
State Complexity Advantages
of Ultrametric Automata

Maksims Dimitrijevs

University of Latvia Faculty of Computing,
Raiņa bulvāris 19, Riga, LV-1586, Latvia

Abstract. Ultrametric automata have properties similar to the proper-
ties of probabilistic automata but the descriptional power of these types
of automata can differ very much. In this paper, we compare ultramet-
ric automata with deterministic, nondeterministic, probabilistic and al-
ternating automata with various state complexities. We also show that
two-way ultrametric automata can have a smaller state complexity than
one-way ultrametric automata.

1 Introduction

p-adic numbers are widely used in chemistry [1], molecular biology [2] and physics
[3]. The idea of using p-adic numbers in computer science as parameters in finite
automata and Turing machines belongs to Rūsiņš Freivalds [4]. He proved that
the use of p-adic numbers exposes new possibilities which do not inhere in de-
terministic or probabilistic approaches. Moreover, in 1916 Alexander Ostrowski
proved that any non-trivial absolute value of the rational numbers Q is equiva-
lent to either the usual real absolute value or a p-adic absolute value. Therefore
using p-adic numbers was the only remaining possibility not yet explored [4].

In our research, we looked at previous results about state complexity of ul-
trametric automata [4, 6, 9, 10] and improved some of these results. To illus-
trate, we will exhibit a language that has exponential state complexity in the
case of nondeterministic automata, but requires only 13 states for ultrametric
automata. We will also compare the state complexity of ultrametric automata
with the state complexity of deterministic, nondeterministic, probabilistic, and
alternating automata.

After observing one-way ultrametric automata we will look at two-way ultra-
metric automata. We will then show some possible ways to reduce the number
of states by making a two-way ultrametric automaton instead of a one-way ul-
trametric automaton.

2 p-adic Numbers and Ultrametric Automata

Ultrametric automata use p-adic numbers and therefore we will begin with defi-
nitions of p-adic numbers and related operations. A p-adic integer (ai)i∈N is an
infinite sequence of p-adic digits to the left side. A p-adic digit ai is a natural

14 M. Dimitrijevs

number between 0 and p− 1 where p is an arbitrary prime number. p-adic num-
bers are infinite on the left side but finite on the right side. For each natural
number there exists a p-adic representation and only a finite number of p-adic
digits are not zeroes. There also exist p-adic float numbers, which have a decimal
point. For example, the p-adic number 1/p2 can be written as ...0000.01. p-adic
numbers are infinite on the left side but finite on the right side.

We can add, subtract, multiply and divide p-adic numbers in the same way
as natural numbers. For example we can take a 5-adic representation of 1/2,
which is ...22223. ...22223 + ...22223 = ...00001. The result is the same in the
case of rational numbers: 1/2 + 1/2 = 1. It is important to mention that the
only division not available to p-adic integers is division by a positive degree of
p (because the equation x∗p = 1 cannot have the p-adic integer x as a solution).
Despite these limitations, p-adic integers can represent any integer and most
of rational numbers. The field of p-adic numbers is denoted by Qp. For those
interested, much more about p-adic numbers and mathematical operations has
been written by David A. Madore [5].

p-adic numbers cannot be linearly ordered so we will need the absolute value
of the p-adic number. If p is a prime number then the p-adic ordinal of the
rational number a, denoted by ordpa, is the largest m such that pm divides a.

Definition 1. For any rational number x its p-norm (p-adic absolute value) is

‖x‖p =

{
1/pordpx, if x 6= 0

0, if x = 0.

Now we can show the basic definition of ultrametric automata. Ultrametric
automata are defined by Rūsiņš Freivalds in [4].

Definition 2. A one-way p-ultrametric finite automaton is a tuple
(Q,S, δ, q0, F, Λ) where

– Q is the finite set of states,
– S is the input alphabet,
– δ : Q× S ×Q→ Qp is the transition function,
– q0 : Q→ Qp is the initial amplitude distribution,
– F ⊆ Q is the set of accepting states,
– Λ = (λ,♦) is the acceptance condition where λ ∈ R is the acceptance thres-

hold and ♦ ∈ {≥,≤}.

Ultrametric automata are similar to probabilistic automata. A probabilis-
tic automaton has transition probabilities that are real numbers. In the case of
p-ultrametric automata, transitions are done with amplitudes, which are p-adic
numbers. Therefore, we can assume that for p-ultrametric automata, a prime
number p is also a parameter. Every state of ultrametric automaton has a be-
ginning amplitude (the amplitude may also be zero). The final amplitudes of the
states are calculated the same way as probabilities for probabilistic automata.
To get the result after reading the input word, the amplitude of every accepting

State Complexity Advantages... 15

state is transformed into p-norm, and the word is accepted if and only if the
p-norm sum of accepting states satisfies the acceptance condition. We can also
assume that the input word is followed by an end-marker a [4].

