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Abstract. Models are means for unification and UML was born with the ambi-
tion of providing “unified” modelling language and methodology. The myriad of
competing proprietary tools, with every tool provider only focusing on its own
interests, resulted in the creation of a multitude of similar but still different solu-
tions and “dialects”, which clashes with UML’s ambition. A glaring example is
the appalling number of action languages and code generators defined for UML.
With this work we recognise the need of a unified effort towards an open source
baseline for getting the best out of UML. More specifically, we contribute by
showing how to simplify the transition from the use of programming languages
for modelling fine-grained behaviours within models to model-aware action lan-
guages in industrial MDE leveraging open source tools. This is achieved by mak-
ing our solution for the automated translational execution of the Action Language
for Foundational UML cooperate with existing UML-based code generators that
exploit programming languages for defining action code.
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UML, fUML, ALF, translational execution, C++

1 Introduction

Programming languages have represented the heart of software engineering from the
early 70’s, when software eventually turned to be too complex to be addressed by hand-
writing machine code; simplification by abstraction was needed, and programming lan-
guages seemed to be the answer [1]. Since then, abstraction has been progressively
leveraged for managing software complexity; but that came at a cost. In fact, it usually
brought about the need of additional development artefacts and phases, complicating, as
a matter of fact, the engineering process. In this scenario, automation was regarded as a
primary instrument for partially alleviating the complexity of such a process. Among the
others, Model-Driven Engineering (MDE) emerged as a promising way to (i) mitigate
software’s complexity by abstraction via models, and (ii) provide means for automating
engineering phases typically through model manipulations [2].

MDE promotes automation at almost any development phase, such as early anal-
ysis, simulation, code generation, and back-propagation from code to models. Among
them, automated code generation represents a profitable feature that, especially from



an industrial point of view, an MDE process cannot afford to fail in providing. The
reason is that adequate code generation is able to mitigate the accidental complexity in-
troduced by modelling activities [3] through reducing time-to-market as well as overall
costs and risks. In addition, when automatically producing 100% of target code (i.e.,
full-fledged code generation) from models, consistency between models and code can
be managed more easily, and configurability of code generators introduces the possi-
bility to target different deployment and platform configurations and therefore different
target languages from the same source models [4].

One of the crucial characteristics for a modelling language to suffice as input for
full-fledged code generation is the ability to provide means for specifying fine-grained
behaviours. Most often, this is done by inserting code written in common program-
ming languages (e.g., C++, Java) as behavioural descriptions in the model. On the one
hand, this represents a pragmatic way to address the problem in industrial settings since
it enables to reuse legacy models with code describing behaviours; nevertheless, this
practice can bring more drawbacks than benefits, as explained in the remainder of the
paper. On the other hand, the use of model-aware action languages, based on the mod-
elling languages themselves, is considered a preferable way for defining fine-grained
behaviours when modelling a software system. This is the case of the Action Language
for Foundational UML (ALF)1, defined by the Object Management Group (OMG) to
act as the surface notation for specifying executable behaviors within a wider model
primarily represented using the graphical notations of the Unified Modeling Language
(UML)2.

In this paper we describe a “not-so-painful” transition from the use of programming
languages within models to the adoption of model-aware action languages in UML-
based industrial MDE leveraging open source tools. More specifically, we show how a
solution for the automated translational execution3 of ALF could be progressively in-
troduced into already existing UML-based code generators that leverage programming
languages for defining action code. In [5] we introduced our first attempt to the trans-
lational execution of ALF to show its feasibility; in this contribution we show how a
newly implemented, fully functioning, translation solution based on the latest official
implementation of the ALF specification, could be employed for our purpose.

The remainder of this paper is organized as follows. In Section 2 we describe moti-
vation and context for the presented contribution. In Section 3 we give a snapshot on the
history of action languages from the birth of UML, and in Section 4 we provide our open
source solution for introducing translational execution of ALF in existing UML-based
MDE code generators; the solution is run on a simplified version of the Self-Orienting
Carrier Robot Software System. In Section 5 we discuss about the importance of a
non-breaking solution in industrial settings as well as the need for a cooperative effort
towards an open source UML baseline. The paper is concluded in Section 6 with the
current status of the presented work as well as planned future enhancements.

