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Abstract. Robots for the elderly are a particular category of home as-
sistive robots, helping people in the execution of daily life tasks to extend
their independent life. Such robots should be able to determine the level
of independence of the user and track its evolution over time, to adapt the
assistance to the person capabilities and needs. We present an heteroge-
neous information management framework, allowing for the description
of a wide variety of human activities in terms of multi-modal environmen-
tal and wearable sensing data and providing accurate knowledge about
the user activity to any assistive robot.

1 Introduction

Home assistive robotics addresses the design of robots to be deployed in domestic
environments, to assist the residents in the execution of daily life tasks. Robots
for the elderly are a particular category of home assistive robots, which rely on
social interaction with the person and aim at extending the elderly independent
life [1]. To properly and effectively perform the assistive duties, robots for the
elderly should be context-aware, i.e., able to assess the status of the environment
they are in, user-aware, i.e., able to assess the status of the person they are
working for, and also ageing-aware, i.e., able to perform a long term analysis of
the person cognitive and physical evolution, to adapt to their current capabilities.

Human Activity Recognition (HAR) systems for elderly-care are devoted to
the identification, among all actions executed by a person during a day, of spe-
cific activities of interest, the Activities of Daily Living (ADL), which require
the use of different cognitive and physical abilities and are used by gerontolo-
gists to estimate the level of autonomy of a person [2]. ADL cover a wide variety
of human activities: consequently, a number of sensing strategies have been de-
veloped for their automatic recognition. ADL occurring at home, in particular,
are usually monitored with smart environments [3] and wearable sensing systems
[4]. Unfortunately, wearable sensing systems are prone to ambiguity, while smart
environments may reach erroneous conclusions due to incomplete information.
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We address the problem of endowing robots for the elderly with the ability
of monitoring the Activities of Daily Living, by designing a HAR system which
allows for a seamless integration with the robot planning system. We propose the
integration of multiple sensing strategies in a single framework, to compensate
the weaknesses of each modality and increase the recognition reliability.

The abstract is organized as follows. Section 2 details the system architecture.
Preliminary experimental results are analysed in Section 3. Conclusions follow.

2 System Architecture

We set up a test bed in an apartment located in the city of Örebro (SWE), in
the elderly care facility Ängen. The apartment, shown in Figure 1, is composed
of fully furnished living-room, bathroom, bedroom and kitchen.

(a) (b)

Fig. 1. (a) The test bed apartment in the elderly care facility Ängen, in Örebro (SWE).
(b) WearAmI system architecture: dark boxes at the bottom denote the adopted sen-
sors. Shades of blue represent environmental sensing components, while shades of green
represent wearable sensing components.

We propose the multi-modal monitoring system with the architecture shown
in Figure 1 for the reliable detection of the activities: transferring (denoting the
motions of sitting down, standing up, lying down, getting up); feeding (eating,
drinking); food preparation; indoor transportation (climbing stairs, descending
stairs, walking). The system makes use of: (i) a wrist-placed inertial sensor; (ii)
a waist-placed inertial sensor; (iii) a network of Passive Infra-Red sensors; (iv)
RFID tags, pressure sensors and switches; and (v) a temporal reasoner.

The data extracted by the wrist sensor are used to detect occurrences of
gestures [5, 6], such as walking, picking up or sitting. The data provided by the
waist sensor, instead, are used to estimate the person posture on the basis of the
angle between the torso and the gravity force. The combined analysis of wrist
and waist acceleration data also allows for detecting falls with high accuracy [7].
Person localization is achieved via a network of Passive Infra-Red (PIR) sensors.
We identified three categories of objects to monitor: cutlery and dishes, which are
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assumed to be in use when located on the kitchen table and that we detect via an
RFID network; furniture, such as chairs, armchairs and bed, for which pressure
sensors detect whether and which is in use; household appliances, such as the
fridge and the oven, whose usage can be inferred by checking the status of their
doors with switches. All elements in the architecture are envisioned as Physically
Embedded Intelligent Systems (PEIS) [8], i.e., devices incorporating computa-
tional, communication, sensing and/or actuating resources, connected with each
other by a uniform communication model. The analysis systems (focusing on
objects usage, user localization and user posture & gestures, respectively) share
information among each other and with a reasoning system which is responsible
for the recognition of all occurrences of activities of interest. The adopted tem-
poral reasoner uses and extends Allen’s interval algebra to model the activities
as sets of temporal constraints [9].