There exist ultrametric automata with more restricted definitions. General
definitions allow us to use all possible p-adic numbers. This gives them the
capability to recognize nonrecursive languages [4] and this is one of the reasons
why more restricted definitions have been introduced.

Definition 3. A finite p-ultrametric automaton is called integral if all the p-adic
numbers in its initial distribution and transition function are p-adic integers.

Definition 4. A state of a p-ultrametric automaton is called regulated if there
exist constants λ, c such that for every input word the p-norm of amplitude γ of
this state is bounded by λ− c < ‖γ‖p < λ+ c. A finite p-ultrametric automaton
is called regulated if all of its states are regulated.

Ultrametric integral automata do not have examples of recognizing nonre-
cursive languages. Ultrametric regulated automata can recognize only regular
languages, but still can have great state complexity advantages over determi-
nistic finite automata [6].

We need to note that if there is only one accepting state, then the possi-
ble amplitudes of acceptance are discrete values 0, p1, p−1, p2, p−2, p3, Hence,
there is no natural counterpart of isolated cut-point or bounded error for ultra-
metric machines [4].

3 Reducing the Number of States with Ultrametric
Automata

We have researched the state complexity advantages of ultrametric automata. In
[6] we considered a regular language Lk,m. Let w = (w1, w2, ..., wm) ∈ {0, 1, ..., k−
1}m, and consider the following two operations:

1. a cyclic shift: fa(w1, w2, ..., wm) = (wm, w1, w2, ..., wm−1);
2. increasing the first element: fb(w1, w2, ..., wm) = ((w1+1)modk,w2, ..., wm).

Let x ∈ {a, b}∗. We define fx1x2...xn(w) = fxn(...fx2(fx1(w))...). The considered
language is Lk,m = {x ∈ {a, b}∗|fx(0m) = 0m}. We have proven that a de-
terministic automaton requires at least km states. For all prime numbers p, an
ultrametric automata can recognize Lk,m with k ∗m states. In this case we can
construct a regulated ultrametric automaton. Stronger results are achieved for
every prime p > m: p-ultrametric automata can recognize Lp,m with m+ 1 state
[6]. In this case amplitudes and p-norms of the states are not bounded, and the
automaton is integral, but not regulated.

We will show that the results achieved in [6] for ultrametric regulated au-
tomata can also be achieved for other models, which can recognize only regular
languages.

16 M. Dimitrijevs

Theorem 1. A one-way alternating automaton can recognize Lk,m with k∗m+1
states.

Proof. To recognize the language Lk,m we will construct an alternating automa-
ton with one beginning universal state and with ε-transitions it will get into all
accepting states. The other k ∗ m states are existence states. The constructed
automaton is shown on Fig 1. The automaton works like in the proof for regu-
lated ultrametric automata in [6]. wt

s denotes that s-th element of w has value
t. This means that in the beginning all w elements have value 0, and because all
transitions were done from the universal state, they should return into accepting
states, that is, after all the operations with w all elements should have value 0,
otherwise the automaton will reject the input word. ut

Fig. 1. An alternating automaton recognizing Lk,m

To conclude about the state complexity advantages of ultrametric regulated
automata over deterministic automata, we have to mention the two following
results. There is a proof that for any arbitrary prime number p there is a con-
stant cp such that if a language M is recognized by a regulated p-ultrametric
finite automaton with k states, then there is a deterministic finite automaton
with (cp)k∗logk states recognizing the language M [6]. Second, there is a proof
that such a difference in state complexity is obtainable: for any arbitrary prime
p there is a language, which is recognized by a p-ultrametric regulated automa-
ton with p + 2 states, and this language requires at least p! = cp∗logp states for
the deterministic automaton to recognize this language [4].

Ultrametric integral automata have better capabilities than regulated ultra-
metric automata and we can expect greater state complexity advantages. We
consider a language Ln = {awbwa|w ∈ {0, 1}∗ and |w| = n}. One-way determi-
nistic and even nondeterministic automata require at least 2n states [7].

State Complexity Advantages... 17

Theorem 2. For every prime number p language Ln can be recognized by inte-
gral p-ultrametric finite automaton with constant state complexity.