1 http://www.omg.org/spec/ALF/1.0.1/
2 http://www.uml.org/
3 According to the ALF specification, translational execution is regarded as the translation of

ALF into an executable for a non-UML target platform on which it is executed.

http://www.omg.org/spec/ALF/1.0.1/
http://www.uml.org/


2 Modelling behaviours with UML: ALF will be the star

In most UML-based MDE processes aiming at full-fledged code generation, the specifi-
cation of fine-grained behaviours within UML models is done with action code written
in common programming languages. Since, when UML started to get a foothold in in-
dustry, no proper action language was available, the use of programming languages for
defining actions was almost unavoidable for achieving the generation of 100% code.
The introduction of UML2, together with the standardisation of (i) the Foundational
Subset For Executable UML Models (fUML), which gives a precise execution seman-
tics to a subset of UML limited to composite structures, classes and activities (appli-
cation models designed with fUML are executable by definition) [6] and (ii) a textual
action language, ALF, to express fine-grained execution behaviors, has made UML a
full-fledged implementation quality language [7]. The execution semantics for ALF is
given by mapping its concrete syntax to the abstract syntax of fUML. Additionally ALF
provides an extended notation that can be used to represent structural descriptions.

Even though pragmatically still leveraged for maximising the reuse of existing mod-
els and embedded behaviours, approaches employing programming languages for ac-
tion code bring about several issues. For instance, how to maintain, or even check,
consistency at modelling level when the abstraction gap between modelling and pro-
gramming languages hinders action code from being aware of surrounding modelling
concepts? Consistency is not the only issue. In fact, by using programming languages
for defining action code, the developer may infer assumptions on the target platform,
which undermine models reusability. To tackle these issues, the use of model-aware
action languages like ALF, based on the modelling languages themselves, should be
preferred when modelling fine-grained behaviours.

With the formalisation of ALF, we have noticed an increasing industrial interest in
gradually moving towards legitimate action languages. It would be naive though to think
that this adoption can be painless and swift, since the use of programming languages
within models is rooted in UML-based industrial MDE. In fact, pragmatism and atten-
tion to costs, core priorities in industrial settings, go hand in hand with maximised reuse
of legacy models. Our main goal is to show how, through our solution for the transla-
tional execution of ALF, we could support and boost this adoption process by giving the
possibility to exploit ALF as a complement to existing MDE processes. More specifi-
cally, this would mean that MDE processes generating, e.g., executable C++ from UML
with C++ as action code, could reuse legacy models (or parts of them) and at the same
time endorse a “cleaner” model-driven approach by designing new models (or parts of
them) entirely using UML and ALF.

Our open source solution is also meant to reivingorate the interest of developers and
companies in UML-based MDE. At its dawn, UML was mainly seen as an instrument
to describe purposes, support analysis, design, and document only, since its semantics
was too ambiguous and much weaker than well-established programming languages.
Therefrom, the initial strong interest of practitioners in MDE, and specifically in UML,
briskly diminished. Thanks to the formalisation of its execution semantincs (fUML)
and action language (ALF), UML has now become a powerful implementation quality
language [7]. By providing an open source automation in the translational execution



of ALF, we want to contribute to smooth the way for the interested practitioners in
adopting UML-based MDE.

The modelling environment we leverage is Papyrus, an open-source integrated envi-
ronment for editing Eclipse Modeling Framework (EMF) [8] models, supporting mod-
elling and validation features for UML, fUML, and ALF on the Eclipse platform.
Note that our solution is achieved by model transformations (both model-to-model
and model-to-text) [9] defined through open source transformation languages, such as
Xtend4 and Operational QVT5. Moreover, by leveraging the implementation of ALF in
terms of metamodelling concepts in Papyrus, the translational execution does not per-
form any parsing activity and operates on the ALF code in terms of its representation
as a model.

3 Not all action languages were born equal

Many commercial tools, such as Enterprise Architect [10], IBM Rational Rhapsody [11]
and IBM Rational Software Architect [12] (in all its versions) have historically taken
advantage of programming languages to define fine-grained behaviours within UML
models and generate full-fledged code; this practice brings a set of drawbacks, as men-
tioned in the previous sections.