3 Experimental Evaluation

Listing 1.1 reports the models of sitting and standing. The field Head defines the
entity it refers to and the name of the model, separated by a ::. As an example,
Head Human::SitDown() indicates that whenever the reported constraints are
satisfied, the reasoner should infer that the activity of sitting has been executed
by the person. The field RequiredState defines the sensor values which corre-
spond to the execution of the motion. The field Constraint defines the temporal
relation between each sensor value of interest and the activity.

Listing 1.1. DDL models for the activities sit down and stand up.

( SimpleOperator
(Head Human : : SitDown ( ) )
( RequiredState req1 Gesture : : S i t ( ) )
( RequiredState req2 Posture : : S i t t i n g ( ) )
( RequiredState req3 Chair : : On( ) )
( Constra int OverlappedBy (Head , req1 ) )
( Constra int During (Head , req2 ) )
( Constra int EndEnd(Head , req3 ) )

)

( SimpleOperator
(Head Human : : SitDown ( ) )
( RequiredState req1 Gesture : : S i t ( ) )
( RequiredState req2 Posture : : S i t t i n g ( ) )
( RequiredState req3 Armchair : : On( ) )
( Constra int OverlappedBy (Head , req1 ) )
( Constra int During (Head , req2 ) )
( Constra int EndEnd(Head , req3 ) )

)
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( SimpleOperator
(Head Human : : StandUp ( ) )
( RequiredState req1 Gesture : : Stand ( ) )
( RequiredState req2 Posture : : Standing ( ) )
( RequiredState req3 Human : : SitDown ( ) )
( Constra int MetByOrOverlappedBy(Head , req1 ) )
( Constra int S t a r t s (Head , req2 ) )
( Constra int MetByOrAfter (Head , req3 ) )

)

Fig. 2. Validation of the models of sit down and stand up.

We performed preliminary tests defining sequences of sensor values to anal-
yse the reasoner inferences they trigger. In Figure 2, the timeline of the context
variable Human is computed by the reasoner and list all corresponding recognized
activities, as indicated by the Head fields. The other timelines report the sensor
values (i.e., gesture, posture, location and objects sensors). At each time instant,
the reasoner samples the sensors, keeping track of all modelled activities which
are consistent with the sensors readings up to that instant (i.e., those that could
be the one currently being executed). As time passes, the number of possible ac-
tivities progressively reduces, until it converges to the one effectively performed,
if it is among the modelled ones, or to none. All sensors or context variables
statuses supporting an inferred activity are marked with a blue filling.

Figure 2 reports the simulated sensor readings related to a person who drops
a heavy bag on the kitchen chair, then walks to the living-room and sits on
the armchair. Although the chair pressure sensor is activated by the bag (for
t = [16; 35]), the wearable gesture and posture sensors do not signal any sitting
motion, therefore preventing the reasoner from making an erroneous inference.
Later on, when the person sits on the armchair, environmental and wearable
sensors agree on indicating that the person sat down, therefore triggering the
correct recognition of the sitting motion. The example also highlights one ad-
vantage deriving from overloading rules. Since the two modelled sitting actions
(i.e., sitting down on the kitchen chair and sitting down on the armchair) are
defined as SitDown, it is possible to define a single model for the standing up
motion, constrained by the previous occurrence of any sitting action.
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4 Conclusions

In this abstract, we introduce the idea of a multi-modal monitoring system,
which combines information retrieved via different monitoring approaches and
we prove, in simulation, that the integration of wearable and environmental
information is beneficial for the purposes of human activity monitoring. Future
work will focus on the set up of a test bed apartment in an elderly care facility in
Örebro, Sweden, to test the performance of the system under realistic conditions.
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