Proof. To prove this theorem we will construct a p-ultrametric automaton with
13 states. The constructed automaton is shown in Fig. 2. l|m denotes that
a transition is made for letter l with amplitudem. The automaton has four logical
parts. After reading letter b, the amplitude of the state q3 will be

∑n−1
i=0 xi ∗ pi

where n is the number of letters before b, xi is the i-th symbol of the first
part w, where xi is either 0 or 1. Analagously, after reading the second part w,∑m−1

i=0 xi ∗ pi is subtracted from the amplitude of the state q3, where m is the
number of symbols between b and the second letter a. The amplitude of q3 will
be equal to zero if and only if the positions of the 1s are the same in both word
parts w.

Fig. 2. A p-ultrametric automaton recognizing Ln

When the input word is read, the amplitude of q7 will be q|w1|/q|w2| − 1,
where |w1| is the length of the first part w and |w2| the length of second part
w. Therefore, the amplitude of state q7 will be zero if and only if the lengths of
both parts w are equal.

States q8, q9 and q11 will have an amplitude of zero if and only if the input
word has a correct structure: b after a, the second letter a after b, and no letters
present after the second letter a. If this condition does not hold one of the
mentioned states will have amplitude 1.

States q12 and q13 ensure the check for equality |w| = n. In the beginning,
state q13 has amplitude 2n and when the symbols zero or one are read, with the

18 M. Dimitrijevs

help of state q12, 1 is subtracted from the amplitude of state q13. An acceptable
input word should have two parts w, each having n symbols, and therefore state
q13 will have amplitude zero if both parts w have length n.

A constructed automaton has four checks, and an input word belongs to
Ln if and only if all four conditions are satisfied and the amplitudes of all the
accepting states are equal to zero. In this case, the sum of the p-norms of all
the accepting states will be zero. Otherwise, it will be greater than zero. All
the amplitudes of the constructed automaton are p-adic integers (it doesn’t have
divisions by p) and therefore it is an integral ultrametric automaton. ut

By constructing the aforementioned automaton, we have shown that there
exists a language that requires exponential state complexity for nondeterministic
automata and constant state complexity for p-ultrametric automata for every
prime number p. We can improve this result by increasing the base of exponent.

Theorem 3. For every positive integer k there exists a language, which con-
sists of words of length O(n), requires at least kn states to be recognized by
a nondeterministic finite automaton, but for every prime number p, an integral
p-ultrametric finite automaton can recognize this language with constant state
complexity.

Proof. We will slightly improve the language Ln = {awbwa|w ∈ {0, 1}∗ and |w| =
n}, this time w will be in the k letter alphabet. Similar to the description in
[7], the new language will require at least kn states for a nondeterministic au-
tomaton. For the ultrametric automaton in the proof of Theorem 2 we will need
to change only the first logical part. One of the possibilities is to duplicate the
states q2, q3, q4 and q5 for 3-rd, 4-th, ..., k-th letter of the alphabet. In this case,
we will have a p-ultrametric automaton with 13 + (k − 2) ∗ 4 = 4 ∗ k + 5 states,
which is a constant that does not depend on the length of the input word. ut

Ultrametric integral automata can have smaller state complexities than pro-
babilistic automata. We consider the following language, where p is a prime
number: Lp = {1n|n is divisible by p}. In [8] there is a proof that any one-way
probabilistic finite automaton recognizing Lp with probability 1/2+ε, for a fixed
ε > 0, has at least p states.

Theorem 4. Language Lp can be recognized by an integral p-ultrametric au-
tomaton with two states.

Proof. The constructed p-ultrametric automaton is shown in Fig. 3. After read-
ing an input word of length n, the amplitude of the accepting state will be n. If
n is divisible by p, the p-norm of n will be p−c, where c is a positive integer. If
n = 0, the p-norm will be 0. Otherwise, the p-norm will be 1. So, the acceptance
condition for the p-norm will be ≤ p−1. ut

In [9] another example is shown, where probabilistic automata require more
states than p-ultrametric automata. Here the language is quite simple: Cn =

State Complexity Advantages... 19

{1n}. A probabilistic automaton requires 3 states, while a p-ultrametric au-
tomaton requires 2 states. There exists a probabilistic automaton with 3 states
and a p-ultrametric automaton with 2 states, both recognizing Cn. The strength
of this result is in the fact that it is proven for all prime numbers p as parameters
of p-ultrametric automaton.

