A Case for Robust AI in Robotics

Shashank Pathak!, Luca Pulina?, and Armando Tacchella®

! iCub Facility — Istituto Italiano di Tecnologia
shashank.pathak@iit.it
2 POLCOMING — Universit4 degli Studi di Sassari
lpulina@uniss.it
3 DIBRIS — Universita degli Studi di Genova,

armando.tacchella@unige.it

Abstract. Researchers envision a world wherein robots are free to in-
teract with the external environment, thereby including human beings,
other living creatures, robots and a variety of inanimate objects. It is
always tacitly assumed that interactions will be smooth, i.e., they will
fulfill several desirable properties ranging from safety to appropriateness.
We posit that a reasonable mathematical model to frame such vision is
that of Markov decision processes, and that ensuring smooth interactions
amounts to endow robots with control policies that are provably compliant
with side conditions expressed in probabilistic temporal logic.

1 Context, Motivation, Objectives

A (stationary, discrete time) Markov decision process is a collection of objects
M ={T,S, As,p(-|s,a),r(s,a)} where T'C NT is a set of time points over an
infinite horizon; S is a finite, time-independent set of states which the system
can occupy at each t € T'; Ay is a finite time-independent set of actions allowable
in some state s € S where A = (J,.g As collects all actions; p(j[s,a) is a (non-
negative) transition probability function such that Zjesp(ﬂs, a) = 1, denoting
the probability that the system is in state j at time ¢ + 1 when action a € Ag
is accomplished in state s at time ¢; (s, a) is a function |r(s,a)| < M for some
finite M € R; r is defined for all states and actions, and it denotes the value of
the reward received when executing an action in a state. A labelling function
L:S — AP can be used to express additional properties of states by labelling
them with atomic propositions from a set AP.

A (stationary) policy (also scheduler or controller) specifies a procedure
for action selection in each state of a Markov decision process. A policy 7
is deterministic if it is a function 7 : S — A,, and is stochastic if it is a
function 7 : S x A — [0,1] with 7(s,a) = 0 for all a ¢ As; and s € S, and
Y aca, T(s,a) = 1for all s € S. The well known Markov decision problem (MDP)
amounts to compute a policy which fulfils some optimally criterion within a
Markow decision process M. Usually the criterion is linked to the rewards that
can be accrued when acting in M according to a policy 7 starting from some
state s, i.e., the value V,(s) of state s under policy 7. A policy 7 is better than

or equal to 7’ (7 > 7') exactly when V;(s) > V/(s) for all s € S. Given some
reasonable definition of value V.(s) for all s € S, solving an MDP amounts to
find 7* such that 7#* > « for all possible m — more about MDPs and related
decision problems can be found in [1].

From a modeling point of view, Markov decision processes and associated
optimization problems, capture a broad set of approaches to the analysis and
synthesis of intelligent behavior for autonomous agents which can be put to
good use in the field of Robotics. For instance, in [2] it is argued that many
problems of AI planning under uncertainty can be modeled as MDPs. In the
learning community — see [3] for a recent persective — reinforcement learning
(RL) is viewed as one of the key techniques to synthesize intelligent behavior
for interactive agents, and the mathematical underpinning of RL is also given
by Markov decision processes. Even closer to field robotics, the area of optimal
control has a long tradition of leveraging MDPs for problems involving sequential
decision making under uncertainty — see, e.g., [4]. Given the widespread adoption
of MDPs in AT and related (sub)fields, proposing techniques to achieve robustness
of autonomous agents based on Markov decision processes is bound to have a
broad impact. We believe that Robotics might benefit the most from robust Al
techniques, since robots ought to be functional but also dependable, and the
trade-off between these two aspects need to be fully understood and explored.

