of a model – also called notation – is again represented as an EMF-based
model. Thus, EMF Compare also compares this notation model and hence can detect
layout changes. If layout changes of GMF-based diagrams are detected, the GMF run-
time is adopted to render the diagram differences, which significantly eases the under-
standability of layout changes. Nevertheless, if model changes are detected that have
originally been performed by changing the diagram, for instance, a UML Component
has been moved into another UML Package, EMF Compare still represents the model
changes in tree-based viewers, although they may have been induced by interactions
with the diagram. This gap remains open currently in EMF Compare, because it is
hard to determine generically whether a model change has been applied in the model
directly or has been induced by a change in the diagram.

To enable resolving issues stemming from a modeling language's editing dynam-
ics, such as the above-mentioned implicit connection between the language and body
properties of UML's Opaque Actions, EMF Compare offers several extension points
that enable injecting custom behavior in the different phases of the model versioning
process. Thus, some editing dynamics are currently addressed using dedicated, hand-
written code that customizes a particular generic behavior in EMF Compare. Al-
though this is a good start, this certainly is not a scalable and sustainable solution.

6 https://wiki.eclipse.org/GMF

There are numerous such editing dynamics in a modeling language and addressing all
of them manually in EMF Compare is cumbersome and would lead to inconsistencies
between how the editing dynamics is implemented in the editor and in EMF Compare,
especially when considering that this editing dynamics may evolve over time. More-
over, the editing dynamics may significantly differ from modeling language to model-
ing language, or even may be different depending on how a modeling language is ap-
plied in different organizations or projects. Domain-specific modeling languages in-
herently have their domain-specific editing dynamics, which stems from the purpose
and pragmatics of the respective language. If now UML Profiles are employed to de-
fine domain-specific modeling languages, as it is increasingly the case with Papyrus
UML, even the application of a UML Profile may have a tremendous impact on how a
model is edited using the modeling editor. Even though the necessary knowledge on
the editing dynamics is usually already implemented in the modeling editor, this
knowledge is currently not available explicitly in a reusable manner and has to be re-
dundantly re-implemented in the model versioning system to mitigate the gap be-
tween modeling editors and model versioning systems.

We argue that the model editing dynamics need to be explicitly defined and should
be available as shared knowledge among modeling editors and model versioning sys-
tems, and potentially other components, in order to work more closely together and to
provide a more consistent user experience. We suggest that, comparable to the EM-
F.Edit framework, a shared API is required. We collected an initial list of requirements
that this API should fulfill: in particular, the API should enable users to (i) define the
modeling concepts that can be added or deleted – potentially consisting of multiple
connected and pre-configured model elements, (ii) specify logical connections be-
tween properties of model elements (e.g., the language and body attribute of UML
Opaque Actions), (iii) provide the user interfaces that should be used to change and
represent values of a certain property or a set of properties, as well as (iv) implement
composite operations [8] that can be applied on models and hence should also be
grouped when representing changes to the user.

Such a shared API, which aims to be used for model editing, as well as for model
versioning, has to be designed and integrated into the respective tools in close collab-
oration with the developers of both the modeling editor and the model versioning sys-
tem. Without mutual agreement and joint forces, it will not be possible to build such
an important basis for two distinct projects. In the case of Papyrus UML and
EMF Compare, we fortunately are in such a fruitful collaboration7 with the developers
of Papyrus UML, which is crucial for the success of accomplishing a seamless user
experience when developing models collaboratively with EGit.

7 http://www.collaborative-modeling.org

5. Conclusions

Based on the example integration discussed in the previous sections, we illustrate that
building a modeling environment by tying together different modeling frameworks of-
ten requires collaboration with service providers across the borders of single open-
source projects. Integration issues may sometimes be resolvable from within one
project, as mentioned above, e.g., by manually developing UML-specific customiza-
tion code in EMF Compare. In many scenarios, however, such an approach does not
yield satisfactory solutions on the long run: edgy user experience, inconsistent user
guidance, as well as high maintenance costs of the integration code, are often in-
evitable. A seamless and efficiently maintainable solution often requires coordinated
evolution of multiple projects, such as novel shared APIs or new common generic
components. In return, such solutions usually produce value not only for the modeling
environment to be built but also for the involved projects, as well as other projects
that may benefit from the new shared components or APIs in the future.

The necessity for changes among multiple open-source projects also suggests that
a designated role should be established in a project consortium that aims at a particu-
lar integration. This role should drive and design the technical development of the in-
tegration work, while considering and moderating the specific characteristics of the
involved projects. Therefore, this role obviously is required to have both a solid
knowledge of all projects that need to be integrated, as well as a keen understanding
of the requirements of integration, which makes close interaction with the organiza-
tions' stakeholders a key ingredient for success. Finally, a sustainable open-source
model should be guaranteed to ensure a long-term availability of the software; thus,
the artifacts resulting from the integration effort should – wherever appropriate – be
contributed back to the respective open-source projects. Thus, selecting service
providers that are well-connected and experienced in the respective open-source com-
munities is of uttermost importance.

Another successful strategy for organizations that aim at employing a customized
open-source modeling environment is to establish or join a common initiative, such as
the Papyrus Industrial Consortium, in order to cooperatively build with other organi-
zations a common basis for the intended modeling environment in a coordinated man-
ner. This way, the common basis can not only be more efficiently evolved but partici-
pating organizations can also ensure that the common basis will satisfy their needs in
terms of features, customizability, and flexibility.

References

[1] F. Bordeleau and E. Fiallos. Model-Based Engineering: A New Era Based on
Papyrus and Open Source Tooling. In the First Workshop on Open Source
Software for Model Driven Engineering (OSS4MDE'14), co-located with
MODELS, 2014.

[2] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M. Wimmer: An In-
troduction to Model Versioning. In Formal Methods for Model-Driven Engi-
neering, Springer, LNCS 7320 (2012), ISSN: 0302-9743; 336 – 398, 2012.

[3] G. Taentzer, C. Ermel, P. Langer, M. Wimmer: A fundamental approach to
model versioning based on graph modifications: from theory to implementa-
tion. In the Journal of Software and Systems Modeling, 13 (1), 239 – 272,
2014.

[4] M. Koegel: Operation-based Model Evolution, Dr. Hut Verlag, ISBN:
3843900817, 2011.

[5] B. Westfechtel: Merging EMF models. In the Journal of Software and Sys-
tems Modeling, 13 (2), 757 – 788, 2014.

[6] P. Langer, M. Wimmer, J. Gray, G. Kappel, A. Vallecillo: Language-Specific
Model Versioning Based on Signifiers. In the Journal of Object Technology,
11(3), 4: 1 – 34, doi:10.5381/jot.2012.11.3.a4, 2012.

[7] K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel: Turning Conflicts
into Collaboration - Concurrent Modeling in the Early Phases of Software
Development. In Computer Supported Cooperative Work: The Journal of
Collaborative Computing, 22 (2013), 2-3; 181 - 240.

[8] P. Langer, M. Wimmer, P. Kaufmann, M. Herrmannsdoerfer, M. Seidl, K.
Wieland, G. Kappel: A Posteriori Operation Detection in Evolving Software
Models. In the Journal of Systems and Software, 86 (2013), 2; 551 – 566.