We can improve another result achieved in [10]. Authors show that language
LN = {1n|n 6= N} can be recognized by a p-ultrametric finite automaton for an
arbitrary odd prime number p, having O((logN)2 ∗ loglogN) states.

Theorem 5. For every prime number p, for every natural number N , language
LN can be recognized by a p-ultrametric automaton with two states.

Proof. The constructed p-ultrametric automaton is shown in Fig. 4. After read-
ing N letters, both accepting states will have an amplitude of 1. So, the p-norm
sum of amplitudes will be equal to 2. Otherwise, the p-norm sum will be pc+p−c,
where c 6= 0. We can see that for every prime number p, if c 6= 0, pc + p−c > 2
(the smallest possible value is 21 + 2−1 = 2.5). Therefore, the acceptance condi-
tion for the p-norm sum will be ≥ 2.5. ut

Fig. 3. A p-ultrametric automaton re-
cognizing Lp

Fig. 4. A p-ultrametric automaton re-
cognizing LN

The situation with the language LN is similar to the situation of the language
Cn. Both languages can be recognized by p-ultrametric automata with two states
and both languages require at least three states to be recognized by probabilistic
automata (this can be concluded from [9]).

In [11] the authors considered a language Lm with the alphabet {a1, a2, ...,
am} and consisting of all words that contain each of the letters a1, a2, ..., am
exactly m times. There exists a probabilistic finite automaton with isolated cut-
point, which accepts Lm and has O(m∗(logm)2/loglogm) states. A deterministic
finite automaton requires at least (m+1)m states to recognize this language [11].

Theorem 6. For every prime number p, language Lm can be recognized by an
integral p-ultrametric automaton with two states.

Proof. We will take m different prime numbers p1, p2, ..., pm, all of them different
from p. The beginning amplitude of an accepting state will be pm1 ∗ pm2 ∗ ... ∗ pmm.
After reading the symbol ai the amplitude of an accepting state will be multiplied
by p−1i . If each of the letters a1, a2, ..., am was present exactly m times, the
amplitude of an accepting state will be 1. Otherwise, it will be different. Using

20 M. Dimitrijevs

a second state we can subtract 1 from the amplitude of an accepting state after
the input word has been read. Therefore, the amplitude of an accepting state will
be zero if and only if the input word belongs to Lm. Therefore, the acceptance
condition for p-norm will be ≤ 0. The constructed automaton does not have
amplitudes that are not p-adic integers. ut

The proven theorem shows how we can reduce the number of states in ul-
trametric automata by ”hiding” different counters in one particular state. We
cannot achieve smaller state complexity than in Theorem 5 and Theorem 6 be-
cause a p-ultrametric automaton requires at least two states to recognize the
aforementioned languages. The idea of this proof will be similar to that of the
proof of Theorem 10 in [9]. In the case of one state, as the length of the word
increases, the norm increases or decreases monotonically or does not change.
Therefore, in the case of Theorem 5 and Theorem 6 we are not able to decrease
the state complexity for ultrametric automata from two states to one state.

Consider the language, defined for all integers k > 0: EV ENODDk
yes =

{aj2k |j is a nonnegative even integer}. It is known that language
EV ENODDk

yes requires at least 2k+1 states to be recognized by a one-way
probabilistic automaton with a probability of at least 1/2 + ε (for a fixed ε > 0)
[12]. A two-way nondeterministic automaton also requires at least 2k+1 states
[13]. We can reduce the number of states by half with a regulated ultrametric
automaton.

Theorem 7. For every prime number p, the language EV ENODDk
yes can be

recognized by a regulated p-ultrametric automaton with 2k + 1 states.

Proof. We will use an amplitude to reduce the number of states by half compared
to 2k+1 states in the deterministic approach. The automaton can be seen in
Fig. 5.

The constructed automaton has a cycle of length 2k. When an amplitude
has reached an accepting state, that means that the automaton has received
a number of symbols a which is divisible by 2k. The amplitude is then multiplied
by -1 before reaching the accepting state. The accepting state has an amplitude
of 1 if and only if the number of symbols a is divisible by 2k+1. If the number of
symbols a is divisible by 2k, but not divisible by 2k+1, the accepting state will
have an amplitude of -1. If the number of symbols a is not divisible by 2k, the
accepting state will have an amplitude of zero.

One more state is required to subtract 1 from the amplitude of the accepting
state after reading the input word. The accepting state will have amplitude zero
if the number of symbols a was divisible by 2k+1, otherwise it will be -1 or -2.
Therefore, the input word will be accepted if the p-norm of the accepting state
will satisfy condition ≤ 0.