Our key proposition is to extend the modeling framework of MDPs to one
that includes explicit side conditions expressed in probabilistic computation tree
logic (PCTL). The syntax of PCTL is defined considering the set X of state
formulas, and the set IT of path formulas. Given a set of atomic propositions AP,
X is defined inductively as: (i) if p € AP then p € X; (i4) T € X if o, € X
then also a A f € X and —«a € X and (4it) Pep[t)] € X where e {<, <, >, >},
p € 10,1] and ¢ € II, where Pup[¢)] is the probabilistic path operator. The set IT
contains exactly the expressions of type Xa (next), ald<*3 (bounded until) and
ol (until) where a, 8 € X and k € N — more on PCTL can be found in [5].
Given an MDP M, a definition of value V.(s) for all states of M, and a PCTL
formula ¢, the Markov decision problem with probabilistic side condition (MDPP)
can be defined as the problem of finding 7* such that 7+ > 7 for all policies
mand D -+ = p, 1.e., p is always satisfied in the discrete-time Markov chain
(DTMC) Dpg - corresponding to the combination of M and 7* — see [5] for
details about DTMCS and PCTL semantics, and [6] for details about combining
MDPs with policies to yield DTMCs.

2 State of the art

We can distinguish current approaches to MDPP into two broad categories, the
first one oblivious of formal techniques, and the second one deeply rooted in
formal verification and reasoning. In the former category we can list multi-
objective reinforcement learning [7] — with Geibel and Wysotski’s approach as a
special case [8]. The main idea of these approaches is to encode the requirement
expressed by ¢ in the value function V.(s). Both approaches do not require

knowledge of p(-|s,a) because the relevant information is learned by interacting
with (a physical realisation of) M. In this way, solving the Markov decision
problem yields a policy that most probably also satisfies ¢, although formal
guarantees are not provided. Still in the first category, we can consider Gillula
and Tomlin’s safe online learning [9] which, albeit restricted to safety properties,
provides a mathematically precise way to combine side conditions to the online
solution of an MDP via reinforcement learning (RL) [10]. Decision-theoretic
planning [2] — a.k.a. indirect RL [3] model-based RL [10] or controller synthesis
on MDPs [11] — is another approach in which MDPP can be formalised by taking
into account both the elements related optimisation of V. and the side conditions
expressed by . In this case the solution is precise, but it requires the knowledge
of p(:|s,a) in advance and the policy synthesised is always deterministic. Yet
another way to incorporate side conditions is to consider the overall model as a
constrained MDP [12], where one type of cost is to be optimised while keeping the
other types of costs within a bound. As before, the approach requires knowledge
of the model. All the methods listed above do not cover the cases in which both
p(:|s, a) is unknown and the optimal policy is stochastic. Also, the learning-based
ones have an unclear relation between the logic specification of ¢ and functional
specification of rewards.

Another set of approaches to MDPP is the one based on formal methods which
can be used to solve parts of the MDPP problem. For a known model M and
a given policy 7, probabilistic model checking supported by efficient tools like
PRISM [13] or MRMC [14] can be applied to check whether the side condition ¢
is satisfied by the controller policy 7. If a policy 7 does not satisfy the PCTL
property ¢, model repair [15] can be applied to modify the policy such that ¢
becomes true. First the DTMC model resulting from the MDP model under
the given policy 7 is parameterised, using linear combinations of real-valued
parameters in the transition probabilities, where the parameter domains define
the allowed areas for the repair. Additionally, a cost-function over the parameters
can be given. Now model repair can be applied to find (if it exists) a parameter
valuation within the parameter domains which on the one hand induces the
satisfaction of the property ¢ and on the other hand minimises the value of the
cost-function, i.e., changing the transition probabilities and thereby repairing
the DTMC with minimal costs. Unfortunately, this approach needs non-linear
optimisation and therefore it does not scale for larger models. An approach that
we recently proposed with other researchers uses a greedy repair algorithm [6].
Instead of global optimisation, it uses local repair steps iteratively. Though it
needs to iteratively invoke probabilistic model checking, this approach scales well
also for large models. However, it can incorporate rewards and values Vy(s) only
heuristically in a quite restricted manner.