When it comes to model-aware action languages, some of those proposed during
the years were inspired by the action semantics of UML, but none of them conforms
entirely to the formalised execution semantics defined through fUML. Starting from the
very beginning, the Shlaer-Mellor Action Language (SMALL) [13] was the first of its
kind and was specified to defined a data-flow-based execution similarly to fUML; nev-
ertheless, the language was never actually implemented. In the context of the OOA tool
for executable UML, the Action Specification Language (ASL) [14] represented a quite
capable action language at the time. The OOA tool provided limited code generation
features, which were augmented by its successor, MentorGraphics’s BridgePoint [15].
This tool provided a powerful action language, known as the Object Action Language
(OAL) [16], which was a proprietary dialect of the predecessor of ALF, the UML Ac-
tion Language (UAL). UAL was adopted and customised [17] by IBM too, as part of
the their Rational Software Architect tool [12].

The Platform Independent Action Language (PAL) was another proprietary action
language, which was not based on the formal execution semantics of UML. It was ex-
ploited by the PathMATE tool for providing assisted code generation based on models
and marking techniques [18]. An extension of PAL with concepts from the Object Con-
straint Language (OCL)6 was produced by Motogna et al. [19]. OCL was used also
by Jiang et al. [20], who defined the OCL4X action language, where OCL was en-
riched with meta-actions for changing the system state. A Java-inspired solution was
represented by the Action Language for Business Logic (ABL) [21], which aimed at
converting actions defined with the action semantics of UML, but included non-UML

4 https://eclipse.org/xtend/
5 http://wiki.eclipse.org/QVTo
6 http://www.omg.org/spec/OCL/2.4/

https://eclipse.org/xtend/
http://wiki.eclipse.org/QVTo
http://www.omg.org/spec/OCL/2.4/


concepts. +CAL [22] was an action language for distributed real-time embedded sys-
tems and based on the action semantics of UML.

Each of the aforementioned action languages, mostly defined to achieve model sim-
ulation and code generation, was constructed either through the use of programming
languages, or the proprietary customisation of the UML action semantics. To the best of
our knowledge, none of the approaches documented in the literature provides a solution
for the translational execution of the de-jure standard action language for UML, ALF.
Moreover, proprietary action languages were “closed” solutions. Our goal is instead to
endorse ALF and its open source implementation provided by Papyrus. Additionally,
we build upon it for providing an open source solution to the translational execution of
ALF to C++, which can be freely used7 and customised by researchers and practition-
ers.

4 Towards a less painful transition to cleaner MDE in industry

In this section we describe how our solution for the translational execution of ALF to
C++ can be seamlessly integrated into an already existing UML-based code generator
that exploits C++ for defining action code. In order to show the solution, we make use
of a simplified version of the Self-Orienting Carrier Robot Software System. The task
of this terrestrial robot consists of travelling between checkpoints in a delimited and
known environment, and simulating item retrieval and delivery.

Fig. 1: Robot modelled with UML in Papyrus

7 The interested reader shall not hesitate in contacting the author to get the latest version of the
translational execution implementation.



The application is intended to give the robot the ability to orient itself around obstacles
of square shape; obstacles are created in different spots within the environment’s de-
limitations. Similarly, a set of pick-up spots and one drop-off spot are created too. The
system has been modelled in Papyrus by means of a UML class diagram for defining
the system’s structure, as shown in Figure 1. Robot is the main class and leverage two
other classes, Hitbox for identifying sensitive spots (robot’s body, pick-up and drop-
off spots, obstacles) and Vector for moving around in the delimited environment.

1 {
2 let res : Boolean = true;
3 this.Body.pos.X += dir.X;
4 this.Body.pos.Y += dir.Y;
5 for(Hitbox obs : this.obstacles)
6 {
7 if(this.Body.IntersectsWith(obs))
8 {
9 res = false;

10 break;
11 }
12 }
13 this.Body.pos.X -= dir.X;
14 this.Body.pos.Y -= dir.Y;
15 return res;
16 }

Code 1.1: Fine-grained ALF behaviour for operation canMove()

1 {
2 int temp = this->X;
3 (this->X = ((this->Y * this->Y) * this->Y));
4 (this->Y = ((temp * temp) * - temp));
5 }

Code 1.2: Fine-grained C++ behaviour for operation vecRotateRight()

Regarding fine-grained behaviours, in terms of bodies of operations owned by classes,
both ALF and C++ have been used (separately for individual bodies). As an example,
we can see the ALF definition of the canMove() operation owned by Robot and
used to check if the robot can move in a specific direction, shown in Code 1.1, and the
C++ definition of the vecRotateRight() operation owned by Vector, used for
turning right and depicted in Code 1.2.