The constructed automaton is regulated. Any of the states can have the am-
plitudes -2, -1, 0 or 1, but not any other. The automaton will work equally with
all prime numbers p. Therefore, we have constructed a regulated p-ultrametric
automaton with 2k + 1 states to recognize EV ENODDk

yes. ut

State Complexity Advantages... 21

Fig. 5. A regulated p-ultrametric automaton recognizing EV ENODDk
yes

We have obtained a regulated ultrametric automaton with two times fewer
states than a probabilistic or two-way nondeterministic automaton. A determi-
nistic automaton with one counter can recognize EV ENODDk

yes with nearly

the same state complexity advantages. We can use the same cycle of length 2k,
increase the value of the counter to 1 as it passes the beginning of the cycle, and
reduce the value back to zero if it was 1. After reading the input word, we can
determine whether the automaton has gone through the cycle an even number
of times or not.

We can do this job much better with non-regulated ultrametric automata.

Theorem 8. There exists a language, which requires at least k + 1 state for
alternating automata, but can be recognized by 2-ultrametric integral automaton
with two states.

Proof. We can construct an automaton like that in the proof of Theorem 4. The
accepting state will have a beginning amplitude of zero and reading letter a will
add 1 to the amplitude. The amplitude will be divisible by 2k+1 if and only if
the input word belongs to EV ENODDk

yes. An input word will be accepted if

2-norm does not exceed 1/2k+1. An empty input word will be accepted, because
2-norm zero is less than 1/2k+1.

The language EV ENODDk
yes requires at least k+ 1 states to be recognized

by an alternating automaton [14]. ut

4 Two-way Ultrametric Automata

Two-way ultrametric finite automata can go through the input word in both
directions. This gives them the ability to read an input word many times and
to read an input word from right to left. Before the beginning of the input word
there is a left end-marker ` on the input tape and after the end of the input
word there is a right end-marker a. Two-way finite automata are like Turing
machines with one tape containing an input word. The aforementioned tape is
read-only [15].

The ability to read an input word in both directions makes it easier to create
an algorithm and to understand such an algorithm. For example, to check if
the word is a palindrome, we will not need to check the positions of the input

22 M. Dimitrijevs

letters and their reverse positions. We can just compare the positions of the sym-
bols reading word in one and another direction. We will look at palindromes in
a binary alphabet.

Theorem 9. For every prime number p palindromes of a binary alphabet can
be recognized by a one-way integral p-ultrametric automaton with 4 states.

Proof. The constructed p-ultrametric automaton is shown in Fig. 6, q is a prime
number, and q 6= p. Assume that the automaton has read an input word of
length n. The top two states ensure that

∑n−1
i=0 ai ∗ q2∗i−n+1 will be added to

the amplitude of the accepting state, where ai = 1 if i-th input symbol was 1.
The bottom two states ensure that

∑n−1
i=0 ai ∗ qn−1−2∗i will be subtracted from

the amplitude of the accepting state. Both values will be equal if and only if the
input word is a palindrome. Therefore, the amplitude of an accepting state will
be equal to zero if the input word is a palindrome. Therefore, the acceptance
condition for p-norm will be ≤ 0. ut

Fig. 6. A one-way p-ultrametric au-
tomaton recognizing palindromes

Fig. 7. A two-way p-ultrametric au-
tomaton recognizing palindromes

Now we will reduce the number of states by allowing the automaton to read
the input word in both directions.

Theorem 10. For every prime number p palindromes of a binary alphabet can
be recognized by a two-way integral p-ultrametric automaton with 3 states.

Proof. We will construct an automaton like that in the proof of Theorem 9, but
this time we will save one state. The constructed p-ultrametric automaton is
shown in Fig. 7. Here we obtain the following check:

∑n−1
i=0 ai ∗ pi =

∑n−1
i=0 ai ∗

pn−1−i. It is a more direct and natural check: the input word should be the
same reading it in both directions. We have obtained a two-way p-ultrametric
automaton with 3 states. ut

To conclude that two-way ultrametric automata require fewer states to re-
cognize binary palindromes than one-way ultrametric automata, we have to
prove that one-way ultrametric automata cannot have less than 4 states.

State Complexity Advantages... 23

Theorem 11. For every prime number p, a one-way p-ultrametric automaton
cannot recognize binary palindromes with less than 4 states.

Proof (idea). It is not enough to have one state to remember the sequence of
input symbols. In [9] it is said that with the increase of the number of input
symbols, the p-norm of one state monotonically increases or decreases, or does
not change. This does not give us the ability to remember the positions of the
symbols, only the number of symbols. Therefore, to remember the positions of
the required symbols at least two states are required.