3 Towards Robust AI in Robotics: a Challenge

Potentially, an AI agent embodied in a robot may face a wide variety of scenarios
each characterized by different safety constraints and learning objectives. To

Initialize robot

Observe user
(acquire D;)

Robot calibraton ends
Simulate learning Modify
(compute) reward profile

Check Mo, - = ¢

Coriure obot
configuration

Observe trainer Improve
(acquire D) acquisition

Simulate learning (Re)Shape
(compute) reward profile

B Repair
Ten (compute =)

The robot can No| The robot cannot
operate saiely operate salely

YES | Robot behaves safely

Ship robot

’ Deploy 7’ ’ Reset robot ‘

Fig. 1. A challenging MDPP setting. The boxes in red denote activities in which the end
user can calibrate the robot or modify its behavior.

obtain a quantitative assessment about our capability to attack the MDPP problem
it is useful to focus on a specific scenario which contains all the basic ingredients
found in more complex ones, yet it is significant and amenable of a relatively
simple implementation. In particular, the case of a single robot interacting with
a single human across a common workspace is considered. It is assumed that the
robot observes the human while she is accomplishing a given task, which at some
point, requires the robot to chip in and, e.g., finalize the task alone or help the
human to do so. The task must be learned by the robot, but RL is run offline in a
simulator to avoid risk of injuries to the human during the trial-and-error process
which characterizes RL. As shown in Figure 1 two different flows of activities are
considered. The first one — Figure 1 (left) — is thought to happen at the end of
the production stage (factory), where the robot is configured, trained and checked
by experts to accomplish a given task. The second one — Figure 1 (right) — is
thought to happen during the deployment stage (e.g., household), where the user
is allowed to (i) calibrate the robot, i.e., adapt its behavior to the contingencies
of the environment to be found at the user’s place, and to (i) modify the robot’s
behavior, i.e., customize the robot according to specific preferences.

We believe that the current state of the art is unable to solve the MDPP
problem in a totally satisfactorily way in cases like the one exemplified in
Figure 1. However there are strong potentials in combining efficient but potentially
imprecise engineering approaches with precise but potentially inefficient formal
methods. For example, RL-based methods are well established for MDP controller
synthesis, where the optimality criteria are encoded by rewards and the value
function V,(s). To assure that the controller learned by RL is safe, during
RL learning we could use probabilistic model checking. If the current (not

yet necessarily optimal) controller turns out to be unsafe, we could repair the
controller. Additionally, it might also be necessary to modify the rewards and/or
the value function to direct RL towards safe solutions. This could be done, for
example, based on probabilistic counterexamples [16]. In contrast with reward-
shaping approaches that guarantee invariance of the optimal policy learned [17],
such a reward or value function repair aims to obtain sub-optimal but safe policy.

References

10.

11.

12.

13.

14.

15.

16.

17.

Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons (1994)

Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research 11(1)
(1999) 94

Wiering, M., Van Otterlo, M.: Reinforcement learning. In: Adaptation, Learning,
and Optimization. Volume 12. Springer (2012)

Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P.: Dynamic pro-
gramming and optimal control. Athena Scientific Belmont, MA (1995)

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
Pathak, S., Abrahdm, E., Jansen, N., Tacchella, A., Katoen, J.: A greedy approach
for the efficient repair of stochastic models. In: Proc. of NFM’15. Volume 9058 of
LNCS, Springer (2015) 295-309

Natarajan, S., Tadepalli, P.: Dynamic preferences in multi-criteria reinforcement
learning. In: Proc. of ICML’05, ACM (2005) 601-608

Geibel, P., Wysotzki, F.: Risk-Sensitive Reinforcement Learning Applied to Control
under Constraints. Journal of Artificial Intelligence Research 24 (2005) 81-108
Gillula, J.H., Tomlin, C.J.: Guaranteed safe online learning via reachability: tracking
a ground target using a quadrotor. In: Proc. of ICRA’12, IEEE (2012) 2723-2730
Sutton, R., Barto, A.: Reinforcement Learning — An Introduction. MIT Press
(1998)

Dréger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive controller
synthesis for probabilistic systems. In: Proc. of TACAS’14. Springer (2014) 531-546
Altman, E.: Constrained Markov decision processes. Volume 7. CRC Press (1999)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRisM 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Volume 6806 of LNCS, Springer (2011) 585-591
Katoen, J.P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2)
(2011) 90-104

Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C., Smolka, S.A.: Model repair
for probabilistic systems. In: Proc. of TACAS. Volume 6605 of LNCS, Springer
(2011) 326-340

Abrahaﬁm, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J., Wimmer, R.: Coun-
terexample generation for discrete-time Markov models: An introductory survey.
In: Proc. of SFM. Volume 8483 of LNCS, Springer (2014) 65-121

Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: ICML. Volume 99 (1999) 278-287