For the structural translation we make use of an existing code generator, which we
had previously implemented in Papyrus [23], extended for class diagrams that, from
a UML class diagram (including packages), produces the corresponding C++ skeleton
code. During the structural translation, the generator checks for each operation if there
is a fine-grained behaviour defined in terms of a UML opaque behaviour. If yes, the gen-
erator can perform either of the following three actions depending on how the opaque
behaviour is defined:

1. Opaque behaviour defined in C++: the generator copies the body, as it is, in the
corresponding method implementation in the resulting .cpp file;

2. Opaque behaviour defined in ALF: the generator triggers the model-to-text trans-
formation implementing the translation from ALF to C++ and puts the resulting
C++ code in the corresponding method implementation in the .cpp file;



3. Opaque behaviour defined in other languages: the generator does not take any ac-
tion. This specific case could be handled by triggering an ad-hoc transformation for
the specific language (if available) as in action 2, or by performing an action sim-
ilarly to 1, in case of deployment of different functions (and classes) to different
hardware nodes running different target languages.

1 #include "Robot.h"
2

3 namespace ALF2CPP
4 {
5 namespace Robot
6 {
7 // .....
8

9 bool Robot::canMove(shared_ptr<ALF2CPP::Robot::Vector> dir)
10 {
11 bool res = true;
12 (this->Body->pos->X += dir->X);
13 (this->Body->pos->Y += dir->Y);
14 for (auto &obs : this->obstacles)
15 {
16 if (this->Body->IntersectsWith(obs))
17 {
18 (res = false);
19 break;
20 }
21 }
22 (this->Body->pos->X -= dir->X);
23 (this->Body->pos->Y -= dir->Y);
24 return res;
25 }
26 // .....
27

28 void Vector::vecRotateRight()
29 {
30 int temp = this->X;
31 (this->X = ((this->Y * this->Y) * this->Y));
32 (this->Y = ((temp * temp) * - temp));
33 }
34 }

Code 1.3: Extract of the generated C++ .cpp file

The generated code is C++. A portion of the generated .cpp file is shown in Code 1.3,
where we can see the results of the different actions that the generator took when
it encountered opaque behaviours defined in different ways. The C++ description of
vecRotateRight() operation is copied to the output .cpp file (lines 28-33). For the
ALF description of canMove() operation, it translated it to C++ (lines 9-25). During
this translation, the transformation took care of two core aspects: type deduction and
garbage collection8.

For instance, in ALF access to members is done through a dot operator (’.’). This can
be translated in C++ into dot, arrow (’→’), or even semicolon (’::’) operators depend-
ing on the type of objects as well as the memory management mechanism. To correctly
generate access to members, the transformation is equipped with type deduction mech-
anisms. An example is the translation of the ALF expression this.Body.pos.X

8 In ALF a transparent garbage collection is supposed to take care of automatically managed
memory, while in C++ a specific garbage collection mechanism needs to be defined.



(Code 1.1, line 3) that is transformed into this->Body->pos->X in C++ (Code 1.3,
line 12). The dot operators are translated into arrows since we use shared pointers for
managing garbage collection in C++, therefore Body and pos, objects of type Hitbox
and Vector, are wrapped as shared ptr<Hitbox> and shared ptr<Vector>
respectively, and accessed as pointers.

Note that in this example we endorsed plain UML for structural modelling. Anyhow,
the proposed solution for translational execution of ALF can be equally adopted when
dealing with UML profiles; this has been validated by combining a code generator for
the CHESS-ML profile and ALF in [23]. Additionally, we provide a translation of part
of the concepts, addressed as ALF units, that are used to textually describe structural
portions of a UML model (within the fUML subset). That is to say, the developer is able
to even define the structural parts of the model in terms of ALF to get corresponding
executable C++ generated entirely from an ALF model.