We have to remember the positions of the input word’s symbols and the
reverse positions of the input word’s symbols, because we can read the input
word only once in one direction. Otherwise, an incorrect word could be accepted.
To remember the positions of the symbols in one direction we need at least two
states. To remember the reverse positions of symbols we also require two states
and these states cannot be the same as the previously mentioned two, otherwise
we could distract the remembrance of the positions of symbols. That makes four
states together. The aforementioned restrictions do not depend on the chosen
prime number p and even on the fact that the automaton can use not only p-adic
integers. ut

Theorem 11 allows us to say that two-way integral ultrametric automata
require fewer states to recognize binary palindromes than one-way unresricted
ultrametric automata.

5 Summary

Regulated ultrametric automata can have exponential state complexity advan-
tages over deterministic automata. However, some results used only abilities that
are available to other types of automata, like alternating and counter automata.
We have obtained new results about the complexity advantages of ultrametric
automata. There exists a language, whose recognition by nondeterministic au-
tomata requires an exponential number of states (any arbitrary positive integer
can be chosen for the base of exponent), while an ultrametric integral automaton
can have constant state complexity. Another language has shown exponential
state complexity for deterministic automata while an integral ultrametric au-
tomaton has only two states. Two states of integral ultrametric automata are
able to recognize languages that require linear state complexity for probabilis-
tic and two-way nondeterministic automata or logarithmic state complexity for
alternating automata.

Two-way ultrametric automata can increase the advantages of the state com-
plexity of ultrametric automata. It is possible to show that in some cases two-way
ultrametric automata require fewer states than one-way ultrametric automata.
In the case of the language of binary palindromes, it is three states instead of
four.

24 M. Dimitrijevs

References

1. Khrennikov, A.Y.: NonArchimedean Analysis: Quantum Paradoxes, Dynamical
Systems and Biological Models. Kluwer Academic Publishers (1997)

2. Dragovich, B., Dragovich, A.: A p-adic Model of DNA Sequence and Genetic Code.
In: p-adic Numbers, Ultrametric Analysis, and Applications, vol. 1(1), pp. 34–41
(2009)

3. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-Adic Analysis and Mathematical
Physics, World Scientific (1995)

4. Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.)
Turing-100. EPiC Series, vol. 10, pp. 98–112, EasyChair (2012)

5. Madore D.A.: A first introduction to p-adic numbers (2000) http://www.madore.

org/~david/math/padics.pdf

6. Balodis, K., Beriņa, A., C̄ıpola, K., Dimitrijevs, M., Iraids, J. et al.: On the State
Complexity of Ultrametric Finite Automata. In: 39th International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM 2013),
Proceedings, vol. 2, pp. 1–9 (2013)

7. Damanik, D.: Finite automata with restricted two-way motion. Master’s thesis (in
German), J. W. Goethe-Universitaet Frankfurt (1996)

8. Ambainis A., Freivalds R.: 1-Way Quantum Finite Automata: Strengths, Weak-
nesses and Generalizations. In: Proc. 39th FOCS, pp. 332–341 (1998)

9. Balodis, K.: Counting with Probabilistic and Ultrametric Finite Automata. In:
Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birthday, LNCS,
pp. 3–16 (2014)

10. C̄ıpola, K., Pakulis, A., Freivalds, R.: Experiments in complexity of probabilistic
and ultrametric automata. In: 41st International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2015), Czech Republic (2015)

11. Ambainis, A.: The complexity of probabilistic versus deterministic finite automata.
In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.) Algorithms
and Computation, Lecture Notes in Computer Science, vol. 1178, pp. 233–238,
Springer Berlin Heidelberg (1996) http://dx.doi.org/10.1007/BFb0009499

12. Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise
problems. In: Information Processing Letters, vol. 112(7), pp. 289–291 (2012)

13. Cem Say, A.C., Yakaryilmaz, A.: Quantum finite automata: A modern introduc-
tion. In: Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birthday,
LNCS, pp. 208–222 (2014)

14. Geffert, V., Yakaryilmaz, A.: Classical Automata on Promise Problems. In: De-
scriptional Complexity of Formal Systems (DCFS 2014), LNCS, pp. 126–137 (2014)

15. Naseem, H.: Two-way Deterministic Finite Automata. (2DFA) http://www.

slideshare.net/Hafsa.Naseem/twoway-deterministic-finite-automata