Since they do not represent the main contribution of this work, details on imple-
mentation and evaluation of the translational execution of ALF to C++ will be treated
in a separate work. To give an idea on the scalability of the solution, we evaluated it
on several models of different sizes, from the smallest containing 130 lines of ALF
action code to the biggest containing 109335 lines. The transformation process was al-
ways able to produce executable C++ with a generation time under 10 seconds (for the
biggest model) on a laptop running a 1,7 GHz Intel Core i7 with 8GB DDR3 RAM.

5 Reflections

Clearly, on the one hand a UML-based modelling approach leveraging a programming
language for the definition of fine-grained behaviours makes code generation easier
since action code is simply copied, as it is, in the resulting code artefacts. On the other
hand, it does not give much control on the correctness of the modelled behaviours nor
on how they are translated. Moreover, this practice binds the models to a specific plat-
form (or set of platfoms) already at functional modelling level (e.g., by employing a
specific target language or garbage collection mechanism); this may undermine, for in-
stance, reusability of models. By employing an action language like ALF, action code
is empowered with full knowledge of the surrounding model elements. This triggers
several benefits, among which simplified model-based analysis, model simulation and
consistency checking at modelling level, to mention a few. When it comes to reusabil-
ity of models, since ALF is not bound to any specific target platform, code generators
can target different variations (providing some degree of reusability for code generators
too) of one language (e.g., different garbage collection mechanisms depending on the
user’s selection) or different languages, from the same model. While we showed how
to gradually move towards fully ALF-compliant modelling by mixing ALF and C++, it
should be clear that developers get to enjoy platform-independence if only ALF is used,
with no opaque behaviours written in the other languages (such as C++ in our example).
Moreover, one of the main motivations for using a traditional programming language in
models is to access code from existing external libraries and software components writ-
ten in that specific language. This feature can be kept even when exploiting fully ALF-
compliant behavioural modelling thanks to the possibility to define inline code snippets



in any programming language within ALF. These snippets would then be taken into
consideration only when translating towards the specific programming language they
are written in, and ignored otherwise without jeopardising platform-independence at
modelling level.

At this point a question arises: what about legacy models with action code writ-
ten using programming languages? In order for existing UML-based MDE processes
to adopt ALF we believe that a non-breaking solution, such as the one we propose, is
pivotal. By providing the possibility to leverage legacy models and thereby a way to pro-
gressively replace programming languages with ALF for the specification of new fine-
grained behaviours, the transit to a cleaner MDE in industry can become less painful.

A more general question would then be: why open source? The main goal of UML
from its birth was to provide a “unified” modeling language; moreover, models in gen-
eral have historically been seen as means for unification [4]. Initially, and until a few
years ago, most of the well-established modelling environments used in industry were
provided by specialised companies under different kinds of license. The rush towards
the “most powerful” or the “most usable” UML tool made the various developing par-
ties to fall into the prisoner’s dilemma. Each party took its own way and protected its
interests by customising, enhancing, creating dialects of a language and a methodology
which was thought for unifying interests and solutions, rather than splitting them apart.
The result of this self-centered way to exploit and build upon UML ended up in creating
a modelling landscape which in many ways contradicts the UML’s creed. With this we
would like to stress the fact that, in order to get the best out of a unification technology,
unified intents and efforts are crucial, and an open source solution, acting as a common
baseline for domain-specific customised variations, is unescapable. In addition, a syn-
ergic effort between developers, users and researchers from both industry and academia
is vital for triggering ideas, sharing problems, finding solutions, and evaluating results.

6 Outlook

In this paper we highlighted the need of a unified effort towards an open source base-
line for UML. In particular, we contributed by proposing a way to simplify the transition
from the use of programming languages within models to the adoption of model-aware
action languages in UML-based industrial MDE. This is achieved by making our so-
lution for the automated translational execution of the ALF to cooperate with existing
UML-based code generators that use programming languages for defining action code.
The solution leverages open source languages and tools only, and can be freely used
and customised. We are currently working on enhancing our solution for providing the
generation of Java, different alternatives for garbage collection, and so forth. At the
same time we are investigating the possibilities to minimise semantic pollution, typical
of translational approaches and due to the idiosyncratic differences between modelling
and programming languages, by moving towards compilative and intepretive execution
of ALF (and UML). This would represent an even further step towards neat UML-based
MDE free from programming languages as part of models.
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